Computer Graphics (CS 4731)
Lecture 12: Hierarchical 3D Models

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Instance Transformation o

e Start with unique object (a symbol)
e Each appearance of object in model is an instance

e Must scale, orient, position
e Defines instance transformation

Instance
Symbol

Symbol-Instance Table

Can store intances + instance transformations

Symbol

Scale

Rotate

Translate

]
2
3
1
1

dy d,, d,

Problems with Symbol-Instance Table

e Symbol-instance table does not show relationships
between parts of model

e Consider model of car
Chassis (body) + 4 identical wheels
Two symbols

e Relationships:
Wheels connected to chassis
Chassis motion determined by rotational speed of wheels

Structure Program Using Function Calls?

car (speed)
{ . Chassis
chassis ()
wheel (right front);
wheel (left front);
wheel (right rear);
wheel (left rear);

&)

N
U

Left front Left back
} wheel wheel

e Fails to show relationships between parts
e Explore graph representation

5

Graphs :

e Set of nodes + edges (links)
e Edge connects a pair of nodes

e Directed or undirected

e Cycle: directed path thatis a loop

/

Tree

e Graph in which each node (except root) has exactly
one parent node

A parent may have multiple children
Leaf node: no children

Q ~—— root node

(}/é) \ O— leaf node

Tree Model of Car °

Chassis

Right-front Left-front Rightrear Left-rear
wheel wheel wheel wheel

Hierarchical Transforms

e Robot arm: Many small connected parts

e Attributes (position, orientation, etc) depend on

each other
A ROBOT HAMMER!
- / hammer
Upper arm
lower arm

<« base

—)

N

L

Hierarchical Transforms

e Object dependency description using tree

structure

Root node

Base

|

Lower arm

l

Upper arm

Leaf node

l

Hammer

Object position and orientation
can be affected by its parent,
grand-parent, grand-grand-parent
... hodes

Hierarchical representation is
known as a Scene Graph

Transformations

e Two ways to specify transformations:

e (1) Absolute transformation: each part transformed
independently (relative to origin)

Translate the base by (5,0,0);
Translate the lower arm by (5,0,0);
Translate the upper arm by (5,0,0);

Relative Transformation o

A better (and easier) way:

(2) Relative transformation: Specify transformation for
each object relative to its parent

—7 Step 1: Translate base and —
its child nodes by (5,0,0); ——

s

Relative Transformation o

Step 2: Rotate the lower arm and all its descendants
relative to the base’s local y axis by -90 degree

| y\x

= - T

Relative Transformation

e Relative transformation using scene graph

Base |-

|

-

Lower arm |------

l

Upper arm

l

Hammer

Translate (5,0,0)

------ -1 Rotate (-90) about its local y

Apply all the way

down Apply all the way

down

Hierarchical Transforms Using OpenGL

e Translate base and all its descendants by (5,0,0)

e Rotate lower arm and its descendants by -90 degree about

local y

Base

|

Lower arm

l

Upper arm

l

Hammer

ctm = LoadIdentity();

... // setup your camera

ctm = ctm * Translatef(5,0,0);
Draw_base();

ctm = ctm * Rotatef(-90, O, 1, 0);
Draw_lower _arm();

Draw_upper_arm();
Draw_hammer();

Hierarchical Modeling °

e For large objects with many parts, need to transform
groups of objects

e Need better tools

Upper arm

Torso

Lower arm H |_|

Upper leg

Lower leg |_| U

Hierarchical Modeling '+

e Previous CTM had 1 level

e Hierarchical modeling: extend CTM to stack with
multiple levels using linked list
e Manipulate stack levels using 2 operations

e pushMatrix
e popMatrix

Current top
Of CTM stack

v

R O O O

o O O -
o O N O
o w O o

PushMatrix

e PushMatrix(): Save current modelview matrix (CTM) in stack

e Positions 1 & 2 in linked list are same after PushMatrix

Before PushMatrix

Current top
Of CTM stack

1

0
0
0

0

2
0
0

0

0
3
0

0

0
0
1

=)

After PushMatrix

1

o O O

o o o -

0

o o N

o O N O

o w O o

o w O o

0

0
0
1

, O O O

Current top
Of CTM stack

Saved copy of
matrix at CTM top

PushMatrix

e Further Rotate, Scale, Translate affect only top matrix
e E.g.ctm = ctm * Translate (3,8, 6)

After PushMatrix

o O O

o o o

1 0

o O N

o O N O

0

o w O

o w O o

0

0
0
1

, O O O

o O O B+

003 Translate(3,8,6) applied
1 0 8] «—— only to current top

0 1 6 Of CTM stack

0 0 1

Matrix in second position saved.

<— Unaffected by Translate(3,8,6)

PopMatrix s

e PopMatrix(): Delete position 1 matrix, position 2 matrix
becomes top

Before PopMatrix After PopMatrix
1 540 1 0 0O
Current top 0220 Currenttop 10 2 0 0
Of CTM stack 06 3 0 Of CTM stack 0 0 30
0 001 0 001

[N

Delete this matrix

o w O O
O O O

o o o -
o O N O

| Code Modelview Matrix P us h M a t rix

glLoadldentity();

gl Translatef(0.0, 0.0, —15.0);

glPushMatrix();
//Copy of M, placed on top.

glScalef(1.0, 2.0, 1.0);

glutWireCube(5.0);
//No change.

_ glPopMatrix();
//Back to before the push statement!

glTranslatef(0.0, 7.0, 0.0},

glutWireSphere(2.0, 10, 8);
//No change.

Stack

e
My
M

M, *M,
M,

M, "My |

F——

||

M, *M,

M, T
M,
M

PopMatrix and -

lllustration

- Note: Diagram uses old glTranslate,
glScale, etc commands

 We want same behavior though

S Apply matrix at top of CTM to

vertices of object created

Procdssing in code order

\

Ref: Computer Graphics

Figure 4.19: Transitions of the modelview matrix stack. Th rough OpenGL by Guha

Humanoid Figure :

Upper arm
Torso

Lower arm H

Upper leg

Lower leg

22

Torso
Head Leftupper Rightupper Leftupper Rightupper
arm arm leg leg
Leftlower Rightlower Leftlower Rightlower
arm arm leg leg

Building the Model

e Draw each part as a function

e torso()

e left upper arm(), etc

e Transform Matrices: transform
of node wrt its parent

e M, positions left lower arm with
respect to left upper arm

e Stack based traversal (push, pop)

] 1

23

Upper arm

|

I\/Illa

Lower arm

o000
o000
3t
Draw Humanoid using Stack :
Torso
figure () {
PushMatrix () « save present model-view matrix

torso () ; <« draw torso

24

000
o000
eeoo
1
Draw Humanoid using Stack .
Torso
Mh
Head figure() { |
PushMatrix ()
torso() ;
Rotate (..); < (M;) Transformation of head

Relative to torso

head();$\\\\\\\\\\
draw head

25

o000
'YX
o0
o
Draw Humanoid using Stack
Torso
M M
h lug PushMatrix ()
Head Leftupper torso() ;
arm Rotate (..);
head () ;
Go back to torso matrix, _PopMatrix() ;
and save it again PushMatrix () ;
(M,,o) Transformation(s) of left Translate(..) ;
upper arm relative to torso Rotate (..) ;
draw left-upper arm > left_upper_arm() ;

26

// rest of code()

X
oo
o
Complete Humanoid Tree with Matrices
Torso
Mh Mlua Mrua Mlul Mrul
Hoad Leftupper Right-upper Leftupper Rightupper
arm arm leg leg
+ MHa + Mrla + Mm +Mrﬂ
Left-lower Rightlower Left-lower Rightlower
arm arm leg leg

Scene graph of Humanoid Robot

VRML oo
e Scene graph introduced by SGI Open Inventor

e Used in many graphics applications (Maya, etc)

e Virtual Reality Markup Language
e Scene graph representation of virtual worlds on Web
e Scene parts can be distributed across multiple web servers

2 http:Hlocalhostivsp/vrml.B.wrl - Microsoft Internet Explorer

. g .B.wrl - Mi
e Im plemented using OpenG B
%] (@] (D SO Hedat 57 obibens mede €9 | (- 2

28

References

e Angel and Shreiner, Interactive Computer Graphics
(6t edition), Chapter 8

