
Recall: Liang-Barsky 3D Clipping

 Goal: Clip object edge-by-edge against Canonical View

volume (CVV)

 Problem:
 2 end-points of edge: A = (Ax, Ay, Az, Aw) and C = (Cx, Cy, Cz, Cw)

 If edge intersects with CVV, compute intersection point I =(Ix,Iy,Iz,Iw)

Recall: Determining if point is inside CVV

x = -1 x = 1

 Problem: Determine if point

(x,y,z) is inside or outside CVV?

Point (x,y,z) is inside CVV if

(-1 <= x <= 1)

and (-1 <= y <= 1)
and (-1 <= z <= 1)

else point is outside CVV

CVV == 6 infinite planes (x=-1,1; y=-1,1; z=-1,1)

y= -1

y = 1

Recall: Determining if point is inside CVV

 If point specified as (x,y,z,w)

- Test (x/w, y/w , z/w)!

Point (x/w, y/w, z/w) is inside CVV

if (-1 <= x/w <= 1)

and (-1 <= y/w <= 1)
and (-1 <= z/w <= 1)

else point is outside CVV

x /w = 1

y/w = -1

y/w = 1

x/w = -1

Recall: Modify Inside/Outside Tests Slightly

Our test: (-1 < x/w < 1)

Point (x,y,z,w) inside plane x = 1 if

x/w < 1

=> w – x > 0

Point (x,y,z,w) inside plane x = -1 if

-1 < x/w

=> w + x > 0

x /w = 1

y/w = -1

y/w = 1

x/w = -1

Recall: Numerical Example: Inside/Outside
CVV Test

 Point (x,y,z,w) is

 inside plane x=-1 if w+x > 0

 inside plane x=1 if w – x > 0

 Example Point (0.5, 0.2, 0.7) inside planes (x = -1,1) because - 1 <= 0.5 <= 1

 If w = 10, (0.5, 0.2, 0.7) = (5, 2, 7, 10)

 Can either divide by w then test: – 1 <= 5/10 <= 1 OR

To test if inside x = - 1, w + x = 10 + 5 = 15 > 0

To test if inside x = 1, w - x = 10 - 5 = 5 > 0

-1 1

x/w

Recall: 3D Clipping

 Do same for y, z to form boundary coordinates for 6 planes as:

Boundary
coordinate (BC)

Homogenous
coordinate

Clip plane Example

(5,2,7,10)

BC0 w+x x=-1 15

BC1 w-x x=1 5

BC2 w+y y=-1 12

BC3 w-y y=1 8

BC4 w+z z=-1 17

BC5 w-z z=1 3

Consider line that goes from point A to C

 Trivial accept: 12 BCs (6 for pt. A, 6 for pt. C) > 0

 Trivial reject: Both endpoints outside (-ve) for same plane

Edges as Parametric Equations

 Implicit form

 Parametric forms:

 points specified based on single parameter value

 Typical parameter: time t

 Represent each edge parametrically as A + (C – A)t

 at time t=0, point at A

 at time t=1, point at C

0),(yxF

tPPPtP *)()(010 10 t

Inside/outside?

 Test A, C against 6 walls (x=-1,1; y=-1,1; z=-1,1)

 There is an intersection if BCs have opposite signs. i.e. if either

 A is outside (< 0), C is inside (> 0) or

 A inside (> 0) , C outside (< 0)

 Edge intersects with plane at some t_hit between [0,1]

A

Ct_hit

C

A
t_hit

t = 0

t = 1
t = 0

t = 1

Calculating hit time (t_hit)

 How to calculate t_hit?

 Represent an edge t as:

 E.g. If x = 1,

 Solving for t above,

1
)(

)(

tAwCwAw

tAxCxAx

)()(CxCwAxAw

AxAw
t

))((,)((,)((,)((()(tAwCwAwtAzCzAztAyCyAytAxCxAxtEdge

Inside/outside?

 t_hit can be “entering (t_in) ” or ”leaving (t_out)”

 Define: “entering” if A outside, C inside

 Why? As t goes [0-1], edge goes from outside (at A) to inside (at C)

 Define “leaving” if A inside, C outside

 Why? As t goes [0-1], edge goes from inside (at A) to outside (at C)

A

Ct_in

C

A
t_out

Entering

t = 0

t = 1 t = 0

t = 1

Leaving

Candidate Interval

 Candidate Interval (CI): time interval during which edge might still
be inside CVV. i.e. CI = t_in to t_out

 Initialize CI to [0,1]

 For each of 6 planes, calculate t_in or t_out, shrink CI

 Conversely: values of t outside CI = edge is outside CVV

0 1

t

t_in t_out

CI

Shortening Candidate Interval

 Algorithm:

 Test for trivial accept/reject (stop if either occurs)

 Set CI to [0,1]

 For each of 6 planes:

 Find hit time t_hit

 If t_in, new t_in = max(t_in,t_hit)

 If t_out, new t_out = min(t_out, t_hit)

 If t_in > t_out => exit (no valid intersections)

Note: seeking smallest valid CI without t_in crossing t_out

0 1

t
t_in t_out

CI

Example: Chop step by Step against 6 planes

 Initially

 Chop against each of 6 planes

A

C

t = 0

t = 1

t_in = 0, t_out = 1

Candidate Interval (CI) = [0 to 1]

A

C

t = 0

t_out = 0.74 Plane y = 1

t_in = 0, t_out = 0.74

Candidate Interval (CI) = [0 to 0.74] Why t_out?

Example: Chop step by Step against 6 planes

 Initially

 Then

A

C

t = 0

t_out = 0.74

t_in = 0, t_out = 0.74

Candidate Interval (CI) = [0 to 0.74]

A

C

t_out = 0.74

t_in = 0.36, t_out = 0.74

Candidate Interval (CI) CI = [0.36 to 0.74]

t_in= 0.36

Why t_in?

Plane x = -1

Calculate choppped A and C

 If valid t_in, t_out, calculate adjusted edge endpoints A, C as

 A_chop = A + t_in (C – A) (calculate for Ax,Ay, Az)

 C_chop = A + t_out (C – A) (calculate for Cx,Cy,Cz)

0 1

t

t_in t_out

CI
A_chop C_chop

3D Clipping Implementation

 Function clipEdge()

 Input: two points A and C (in homogenous coordinates)

 Output:

 0, if AC lies completely outside CVV

 1, completely inside CVV

 Returns clipped A and C otherwise

 Calculate 6 BCs (w-x, w+x, etc) for A, 6 for C

ClipEdge ()

0

1

A_chop, C_chop

A

C

Store BCs as Outcodes

 Use outcodes to track in/out

 Number walls x = +1, -1; y = +1, -1, and z = +1, -1 as 0 to 5

 Bit i of A’s outcode = 1 if A is outside ith wall

 1 otherwise

 Example: outcode for point outside walls 1, 2, 5

0 1 2 3 4 5

0 1 1 0 0 1

Wall no.

OutCode

Trivial Accept/Reject using Outcodes

 Trivial accept: inside (not outside) any walls

 Trivial reject: point outside same wall. Example Both A and C outside wall 1

0 1 2 3 4 5

0 0 0 0 0 0

0 0 0 0 0 0

Wall no.

A Outcode

C OutCode

0 1 2 3 4 5

0 1 0 0 1 0

0 1 1 0 0 0

Wall no.

A Outcode

C OutCode

Logical bitwise test: A | C == 0

Logical bitwise test: A & C != 0

3D Clipping Implementation

 Compute BCs for A,C store as outcodes

 Test A, C outcodes for trivial accept, trivial reject

 If not trivial accept/reject, for each wall:

 Compute tHit

 Update t_in, t_out

 If t_in > t_out, early exit

3D Clipping Pseudocode

int clipEdge(Point4& A, Point4& C)

{

double tIn = 0.0, tOut = 1.0, tHit;

double aBC[6], cBC[6];

int aOutcode = 0, cOutcode = 0;

…..find BCs for A and C

…..form outcodes for A and C

if((aOutCode & cOutcode) != 0) // trivial reject

return 0;

if((aOutCode | cOutcode) == 0) // trivial accept

return 1;

3D Clipping Pseudocode

for(i=0;i<6;i++) // clip against each plane

{

if(cBC[i] < 0) // C is outside wall i (exit so tOut)

{

tHit = aBC[i]/(aBC[i] – cBC[I]); // calculate tHit

tOut = MIN(tOut, tHit);

}

else if(aBC[i] < 0) // A is outside wall I (enters so tIn)

{

tHit = aBC[i]/(aBC[i] – cBC[i]); // calculate tHit

tIn = MAX(tIn, tHit);

}

if(tIn > tOut) return 0; // CI is empty: early out

}

)()(CxCwAxAw

AxAw
t

3D Clipping Pseudocode

Point4 tmp; // stores homogeneous coordinates

If(aOutcode != 0) // A is outside: tIn has changed. Calculate A_chop

{

tmp.x = A.x + tIn * (C.x – A.x);

// do same for y, z, and w components

}

If(cOutcode != 0) // C is outside: tOut has changed. Calculate C_chop

{

C.x = A.x + tOut * (C.x – A.x);

// do same for y, z and w components

}

A = tmp;

Return 1; // some of the edges lie inside CVV

}

Polygon Clipping

 Not as simple as line segment clipping

 Clipping a line segment yields at most one line segment

 Clipping a concave polygon can yield multiple polygons

 Clipping a convex polygon can yield at most one
other polygon

23

Clipping Polygons

 Need more sophisticated algorithms to handle
polygons:

 Sutherland-Hodgman: clip any given polygon against a
convex clip polygon (or window)

 Weiler-Atherton: Both clipped polygon and clip
polygon (or window) can be concave

Tessellation and Convexity

 One strategy is to replace nonconvex (concave)
polygons with a set of triangular polygons (a
tessellation)

 Also makes fill easier

25

Computer Graphics (CS 4731)
Lecture 21: Viewport Transformation

& Hidden Surface Removal

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Viewport Transformation

 After clipping, do viewport transformation

User implements in

Vertex shader

Manufacturer

implements

In hardware

Viewport Transformation

 Maps CVV (x, y) -> screen (x, y) coordinates

x

y

width

1-1 x

y

-1

1

height

Canonical
View volume

Screen
coordinates

glViewport(x,y, width, height)

(x,y)

Viewport Transformation: What of z?

 Also maps CVV z (pseudo-depth) from [-1,1] to [0,1]

 [0,1] pseudo-depth stored in depth buffer,

 Used for Depth testing (Hidden Surface Removal)

x

y

z

-1 0
1

Recall: OpenGL Stages

 After projection, several stages before objects drawn to screen

 These stages are NOT programmable

Transform Projection
Primitive

Assembly Clipping

Rasterization
Hidden

Surface

Removal

Vertex shader: programmable In hardware: NOT programmable

Hidden surface Removal

 Drawing polygonal faces on screen consumes CPU cycles

 User cannot see every surface in scene

 To save time, draw only surfaces we see

 Surfaces we cannot see and elimination methods?

1. Occluded surfaces: hidden

surface removal (visibility)

Back face

2. Back faces: back face culling

Hidden surface Removal

 Surfaces we cannot see and elimination methods:
 3. Faces outside view volume: viewing frustrum culling

Classes of HSR techniques:

 Object space techniques: applied before rasterization

 Image space techniques: applied after vertices have been
rasterized

Clipped

Not Clipped

Visibility (hidden surface removal)

 Overlapping opaque polygons

 Correct visibility? Draw only the closest polygon

 (remove the other hidden surfaces)

wrong visibility Correct visibility

Image Space Approach

 Start from pixel, work backwards into the scene

 Through each pixel, (nm for an n x m frame buffer)
find closest of k polygons

 Complexity O(nmk)

 Examples:

 Ray tracing

 z-buffer : OpenGL

OpenGL - Image Space Approach

 Paint pixel with color of closest object

for (each pixel in image) {

determine the object closest to the pixel

draw the pixel using the object’s color

}

Z buffer Illustration

eye

Z = 0.3

Z = 0.5

Top View

Correct Final image

Z buffer Illustration

1.0 1.0 1.0 1.0

Step 1: Initialize the depth buffer

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

Largest possible

z values is 1.0

Z buffer Illustration

Step 2: Draw blue polygon
(order does not affect final result)

eye

Z = 0.3

Z = 0.5

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

0.5 0.5 1.0 1.0

0.5 0.5 1.0 1.0

1. Determine group of pixels corresponding to blue polygon

2. Figure out z value of blue polygon for each covered pixel (0.5)

3. For each covered pixel, compare polygon z to current depth buffer z

1. z = 0.5 is less than 1.0 so smallest z so far = 0.5, color = blue

Z buffer Illustration

Step 3: Draw the yellow polygon

eye

Z = 0.3

Z = 0.5

1.0 0.3 0.3 1.0

0.5 0.3 0.3 1.0

0.5 0.5 1.0 1.0

z-buffer drawback: wastes resources drawing and redrawing faces

1.0 1.0 1.0 1.0

1. Determine group of pixels corresponding to yellow polygon

2. Figure out z value of yellow polygon for each covered pixel (0.3)

3. For each covered pixel, z = 0.3 becomes minimum, color = yellow

OpenGL HSR Commands

 3 main commands to do HSR

 glutInitDisplayMode(GLUT_DEPTH | GLUT_RGB)

instructs openGL to create depth buffer

 glEnable(GL_DEPTH_TEST) enables depth testing

 glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT) initializes depth buffer every
time we draw a new picture

Z-buffer Algorithm

 Initialize every pixel’s z value to 1.0

 rasterize every polygon

 For each pixel in polygon, find its z value (interpolate)

 Track smallest z value so far through each pixel

 As we rasterize polygon, for each pixel in polygon

 If polygon’s z through this pixel < current min z through pixel

 Paint pixel with polygon’s color

Find depth (z) of every
polygon at each pixel

Z (depth) Buffer Algorithm

For each polygon {

for each pixel (x,y) in polygon area {

if (z_polygon_pixel(x,y) < depth_buffer(x,y)) {

depth_buffer(x,y) = z_polygon_pixel(x,y);

color_buffer(x,y) = polygon color at (x,y)
}

}
}

Note: know depths at vertices. Interpolate for interior
z_polygon_pixel(x, y) depths

Depth of polygon being
rasterized at pixel (x, y)

Largest depth seen so far
Through pixel (x, y)

Perspective Transformation Issue:
Z-Buffer Depth Compression

 Pseudodepth calculation: Recall we chose parameters (a and b)
to map z from range [near, far] to pseudodepth range[-1,1]

(-1, -1, 1)

(1, 1, -1)

Canonical
View Volume

x

y

z

1

0100

2)(
00

0
2

0

00
minmax

2

z

y

x

NF

FN

NF

NF

bottomtop

bottomtop

bottomtop

N

leftright

leftright

xx

N

These values map z values of original

view volume to [-1, 1] range

Z-Buffer Depth Compression

 This mapping is almost linear close to eye

 Non-linear further from eye, approaches asymptote

 Also limited number of bits

 Thus, two z values close to far plane may map to
same pseudodepth: Errors!!

Mapped z

-Pz

1

-1

N

F

Pz
baPz

NF
NFa

NF
FNb

 2

Actual z

References

 Angel and Shreiner, Interactive Computer Graphics,
6th edition

 Hill and Kelley, Computer Graphics using OpenGL, 3rd

edition, Chapter 9

