Recall: Liang-Barsky 3D Clipping

Goal: Clip object edge-by-edge against Canonical View volume (CVV)

Problem:

- 2 end-points of edge: $A=(A x, A y, A z, A w)$ and $C=(C x, C y, C z, C w)$
- If edge intersects with CVV, compute intersection point $\|=(\|x\| y,,\|z\| w$,

Recall: Determining if point is inside CVV

- Problem: Determine if point (x, y, z) is inside or outside CVV?

Point (x, y, z) is inside CVV if

$(-1<=x<=1)$
and $(-1<=y<=1)$
and $(-1<=z<=1)$

else point is outside CVV
$\mathrm{CVV}=\mathbf{=} \mathbf{6}$ infinite planes ($\mathrm{x}=-1,1 ; \mathrm{y}=-1,1 ; \quad \mathrm{z}=-1,1$)

Recall: Determining if point is inside CVV

Recall: Modify Inside/Outside Tests Slightly

Recall: Numerical Example: Inside/Outside CVV Test

Point (x, y, z, w) is

- inside plane $x=-1$ if $w+x>0$
- inside plane $x=1$ if $w-x>0$

Example Point ($0.5,0.2,0.7$) inside planes $(x=-1,1)$ because $-1<=0.5<=1$
If $w=10, \quad(0.5,0.2,0.7)=(5,2,7,10)$
Can either divide by w then test: $-1<=5 / 10<=1$ OR
To test if inside $x=-1, \quad w+x=10+5=15>0$
To test if inside $x=1, \quad w-x=10-5=5>0$

Recall: 3D Clipping

Do same for y, z to form boundary coordinates for 6 planes as:

Boundary coordinate (BC)	Homogenous coordinate	Clip plane	Example $(\mathbf{5 , 2 , 7 , 1 0)}$
BC0	$\mathrm{w}+\mathrm{x}$	$\mathrm{x}=-1$	15
BC 1	$\mathrm{w}-\mathrm{x}$	$\mathrm{x}=1$	5
BC 2	$\mathrm{w}+\mathrm{y}$	$\mathrm{y}=-1$	12
BC3	$\mathrm{w}-\mathrm{y}$	$\mathrm{y}=1$	8
BC4	$\mathrm{w}+\mathrm{z}$	$\mathrm{z}=-1$	17
BC5	$\mathrm{w}-\mathrm{z}$	$\mathrm{z}=1$	3

-Consider line that goes from point \mathbf{A} to \mathbf{C}

- Trivial accept: 12 BCs (6 for pt. A, 6 for pt. C) > 0
- Trivial reject: Both endpoints outside (-ve) for same plane

Edges as Parametric Equations

- Implicit form $F(x, y)=0$
- Parametric forms:
- points specified based on single parameter value
- Typical parameter: time t

$$
P(t)=P_{0}+\left(P_{1}-P_{0}\right) * t \quad 0 \leq t \leq 1
$$

- Represent each edge parametrically as A + (C - A)t
- at time $t=0$, point at A
- at time $t=1$, point at C

Inside/outside?

- Test A, C against 6 walls ($\mathbf{x = - 1 , 1 ; ~ y = - 1 , 1 ; ~} \mathbf{z = - 1 , 1) ~}$
- There is an intersection if BCs have opposite signs. i.e. if either
- A is outside (<0), C is inside (>0) or
- A inside (>0) , C outside (<0)
- Edge intersects with plane at some t_hit between [0,1]

Calculating hit time (t_hit)

- How to calculate t_hit?
- Represent an edge tas:
$E d g e(t)=((A x+(C x-A x) t,(A y+(C y-A y) t,(A z+(C z-A z) t,(A w+(C w-A w) t)$
E.g. If $x=1$,

$$
\frac{A x+(C x-A x) t}{A w+(C w-A w) t}=1
$$

Solving for t above,

$$
t=\frac{A w-A x}{(A w-A x)-(C w-C x)}
$$

Inside/outside?

- t_hit can be "entering (t_in)" or "leaving (t_out)"
- Define: "entering" if A outside, C inside
- Why? As t goes [0-1], edge goes from outside (at A) to inside (at C)
- Define "leaving" if A inside, C outside
- Why? As t goes [0-1], edge goes from inside (at A) to outside (at C)

Candidate Interval

- Candidate Interval (CI): time interval during which edge might still be inside CVV. i.e. $\mathrm{Cl}=\mathrm{t}$ _in to t _out
- Initialize Cl to $[0,1]$
- For each of 6 planes, calculate t_in or t_out, shrink Cl

- Conversely: values of t outside Cl = edge is outside CVV

Shortening Candidate Interval

Algorithm:

- Test for trivial accept/reject (stop if either occurs)
- Set CI to $[0,1]$
- For each of 6 planes:
- Find hit time t_hit
- If t_in, new t_in = max(t_in,t_hit)
- If t _out, new t_out $=$ min(t_out, t_hit)
- If t_in > t_out => exit (no valid intersections)

Note: seeking smallest valid CI without t_in crossing t_out

Example: Chop step by Step against 6 planes

- Initially
t_in = 0, t_out = 1
Candidate Interval $(\mathrm{CI})=\left[\begin{array}{lll}0 & \text { to } 1\end{array}\right]$
- Chop against each of 6 planes
t_in $=0, \quad$ t_out $=0.74$
Candidate Interval $(\mathrm{Cl})=[0$ to 0.74$]$

Example: Chop step by Step against 6 planes

t_in $=0.36, \quad$ t_out $=0.74$
Candidate Interval $(\mathrm{Cl}) \mathrm{CI}=[0.36$ to 0.74$]$

Calculate choppped A and C

- If valid t_in, t_out, calculate adjusted edge endpoints A, C as
- A_chop $=A+t$ in $(C-A)$ (calculate for $A x, A y, A z)$
- C_chop $=A+t$ out $(C-A)$ (calculate for $C x, C y, C z)$

3D Clipping Implementation

- Function clipEdge()
- Input: two points A and C (in homogenous coordinates)
- Output:
- 0 , if AC lies completely outside CVV
- 1, completely inside CVV
- Returns clipped A and C otherwise
- Calculate 6 BCs ($w-x, w+x$, etc) for $A, 6$ for C

Store BCs as Outcodes

- Use outcodes to track in/out
- Number walls $x=+1,-1 ; y=+1,-1$, and $z=+1,-1$ as 0 to 5
- Bit i of A^{\prime} s outcode $=1$ if A is outside ith wall
- 1 otherwise
- Example: outcode for point outside walls 1, 2, 5

Trivial Accept/Reject using Outcodes

- Trivial accept: inside (not outside) any walls

	Wall no.	0	1	2	3	4
5						
A Outcode	0	0	0	0	0	0
	0	0	0	0		
C OutCode		0	0	0	0	0

Logical bitwise test: A $\mid \mathbf{C}=\mathbf{=}$

- Trivial reject: point outside same wall. Example Both A and C outside wall 1

Wall no.	0	1	2	3	4	5
A Outcode	0	1	0	0	1	0
C OutCode	0	1	1	0	0	0

Logical bitwise test: A \& C $!=0$

3D Clipping Implementation

- Compute BCs for A,C store as outcodes
- Test A, C outcodes for trivial accept, trivial reject
- If not trivial accept/reject, for each wall:
- Compute tHit
- Update t_in, t_out
- Ift_in > t_out, early exit

3D Clipping Pseudocode

int clipEdge(Point4\& A, Point4\& C)
\{
double $\mathrm{tIn}=0.0$, tOut $=1.0$, thit;
double aBC[6], cBC[6];
int aOutcode $=0$, cOutcode $=0$;
.....find BCs for A and C
.....form outcodes for A and C
if((aOutCode \& cOutcode) != 0) // trivial reject return 0;
if((aOutCode | cOutcode) $==0$) // trivial accept return 1;

3D Clipping Pseudocode

for(i=0;i<6;i++) // clip against each plane
\{
if($\mathrm{cBC}[i]<0) / / C$ is outside wall i (exit so tOut)
\{
tHit $=\mathrm{aBC}[\mathrm{i}] /(\mathrm{aBC}[\mathrm{i}]-\mathrm{cBC}[I])_{;} \quad / /$ calculate thit
tOut $=\mathbf{M I N}\left(\right.$ tOut, tHit); $t=\frac{A w-A x}{(A w-A x)-(C w-C x)}$
\}
else if($\mathrm{aBC}[\mathrm{i}]<0) / / \mathrm{A}$ is outside wall I (enters so tin)
\{
thit $=\mathrm{aBC}[\mathrm{i}] /(\mathrm{aBC}[\mathrm{i}]-\mathrm{cBC}[\mathrm{i}]), \quad / /$ calculate tHit
tln = MAX(tIn, tHit);
\}
if(tIn > tOut) return 0; // Cl is empty: early out

3D Clipping Pseudocode

Point4 tmp; // stores homogeneous coordinates
If(aOutcode != 0) // A is outside: tln has changed. Calculate A_chop \{
tmp. $x=A . x+\operatorname{tn}{ }^{*}(C . x-A . x) ;$
// do same for y, z, and w components
\}

If(cOutcode != 0) // C is outside: tOut has changed. Calculate C_chop \{
C.x = A.x + tOut * (C.x - A. x);
// do same for y, z and w components \}
A = tmp;
Return 1; // some of the edges lie inside CVV
\}

Polygon Clipping

- Not as simple as line segment clipping
- Clipping a line segment yields at most one line segment
- Clipping a concave polygon can yield multiple polygons

- Clipping a convex polygon can yield at most one other polygon

Clipping Polygons

- Need more sophisticated algorithms to handle polygons:
- Sutherland-Hodgman: clip any given polygon against a convex clip polygon (or window)
- Weiler-Atherton: Both clipped polygon and clip polygon (or window) can be concave

Tessellation and Convexity

- One strategy is to replace nonconvex (concave) polygons with a set of triangular polygons (a tessellation)
- Also makes fill easier

Computer Graphics (CS 4731)
 Lecture 21: Viewport Transformation \& Hidden Surface Removal

Prof Emmanuel Agu

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Viewport Transformation

- After clipping, do viewport transformation

User implements in Vertex shader

Manufacturer
implements
In hardware

Viewport Transformation

- Maps CVV (x, y) -> screen (x, y) coordinates

Viewport Transformation: What of z ?

- Also maps CVV z (pseudo-depth) from [-1,1] to [0,1]
- [0,1] pseudo-depth stored in depth buffer,
- Used for Depth testing (Hidden Surface Removal)

Recall: OpenGL Stages

- After projection, several stages before objects drawn to screen
- These stages are NOT programmable

Vertex shader: programmable
In hardware: NOT programmable

Hidden surface Removal

- Drawing polygonal faces on screen consumes CPU cycles
- User cannot see every surface in scene
- To save time, draw only surfaces we see
- Surfaces we cannot see and elimination methods?

1. Occluded surfaces: hidden surface removal (visibility)

2. Back faces: back face culling

Hidden surface Removal

- Surfaces we cannot see and elimination methods:
- 3. Faces outside view volume: viewing frustrum culling

Classes of HSR techniques:
Not Clipped

- Object space techniques: applied before rasterization
- Image space techniques: applied after vertices have been rasterized

Visibility (hidden surface removal)

- Overlapping opaque polygons
- Correct visibility? Draw only the closest polygon
- (remove the other hidden surfaces)

wrong visibility

Correct visibility

Image Space Approach

- Start from pixel, work backwards into the scene
- Through each pixel, (nm for an n x m frame buffer) find closest of k polygons
- Complexity O(nmk)
- Examples:
- Ray tracing
- z-buffer:OpenGL

OpenGL - Image Space Approach

- Paint pixel with color of closest object
for (each pixel in image) \{ determine the object closest to the pixel draw the pixel using the object's color \}

Z buffer Illustration

$\square Z=0.5$

eye

Top View

Z buffer Illustration

Step 1: Initialize the depth buffer

1.0	1.0	1.0	1.0		
1.0	1.0	1.0	1.0		
1.0	1.0	1.0	1.0		
1.0	1.0	1.0	1.0	\quad	Largest possible
:---					
z values is 1.0					

Z buffer Illustration

Step 2: Draw blue polygon (order does not affect final result)

1.0	1.0	1.0	1.0
1.0	1.0	1.0	1.0
0.5	0.5	1.0	1.0
0.5	0.5	1.0	1.0

1. Determine group of pixels corresponding to blue polygon
2. Figure out z value of blue polygon for each covered pixel (0.5)
3. For each covered pixel, compare polygon z to current depth buffer z
4. $z=0.5$ is less than 1.0 so smallest z so far $=0.5$, color $=$ blue

Z buffer Illustration

Step 3: Draw the yellow polygon

1.0	1.0	1.0	1.0
1.0	0.3	0.3	1.0
0.5	0.3	0.3	1.0
0.5	$\uparrow .5$	1.0	1.0

1. Determine group of pixels corresponding to yellow polygon
2. Figure out z value of yellow polygon for each covered pixel (0.3)
3. For each covered pixel, $z=0.3$ becomes minimum, color $=$ yellow
z-buffer drawback: wastes resources drawing and redrawing faces

OpenGL HSR Commands

3 main commands to do HSR
glutInitDisplayMode (GLUT_DEPTH | GLUT_RGB) instructs openGL to create depth buffer
glEnable (GL_DEPTH_TEST) enables depth testing glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) initializes depth buffer every time we draw a new picture

Z-buffer Algorithm

- Initialize every pixel's z value to 1.0
- rasterize every polygon
- For each pixel in polygon, find its z value (interpolate)
- Track smallest z value so far through each pixel
- As we rasterize polygon, for each pixel in polygon
- If polygon's z through this pixel < current min z through pixel
- Paint pixel with polygon's color

Find depth (\mathbf{z}) of every polygon at each pixel

Z (depth) Buffer Algorithm

Depth of polygon being rasterized at pixel (x, y)

Largest depth seen so far Through pixel (x, y)

For each polygon \{

for each pixel (x, y) in polygon area \{ if (z_polygon_pixel(x,y) < depth_buffer(x,y)) \{
depth_buffer(x, y) $=$ z_polygon_pixel (x, y); color_buffer(x, y) $=$ polygon color at (x, y) \} \} \}

Note: know depths at vertices. Interpolate for interior z_polygon_pixel(x, y) depths

Perspective Transformation Issue: Z-Buffer Depth Compression

- Pseudodepth calculation: Recall we chose parameters (a and b) to map z from range [near, far] to pseudodepth range[-1,1]

$$
\left(\begin{array}{cccc}
\frac{2 N}{x \max -x \min } & 0 & \frac{\text { right }+ \text { left }}{\text { right }-l e f t} & 0 \\
0 & \frac{2 N}{\text { top }- \text { bottom }} & \frac{\text { top }+ \text { bottom }}{\text { top }- \text { bottom }} & 0 \\
0 & 0 & \frac{-(F+N)}{F-N} & \frac{-2 F N}{F-N} \\
0 & 0 & -1 & 10 \\
0 & & & \left(\begin{array}{c}
x \\
z \\
1
\end{array}\right)
\end{array}\right.
$$

These values map z values of original view volume to [-1, 1] range

Z-Buffer Depth Compression

- This mapping is almost linear close to eye
- Non-linear further from eye, approaches asymptote
- Also limited number of bits
- Thus, two z values close to far plane may map to same pseudodepth: Errors!!

Mapped z

$$
\begin{aligned}
& a=-\frac{F+N}{F-N} \\
& b=-\frac{-2 F N}{F-N}
\end{aligned}
$$

References

- Angel and Shreiner, Interactive Computer Graphics, $6^{\text {th }}$ edition
- Hill and Kelley, Computer Graphics using OpenGL, $3^{\text {rd }}$ edition, Chapter 9

