Parallel Projection

- normalization \Rightarrow find 4x4 matrix to transform user-specified view volume to canonical view volume (cube)

```
\texttt{glOrtho}(\text{left}, \text{right}, \text{bottom}, \text{top}, \text{near}, \text{far})
```
Parallel Projection: Ortho

- Parallel projection: 2 parts
 1. **Translation**: centers view volume at origin
Parallel Projection: Ortho

2. **Scaling**: reduces user-selected cuboid to canonical cube (dimension 2, centered at origin)
Parallel Projection: Ortho

- Translation lines up midpoints: E.g. midpoint of $x = (\text{right} + \text{left})/2$
- Thus translation factors:
 $-(\text{right} + \text{left})/2, -(\text{top} + \text{bottom})/2, -(\text{far} + \text{near})/2$
- Translation matrix:

$$
\begin{pmatrix}
1 & 0 & 0 & -(\text{right} + \text{left})/2 \\
0 & 1 & 0 & -(\text{top} + \text{bottom})/2 \\
0 & 0 & 1 & -(\text{far} + \text{near})/2 \\
0 & 0 & 0 & 1
\end{pmatrix}
$$
Parallel Projection: Ortho

- Scaling factor: ratio of ortho view volume to cube dimensions
- Scaling factors: \(\frac{2}{\text{right - left)}}, \frac{2}{\text{top - bottom)}}, \frac{2}{\text{far - near)}
- Scaling Matrix M2:

\[
\begin{pmatrix}
\frac{2}{\text{right - left}} & 0 & 0 & 0 & 0 \\
0 & \frac{2}{\text{top - bottom}} & 0 & 0 & 0 \\
0 & 0 & \frac{2}{\text{far - near}} & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]
Parallel Projection: Ortho

Concatenating **Translation** \times **Scaling**, we get Ortho Projection matrix

$$
\begin{bmatrix}
\frac{2}{right-left} & 0 & 0 & 0 \\
0 & \frac{2}{top-bottom} & 0 & 0 \\
0 & 0 & \frac{2}{far-near} & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\times
\begin{bmatrix}
1 & 0 & 0 & -\frac{right+left}{2} \\
0 & 1 & 0 & -\frac{top+bottom}{2} \\
0 & 0 & 1 & -\frac{far+near}{2} \\
0 & 0 & 0 & 1
\end{bmatrix}
$$

$$
P = ST =
\begin{bmatrix}
\frac{2}{right-left} & 0 & 0 & -\frac{right-left}{2} \\
0 & \frac{2}{top-bottom} & 0 & -\frac{top+bottom}{2} \\
0 & 0 & \frac{2}{far+near} & -\frac{far+near}{2} \\
0 & 0 & 0 & 1
\end{bmatrix}
$$
Final Ortho Projection

- Set $z = 0$
- Equivalent to the homogeneous coordinate transformation

$$M_{\text{orth}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Hence, general orthogonal projection in 4D is

$$P = M_{\text{orth}}ST$$
Perspective Projection

- Projection – map the object from 3D space to 2D screen

Perspective()
Frustum()
Perspective Projection: Classical

Based on similar triangles:

\[
\frac{y'}{y} = \frac{N}{-z}
\]

\[
y' = y \times \frac{N}{-z}
\]
Perspective Projection: Classical

- So \((x^*, y^*)\) projection of point, \((x, y, z)\) unto near plane \(N\) is given as:

 \[
 (x^*, y^*) = \left(x \frac{N}{-z}, y \frac{N}{-z} \right)
 \]

- Numerical example:

 Q. Where on the viewplane does \(P = (1, 0.5, -1.5)\) lie for a near plane at \(N = 1\)?

 \[
 (x^*, y^*) = \left(x \frac{N}{-z}, y \frac{N}{-z} \right) = \left(1 \times \frac{1}{1.5}, 0.5 \times \frac{1}{1.5} \right) = (0.666, 0.333)
 \]
Pseudodepth

- Classical perspective projection projects \((x,y)\) coordinates to \((x^*, y^*)\), drops \(z\) coordinates

- But we need \(z\) to find closest object (depth testing)!!!
Perspective Transformation

- **Perspective transformation** maps actual z distance of perspective view volume to range \([-1 \text{ to } 1]\) (**Pseudodepth**) for canonical view volume.

We want perspective Transformation and NOT classical projection!!

Set scaling z

\[
Pseudodepth = az + b
\]

Next solve for a and b
Perspective Transformation

- We want to transform viewing frustum volume into canonical view volume

Canonical View Volume

(-1, -1, 1) → (1, 1, -1)
Perspective Transformation using Pseudodepth

\[(x^*, y^*, z^*) = \left(\frac{N}{x - z}, \frac{N}{y - z}, \frac{az + b}{-z} \right)\]

- Choose \(a, b\) so as \(z\) varies from \textbf{Near} to \textbf{Far}, pseudodepth varies from \(-1\) to \(1\) (canonical cube)

- Boundary conditions
 - \(z^* = -1\) when \(z = -N\)
 - \(z^* = 1\) when \(z = -F\)
Transformation of z: Solve for a and b

- Solving:
 \[z^* = \frac{az + b}{-z} \]

- Use boundary conditions
 - \(z^* = -1 \) when \(z = -N \) \(\ldots \ldots \) (1)
 - \(z^* = 1 \) when \(z = -F \) \(\ldots \ldots \) (2)

- Set up simultaneous equations
 \[
 -1 = \frac{-aN + b}{N} \Rightarrow -N = -aN + b \ldots (1) \\
 1 = \frac{-aF + b}{F} \Rightarrow F = -aF + b \ldots (2)
 \]
Transformation of z: Solve for a and b

\[-N = -aN + b \quad \ldots \ldots (1)\]

\[F = -aF + b \quad \ldots \ldots (2)\]

- Multiply both sides of (1) by -1

\[N =aN - b \quad \ldots \ldots (3)\]

- Add eqns (2) and (3)

\[F + N = aN - aF\]

\[\Rightarrow a = \frac{F + N}{N - F} = \frac{- (F + N)}{F - N} \quad \ldots \ldots (4)\]

- Now put (4) back into (3)
Transformation of z: Solve for a and b

- Put solution for a back into eqn (3)

$$N = aN - b \cdots \cdots (3)$$

$$\Rightarrow N = \frac{-N(F + N)}{F - N} - b$$

$$\Rightarrow b = -N - \frac{-N(F + N)}{F - N}$$

$$\Rightarrow b = \frac{-N(F - N) - N(F + N)}{F - N} = \frac{-NF - N^2 - NF + N^2}{F - N} = \frac{-2NF}{F - N}$$

- So

$$a = \frac{-(F + N)}{F - N} \quad \quad b = \frac{-2FN}{F - N}$$
What does this mean?

- Original point z in original view volume, transformed into z^* in canonical view volume

$$z^* = \frac{az + b}{-z}$$

- where

$$a = \frac{-(F + N)}{F - N}$$
$$b = \frac{-2FN}{F - N}$$
Homogenous Coordinates

- Want to express projection transform as 4x4 matrix
- Previously, homogeneous coordinates of
 \[P = (P_x, P_y, P_z) \Rightarrow (P_x, P_y, P_z, 1) \]
- Introduce arbitrary scaling factor, \(w \), so that
 \[P = (wP_x, wP_y, wP_z, w) \quad (\textbf{Note: } w \text{ is non-zero}) \]
- For example, the point \(P = (2,4,6) \) can be expressed as
 - \((2,4,6,1)\)
 - or \((4,8,12,2)\) where \(w = 2 \)
 - or \((6,12,18,3)\) where \(w = 3 \), or...
- To convert from homogeneous back to ordinary coordinates, first divide all four terms by \(w \) and discard 4\(^{th}\) term
Perspective Projection Matrix

- Recall Perspective Transform

\[
(x^*, y^*, z^*) = \left(x \frac{N}{-z}, y \frac{N}{-z}, \frac{az + b}{-z} \right)
\]

- We have:

\[
x^* = x \frac{N}{-z}, \quad y^* = y \frac{N}{-z}, \quad z^* = \frac{az + b}{-z}
\]

- In matrix form:

\[
\begin{pmatrix}
N & 0 & 0 & 0 \\
0 & N & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
w x \\
w y \\
w z \\
w
\end{pmatrix}
=
\begin{pmatrix}
wN x \\
wN y \\
w(az + b) \\
- wz
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
x \\
y \\
N \\
az + b
\end{pmatrix}
\]
Perspective Projection Matrix

\[
\begin{pmatrix}
N & 0 & 0 & 0 \\
0 & N & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
wP_x \\
wP_y \\
wP_z \\
w
\end{pmatrix} =
\begin{pmatrix}
wNP_x \\
wNP_y \\
w(aP_z + b) \\
-wP_z
\end{pmatrix} \Rightarrow
\begin{pmatrix}
x \\
y \\
z \\
1
\end{pmatrix}
\]

\[
a = \frac{-(F + N)}{F - N}
\quad \quad \quad b = \frac{-2FN}{F - N}
\]

• In perspective transform matrix, already solved for \(a\) and \(b\):
• So, we have transform matrix to transform \(z\) values
Perspective Projection

- Not done yet!! Can now transform z!
- Also need to transform the $x = (\text{left}, \text{right})$ and $y = (\text{bottom}, \text{top})$ ranges of viewing frustum to $[-1, 1]$
- Similar to glOrtho, we need to translate and scale previous matrix along x and y to get final projection transform matrix

- We translate by
 - $-(\text{right} + \text{left})/2$ in x
 - $-(\text{top} + \text{bottom})/2$ in y

- Scale by:
 - $2/(\text{right} - \text{left})$ in x
 - $2/(\text{top} - \text{bottom})$ in y
Perspective Projection

- Translate along x and y to line up center with origin of CVV
 - \(-(\text{right} + \text{left})/2\) in x
 - \(-\text{(top} + \text{bottom})/2\) in y

- Multiply by translation matrix:

\[
\begin{bmatrix}
1 & 0 & 0 & -(\text{right} + \text{left})/2 \\
0 & 1 & 0 & -(\text{top} + \text{bottom})/2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Perspective Projection

- To bring view volume size down to size of CVV, scale by:
 - \(\frac{2}{(\text{right} - \text{left})} \) in x
 - \(\frac{2}{(\text{top} - \text{bottom})} \) in y

- Multiply by scale matrix:

\[
\begin{pmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & 0 \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
Perspective Projection Matrix

Scale

\[
\begin{pmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & 0 \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Translate

\[
\begin{pmatrix}
1 & 0 & 0 & \frac{-\text{right} + \text{left}}{2} \\
0 & 1 & 0 & \frac{-\text{top} + \text{bottom}}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Final Perspective Transform Matrix

\[
\begin{pmatrix}
2N / (x_{\text{max}} - x_{\text{min}}) & 0 & \frac{\text{right} + \text{left}}{\text{right} - \text{left}} & 0 \\
0 & 2N / (\text{top} - \text{bottom}) & \frac{\text{top} + \text{bottom}}{\text{top} - \text{bottom}} & 0 \\
0 & 0 & F - N / -1 & F - N \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

glFrustum(left, right, bottom, top, N, F)

N = near plane, F = far plane
After perspective transformation, viewing frustum volume is transformed into canonical view volume.

Canonical View Volume

\((-1, -1, 1)\) to \((1, 1, -1)\)
Geometric Nature of Perspective Transform

a) Lines through eye map into lines parallel to z axis after transform
b) Lines perpendicular to z axis map to lines perp to z axis after transform
Normalization Transformation

$z = -x$
$z = x$
$z = -\text{far}$
$z = -\text{near}$

original clipping volume
original object
new clipping volume

distorted object projects correctly

$x = -1$
$z = 1$
$z = -1$

$x = 1$
void display(){
 // Build 4x4 projection matrix
 model_view = LookAt(eye, at, up);
 projection = Ortho(left, right, bottom, top, near, far);

 // pass model_view and projection matrices to shader
 glUniformMatrix4fv(matrix_loc, 1, GL_TRUE, model_view);
 glUniformMatrix4fv(projection_loc, 1, GL_TRUE, projection);

}

Implementation

- Set modelview and projection matrices in application program
- Pass matrices to shader
Implementation

- And the corresponding shader

```glsl
in vec4 vPosition;
in vec4 vColor;
Out vec4 color;
uniform mat4 model_view;
Uniform mat4 projection;

void main( )
{
    gl_Position = projection*model_view*vPosition;
    color = vColor;
}
```
References