Recall: Liang-Barsky 3D Clipping

Goal: Clip object edge-by-edge against Canonical View volume (CVV)

Problem:
- 2 end-points of edge: \(A = (A_x, A_y, A_z, A_w) \) and \(C = (C_x, C_y, C_z, C_w) \)
- If edge intersects with CVV, compute intersection point \(I = (I_x, I_y, I_z, I_w) \)
Recall: Determining if point is inside CVV

Problem: Determine if point \((x,y,z)\) is inside or outside CVV?

Point \((x,y,z)\) is **inside CVV** if

\[-1 \leq x \leq 1\]
\[-1 \leq y \leq 1\]
\[-1 \leq z \leq 1\]

else point **is outside CVV**

- CVV == 6 infinite planes \((x=-1,1; \ y=-1,1; \ z=-1,1)\)
Recall: Determining if point is inside CVV

If point specified as (x,y,z,w)
- Test $(x/w, y/w, z/w)$!

Point $(x/w, y/w, z/w)$ is inside CVV

if $(-1 \leq x/w \leq 1)$
and $(-1 \leq y/w \leq 1)$
and $(-1 \leq z/w \leq 1)$

else point is outside CVV
Recall: Modify Inside/Outside Tests Slightly

Our test: \((-1 < \frac{x}{w} < 1)\)

Point \((x,y,z,w)\) inside plane \(x = 1\) if

\[
\frac{x}{w} < 1 \\
\Rightarrow w - x > 0
\]

Point \((x,y,z,w)\) inside plane \(x = -1\) if

\[
-1 < \frac{x}{w} \\
\Rightarrow w + x > 0
\]
Recall: Numerical Example: Inside/Outside CVV Test

- Point \((x,y,z,w)\) is
 - inside plane \(x=-1\) if \(w+x > 0\)
 - inside plane \(x=1\) if \(w-x > 0\)

- Example Point \((0.5, 0.2, 0.7)\) inside planes \((x = -1, 1)\) because \(-1 \leq 0.5 \leq 1\)

- If \(w = 10\), \((0.5, 0.2, 0.7) = (5, 2, 7, 10)\)
- Can either divide by \(w\) then test: \(-1 \leq 5/10 \leq 1\) OR
 - To test if inside \(x = -1\), \(w + x = 10 + 5 = 15 > 0\)
 - To test if inside \(x = 1\), \(w - x = 10 - 5 = 5 > 0\)
Recall: 3D Clipping

- Do same for y, z to form boundary coordinates for 6 planes as:

<table>
<thead>
<tr>
<th>Boundary coordinate (BC)</th>
<th>Homogenous coordinate</th>
<th>Clip plane</th>
<th>Example (5,2,7,10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC0</td>
<td>w+x</td>
<td>x=-1</td>
<td>15</td>
</tr>
<tr>
<td>BC1</td>
<td>w-x</td>
<td>x=1</td>
<td>5</td>
</tr>
<tr>
<td>BC2</td>
<td>w+y</td>
<td>y=-1</td>
<td>12</td>
</tr>
<tr>
<td>BC3</td>
<td>w-y</td>
<td>y=1</td>
<td>8</td>
</tr>
<tr>
<td>BC4</td>
<td>w+z</td>
<td>z=-1</td>
<td>17</td>
</tr>
<tr>
<td>BC5</td>
<td>w-z</td>
<td>z=1</td>
<td>3</td>
</tr>
</tbody>
</table>

- Consider line that goes from point A to C
 - Trivial accept: 12 BCs (6 for pt. A, 6 for pt. C) > 0
 - Trivial reject: Both endpoints outside (-ve) for same plane
Edges as Parametric Equations

- Implicit form \[F(x, y) = 0 \]

- Parametric forms:
 - points specified based on single parameter value
 - Typical parameter: time \(t \)

\[
P(t) = P_0 + (P_1 - P_0) \cdot t \quad \text{for} \quad 0 \leq t \leq 1
\]

- Represent each edge parametrically as \(A + (C - A)t \)
 - at time \(t=0 \), point at \(A \)
 - at time \(t=1 \), point at \(C \)
Inside/outside?

- Test A, C against 6 walls \((x=-1,1; \ y=-1,1; \ z=-1,1)\)
- There is an intersection if BCs have opposite signs. i.e. if either
 - A is outside \(< 0\), C is inside \(> 0\) or
 - A inside \(> 0\), C outside \(< 0\)
- Edge intersects with plane at some \(t_{hit}\) between \([0,1]\)
Calculating hit time \((t_{\text{hit}})\)

- How to calculate \(t_{\text{hit}}\)?
- Represent an edge \(t\) as:

\[
Edge(t) = ((Ax + (Cx - Ax)t, (Ay + (Cy - Ay)t, (Az + (Cz - Az)t, (Aw + (Cw - Aw)t)
\]

- E.g. If \(x = 1\),

\[
\frac{Ax + (Cx - Ax)t}{Aw + (Cw - Aw)t} = 1
\]

- Solving for \(t\) above,

\[
t = \frac{Aw - Ax}{(Aw - Ax) - (Cw - Cx)}
\]
Inside/outside?

- t_{hit} can be “entering (t_{in})” or ”leaving (t_{out})”
- Define: “entering” if A outside, C inside
 - Why? As t goes [0-1], edge goes from outside (at A) to inside (at C)
- Define “leaving” if A inside, C outside
 - Why? As t goes [0-1], edge goes from inside (at A) to outside (at C)
Candidate Interval

- Candidate Interval (CI): time interval during which edge might still be inside CVV. i.e. CI = t_in to t_out
- Initialize CI to [0,1]
- For each of 6 planes, calculate t_in or t_out, shrink CI

Conversely: values of t outside CI = edge is outside CVV
Shortening Candidate Interval

Algorithm:
- Test for trivial accept/reject (stop if either occurs)
- Set CI to [0,1]
- For each of 6 planes:
 - Find hit time t_{hit}
 - If t_{in}, new $t_{in} = \max(t_{in}, t_{hit})$
 - If t_{out}, new $t_{out} = \min(t_{out}, t_{hit})$
 - If $t_{in} > t_{out} =>$ exit (no valid intersections)

Note: seeking smallest valid CI without t_{in} crossing t_{out}
Example: Chop step by Step against 6 planes

- Initially

 \[\text{Candidate Interval (CI)} = [0 \text{ to } 1] \]

- Chop against each of 6 planes

 \[\text{t}_{\text{in}} = 0, \quad \text{t}_{\text{out}} = 0.74 \]
 \[\text{Candidate Interval (CI)} = [0 \text{ to } 0.74] \]

Why \(t_{\text{out}} \)?
Example: Chop step by Step against 6 planes

- **Initially**
 - $t_{\text{out}} = 0.74$
 - $t_{\text{in}} = 0$, $t_{\text{out}} = 0.74$
 - Candidate Interval (CI) = [0 to 0.74]

- **Then**
 - Plane $x = -1$
 - $t_{\text{out}} = 0.74$
 - $t_{\text{in}} = 0.36$, $t_{\text{out}} = 0.74$
 - Candidate Interval (CI) CI = [0.36 to 0.74]
 - Why t_{in}?
Calculate chopped A and C

- If valid t_in, t_out, calculate adjusted edge endpoints A, C as
 - $A_{\text{chop}} = A + t_{\text{in}} \times (C - A)$ (calculate for Ax, Ay, Az)
 - $C_{\text{chop}} = A + t_{\text{out}} \times (C - A)$ (calculate for Cx, Cy, Cz)
3D Clipping Implementation

- Function clipEdge()
- Input: two points A and C (in homogenous coordinates)
- Output:
 - 0, if AC lies completely outside CVV
 - 1, completely inside CVV
 - Returns clipped A and C otherwise
- Calculate 6 BCs (w-x, w+x, etc) for A, 6 for C
Store BCs as Outcodes

- Use outcodes to track in/out
 - Number walls $x = +1, -1; y = +1, -1$, and $z = +1, -1$ as 0 to 5
 - Bit i of A’s outcode = 1 if A is outside ith wall
 - 1 otherwise
- Example: outcode for point outside walls 1, 2, 5

<table>
<thead>
<tr>
<th>Wall no.</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutCode</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Trivial Accept/Reject using Outcodes

- **Trivial accept:** inside (not outside) any walls

 ![Trivial Accept Table]

 Logical bitwise test: \(A \lor C == 0 \)

- **Trivial reject:** point outside *same* wall. Example Both A and C outside wall 1

 ![Trivial Reject Table]

 Logical bitwise test: \(A \land C \neq 0 \)
3D Clipping Implementation

- Compute BCs for A,C store as outcodes
- Test A, C outcodes for trivial accept, trivial reject
- If not trivial accept/reject, for each wall:
 - Compute tHit
 - Update t_in, t_out
 - If t_in > t_out, early exit
3D Clipping Pseudocode

```c
int clipEdge(Point4& A, Point4& C)
{
    double tIn = 0.0, tOut = 1.0, tHit;
    double aBC[6], cBC[6];
    int aOutcode = 0, cOutcode = 0;

    .....find BCs for A and C
    .....form outcodes for A and C

    if((aOutCode & cOutcode) != 0) // trivial reject
        return 0;
    if((aOutCode | cOutcode) == 0) // trivial accept
        return 1;
```
3D Clipping Pseudocode

for(i=0;i<6;i++) // clip against each plane
{
 if(cBC[i] < 0) // C is outside wall i (exit so tOut)
 {
 tHit = aBC[i]/(aBC[i] − cBC[i]); // calculate tHit
 tOut = MIN(tOut, tHit);
 }
 else if(aBC[i] < 0) // A is outside wall I (enters so tIn)
 {
 tHit = aBC[i]/(aBC[i] − cBC[i]); // calculate tHit
 tIn = MAX(tIn, tHit);
 }
 if(tIn > tOut) return 0; // CI is empty: early out
}
3D Clipping Pseudocode

Point4 tmp; // stores homogeneous coordinates
If(aOutcode != 0) // A is outside: tIn has changed. Calculate A_chop
{
 tmp.x = A.x + tIn * (C.x – A.x);
 // do same for y, z, and w components
}
If(cOutcode != 0) // C is outside: tOut has changed. Calculate C_chop
{
 C.x = A.x + tOut * (C.x – A.x);
 // do same for y, z and w components
}
A = tmp;
Return 1; // some of the edges lie inside CVV
Polygon Clipping

- Not as simple as line segment clipping
 - Clipping a line segment yields at most one line segment
 - Clipping a **concave** polygon can yield multiple polygons

- Clipping a **convex** polygon can yield at most one other polygon
Clipping Polygons

- Need more sophisticated algorithms to handle polygons:
 - **Sutherland-Hodgman**: clip any given polygon against a convex clip polygon (or window)
 - **Weiler-Atherton**: Both clipped polygon and clip polygon (or window) can be concave
Tessellation and Convexity

- One strategy is to replace nonconvex (*concave*) polygons with a set of triangular polygons (a *tessellation*)
- Also makes fill easier
Viewport Transformation

- After clipping, do viewport transformation

User implements in Vertex shader

Manufacturer implements in hardware
Viewport Transformation

- Maps **CVV \((x, y) \) -> screen \((x, y) \) coordinates**

\[
\begin{align*}
&CVV (x, y) \\
&\xrightarrow{\text{glViewport}} \\
&\text{Screen coordinates}
\end{align*}
\]

Canonical View volume
Viewport Transformation: What of z?

- Also maps CVV z (pseudo-depth) from [-1,1] to [0,1]
- [0,1] pseudo-depth stored in depth buffer,
 - Used for Depth testing (Hidden Surface Removal)
Recall: OpenGL Stages

- After projection, several stages before objects drawn to screen
- These stages are **NOT** programmable

![Diagram of OpenGL stages]

- Transform
- Projection
- Primitive Assembly
- Clipping
- Rasterization
- Hidden Surface Removal

Vertex shader: programmable

In hardware: **NOT** programmable
Hidden surface Removal

- Drawing polygonal faces on screen consumes CPU cycles
- User cannot see every surface in scene
- To save time, draw only surfaces we see
- Surfaces we cannot see and elimination methods?

1. Occluded surfaces: hidden surface removal (visibility)

2. Back faces: back face culling
Hidden surface Removal

- Surfaces we cannot see and elimination methods:
 - 3. Faces outside view volume: viewing frustrum culling

Classes of HSR techniques:
- **Object space techniques**: applied before rasterization
- **Image space techniques**: applied after vertices have been rasterized
Visibility (hidden surface removal)

- Overlapping opaque polygons
- **Correct visibility?** Draw only the closest polygon
 - (remove the other hidden surfaces)

wrong visibility

Correct visibility
Image Space Approach

- Start from pixel, work backwards into the scene
- Through each pixel, \((nm)\) for an \(n \times m\) frame buffer, find closest of \(k\) polygons
- Complexity \(O(nmk)\)
- Examples:
 - Ray tracing
 - z-buffer: OpenGL
OpenGL - Image Space Approach

- Paint pixel with color of closest object

```plaintext
for (each pixel in image) {
    determine the object closest to the pixel
    draw the pixel using the object’s color
}
```
Z buffer Illustration

Correct Final image

Top View
Z buffer Illustration

Step 1: Initialize the depth buffer

<table>
<thead>
<tr>
<th>1.0</th>
<th>1.0</th>
<th>1.0</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Largest possible z values is 1.0
Z buffer Illustration

Step 2: Draw blue polygon
(order does not affect final result)

1. Determine group of pixels corresponding to blue polygon
2. Figure out z value of blue polygon for each covered pixel (0.5)
3. For each covered pixel, compare polygon z to current depth buffer z
 1. $z = 0.5$ is less than 1.0 so smallest z so far = 0.5, color = blue

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Eye

$Z = 0.5$

$Z = 0.3$
Z buffer Illustration

Step 3: Draw the yellow polygon

1. Determine group of pixels corresponding to yellow polygon
2. Figure out z value of yellow polygon for each covered pixel (0.3)
3. For each covered pixel, z = 0.3 becomes minimum, color = yellow

z-buffer drawback: wastes resources drawing and redrawing faces
OpenGL HSR Commands

- 3 main commands to do HSR

- `glutInitDisplayMode(GLUT_DEPTH | GLUT_RGB)` instructs OpenGL to create depth buffer

- `glEnable(GL_DEPTH_TEST)` enables depth testing

- `glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)` initializes depth buffer every time we draw a new picture
Z-buffer Algorithm

- Initialize every pixel’s z value to 1.0
- Rasterize every polygon
- For each pixel in polygon, find its z value (interpolate)
- Track smallest z value so far through each pixel
- As we rasterize polygon, for each pixel in polygon
 - If polygon’s z through this pixel < current min z through pixel
 - Paint pixel with polygon’s color

Find depth (z) of every polygon at each pixel
Z (depth) Buffer Algorithm

For each polygon {

 for each pixel (x,y) in polygon area {

 if (z_polygon_pixel(x,y) < depth_buffer(x,y)) {

 depth_buffer(x,y) = z_polygon_pixel(x,y);
 color_buffer(x,y) = polygon color at (x,y)

 }

 }

}

Note: know depths at vertices. Interpolate for interior z_polygon_pixel(x, y) depths
Perspective Transformation Issue: Z-Buffer Depth Compression

- **Pseudodepth calculation**: Recall we chose parameters (a and b) to map z from range \([\text{near, far}]\) to pseudodepth range\([-1, 1]\)

These values map z values of original view volume to \([-1, 1]\) range.
Z-Buffer Depth Compression

- This mapping is almost linear close to eye
- Non-linear further from eye, approaches asymptote
- Also limited number of bits
- Thus, two \(z \) values close to far plane may map to same pseudodepth: \textit{Errors!!}

\[
\begin{align*}
 a &= -\frac{F+N}{F-N} \\
 b &= -\frac{-2FN}{F-N}
\end{align*}
\]
References