Computer Graphics (CS 4731)
Lecture 13: Viewing & Camera Control

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)
3D Viewing?

- Objects **inside** view volume drawn to viewport (screen)
- Objects outside view volume **clipped** (not drawn)!

1. Set camera position
2. Set view volume (3D region of interest)
Different View Volume Shapes

- Different view volume => different look
- **Foreshortening**? Near objects bigger
 - Perspective projection has **foreshortening**
 - Orthogonal projection: no foreshortening
The World Frame

- Objects/scene initially defined in world frame
- **World Frame origin** at (0,0,0)
- Objects positioned, oriented (translate, scale, rotate transformations) applied to objects in world frame
Camera Frame

- More natural to describe object positions relative to camera (eye)
- Think about
 - Our view of the world
 - First person shooter games
Camera Frame

- **Viewing**: After user chooses camera (eye) position, represent objects in **camera frame** (origin at eye position)
- **Viewing transformation**: Changes object positions from world frame to positions in camera frame using **model-view matrix**
Default OpenGL Camera

- Initially Camera at origin: object and camera frames same
- Camera located at origin and points in negative z direction
- Default view volume is cube with sides of length 2
Moving Camera Frame

default frames

Translate objects +5 away from camera

Translate camera -5 away from objects

Same relative distance after
Same result/look
Moving the Camera

- We can move camera using sequence of rotations and translations
- Example: side view
 - Rotate the camera
 - Move it away from origin
 - Model-view matrix $C = TR$

```c
// Using mat.h
mat4 t = Translate (0.0, 0.0, -d);
mat4 ry = RotateY (90.0);
mat4 m = t*ry;
```
Moving the Camera Frame

- Object distances relative to camera determined by the model-view matrix
 - Transforms (scale, translate, rotate) go into modelview matrix
 - Camera transforms also go in modelview matrix (CTM)
The LookAt Function

- Previously, command `gluLookAt` to position camera
- `gluLookAt` deprecated!!
- Homegrown mat4 method `LookAt()` in mat.h
 - Can concatenate with modeling transformations

```cpp
void display() {
    ..........  

    mat4 mv = LookAt(vec4 eye, vec4 at, vec4 up);
    ..........  
}
```

Builds 4x4 matrix for positioning, orienting Camera and puts it into variable `mv`
LookAt

LookAt(eye, at, up)

Programmer defines:
- eye position
- LookAt point \((at)\) and
- Up vector \((Up)\) direction usually \((0,1,0)\)

But Why do we set Up direction?
Nate Robbins LookAt Demo

glTranslatef(0.00 , 0.00 , 0.00);
 glRotatef(0.0 , 0.00 , 1.00 , 0.00);
 glScalef(1.00 , 1.00 , 1.00);
 glBegin(...);
 ...
 Click on the arguments and move the mouse to modify values.

GLfloat pos[4] = { 1.50 , 1.00 , 1.00 , 0.00 };
 gluLookAt(0.00 , 0.00 , 2.00 , <- eye
 0.00 , 0.00 , 0.00 , <- center
 0.00 , 1.00 , 0.00); <- up
 glLightfv(GL_LIGHT0, GL_POSITION, pos);
 Click on the arguments and move the mouse to modify values.
What does LookAt do?

- Programmer defines eye, lookAt and Up
- **LookAt method:**
 - Form new axes (u, v, n) at camera
 - Transform objects from world to eye camera frame
Camera with Arbitrary Orientation and Position

- Define new axes \((u, v, n)\) at eye
 - \(v\) points vertically upward,
 - \(n\) away from the view volume,
 - \(u\) at right angles to both \(n\) and \(v\).
 - The camera looks toward \(-n\).
 - All vectors are normalized.
LookAt: Effect of Changing Eye Position or LookAt Point

- Programmer sets \textbf{LookAt}(\textit{eye, at, up})
- If \textit{eye, lookAt} point changes => \textit{u,v,n} changes
Viewing Transformation Steps

1. Form camera (u,v,n) frame

2. Transform objects from world frame (Composes matrix for coordinate transformation)

Next, let’s form camera (u,v,n) frame
Constructing U,V,N Camera Frame

- **LookAt arguments**: `LookAt(eye, at, up)`
- **Known**: eye position, LookAt Point, up vector
- **Derive**: new origin and three basis (u,v,n) vectors
Eye Coordinate Frame

- **New Origin:** *eye position* (that was easy)
- 3 basis vectors:
 - one is the normal vector (*n*) of the viewing plane,
 - other two (*u* and *v*) span the viewing plane

\[\mathbf{N} = \mathbf{eye} - \text{Lookat Point} \]
\[\mathbf{n} = \frac{\mathbf{N}}{||\mathbf{N}||} \]

\(\mathbf{u}, \mathbf{v}, \mathbf{n}\) should all be orthogonal

\(\mathbf{n}\) is pointing away from the world because we use left hand coordinate system

Remember *\(\mathbf{u}, \mathbf{v}, \mathbf{n}\) should be all unit vectors*
Eye Coordinate Frame

- How about u and v?

- We can get u first -
 - u is a vector that is perpendicular to the plane spanned by N and view up vector (V_up)

```
U = V_up x n
u = U / |U|
```
Eye Coordinate Frame

- How about \(v \)?

Knowing \(n \) and \(u \), getting \(v \) is easy

\[
\mathbf{v} = \mathbf{n} \times \mathbf{u}
\]

\(v \) is already normalized
Eye Coordinate Frame

- Put it all together

Eye space **origin**: \((\text{Eye.x, Eye.y, Eye.z})\)

Basis vectors:

\[
\begin{align*}
\mathbf{n} &= \frac{\text{eye} - \text{Lookat}}{|\text{eye} - \text{Lookat}|} \\
\mathbf{u} &= \frac{\mathbf{V}_{\text{up}} \times \mathbf{n}}{|\mathbf{V}_{\text{up}} \times \mathbf{n}|} \\
\mathbf{v} &= \mathbf{n} \times \mathbf{u}
\end{align*}
\]
Step 2: World to Eye Transformation

- Next, use u, v, n to compose LookAt matrix
- Transformation matrix (M_{w2e})?

$$P' = M_{w2e} \times P$$

1. Come up with transformation sequence that lines up eye frame with world frame
2. Apply this transform sequence to point P in reverse order
World to Eye Transformation

1. Rotate eye frame to “align” it with world frame
2. Translate (-ex, -ey, -ez) to align origin with eye

Rotation:
\[
\begin{bmatrix}
ux & uy & uz & 0 \\
vx & vy & vz & 0 \\
xn & ny & nz & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Translation:
\[
\begin{bmatrix}
1 & 0 & 0 & -ex \\
0 & 1 & 0 & -ey \\
0 & 0 & 1 & -ez \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
World to Eye Transformation

- Transformation order: apply the transformation to the object in reverse order - translation first, and then rotate

\[
M_{w2e} = \begin{bmatrix}
ux & uy & ux & 0 \\
vx & vy & vz & 0 \\
xn & yn & nz & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & -ex \\
0 & 1 & 0 & -ey \\
0 & 0 & 1 & -ez \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

= \begin{bmatrix}
ux & uy & uz & -e \cdot u \\
vx & vy & vz & -e \cdot v \\
xn & yn & nz & -e \cdot n \\
0 & 0 & 0 & 1
\end{bmatrix}

Note: \(e \cdot u = ex.ux + ey.uy + ez.uz \)
\(e \cdot v = ex.vx + ey.vy + ez.vz \)
\(e \cdot n = ex.nx + ey.ny + ez.nz \)

Multiplied together = lookAt transform
lookAt Implementation (from mat.h)

Eye space **origin:** $(\text{Eye.x, Eye.y, Eye.z})$

Basis vectors:

\[
\begin{align*}
\mathbf{n} &= \frac{(\text{eye} - \text{Lookat})}{|\text{eye} - \text{Lookat}|} \\
\mathbf{u} &= \frac{\mathbf{V}_\text{up} \times \mathbf{n}}{|\mathbf{V}_\text{up} \times \mathbf{n}|} \\
\mathbf{v} &= \mathbf{n} \times \mathbf{u}
\end{align*}
\]

<table>
<thead>
<tr>
<th>\mathbf{u}</th>
<th>\mathbf{v}</th>
<th>\mathbf{n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_x</td>
<td>u_y</td>
<td>u_z</td>
</tr>
<tr>
<td>v_x</td>
<td>v_y</td>
<td>v_z</td>
</tr>
<tr>
<td>n_x</td>
<td>n_y</td>
<td>n_z</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$$\text{mat4 LookAt(const vec4 & eye, const vec4 & at, const vec4 & up)}$$

```cpp
{ 
    vec4 n = normalize(eye - at);
    vec4 u = normalize(cross(up,n));
    vec4 v = normalize(cross(n,u));
    vec4 t = vec4(0.0, 0.0, 0.0, 1.0);
    mat4 c = mat4(u, v, n, t);
    return c * Translate( -eye );
}
```
References

- Interactive Computer Graphics, Angel and Shreiner, Chapter 4