
CS 4518 Mobile and Ubiquitous
Computing

Lecture 2: Introduction to Android
Programming

Emmanuel Agu

Android Apps: Big Picture

UI Design using XML

 UI design code (XML) separate from the program
(Java)

 Why? Can modify UI without changing Java program

 Example: Shapes, colors can be changed in XML file
without changing Java program

 UI designed using either:

 Drag-and drop graphical (WYSIWYG) tool or

 Programming Extensible Markup Language (XML)

 XML: Markup language, both human-readable and
machine-readable''

Android App Compilation

 Android Studio compiles code, data and
resource files into Android PacKage
(filename.apk).

 .apk is similar to .exe on Windows

 Apps download from Google Play, or copied to
device as filename.apk

 Installation = installing apk file

Activities
 Activity? 1 Android screen or dialog box

 Apps

 Have at least 1 activity that deals with UI

 Entry point, similar to main() in C

 Typically have multiple activities

 Example: A camera app

 Activity 1: to focus, take photo, launch activity 2

 Activity 2: to view photo, save it

 Activities

 independent of each other

 E.g. Activity 1 can write data, read by activity 2

 App Activities derived from Android’s Activity class

Our First Android App

3 Files in “Hello World” Android Project

 Activity_my.xml: XML file specifying screen layout

 MainActivity.Java: Java code to define behavior,
actions taken when button clicked (intelligence)

 AndroidManifest.xml:

 Lists all screens, components of app

 Analogous to a table of contents for a book

 E.g. Hello world program has 1 screen, so
AndroidManifest.xml has 1 item listed

 App starts running here (like main() in C)

 Note: Android Studio creates these 3 files for you

Execution Order

Start in AndroidManifest.xml

Read list of activities (screens)

Start execution from Activity

tagged Launcher

Create/execute activities

(declared in java files)

E.g. MainActivity.Java

Format each activity using layout

In XML file (e.g. Activity_my.xml)

Next: Samples of AndroidManifest.xml

Hello World program

Inside “Hello World” AndroidManifest.xml

Android

version

Your

package

name

List of

activities

(screens)

in your app
One activity (screen)

designated LAUNCHER.

The app starts running here

This file is written using xml namespace and tags and rules for android

Execution Order

Start in AndroidManifest.xml

Read list of activities (screens)

Start execution from Activity

tagged Launcher

Create/execute activities

(declared in java files)

E.g. MainActivity.Java

Format each activity using layout

In XML file (e.g. Activity_my.xml)

Next

Example Activity Java file
(E.g. MainActivity.java)

Package declaration

Import needed classes

My class inherits from

Android activity class

Initialize by calling

onCreate() method

of base Activity class

Use screen layout (design)

declared in file main.xml

Note: Android calls your Activity’s onCreate

method once it is created

Execution Order

Start in AndroidManifest.xml

Read list of activities (screens)

Start execution from Activity

tagged Launcher

Create/execute activities

(declared in java files)

E.g. MainActivity.Java

Format each activity using layout

In XML file (e.g. Activity_my.xml)Next

Simple XML file Designing UI

 After choosing the layout, then widgets added to design UI
 XML Layout files consist of:

 UI components (boxes) called Views

 Different types of views. E.g
 TextView: contains text,

 ImageView: picture,

 WebView: web page

 Views arranged into layouts or ViewGroups

Declare Layout

Add widgets

Widget properties

(e.g. center contents

horizontally and vertically)

Android Files

Android
Project
File Structure

3 Main Files to

Write Android app

Files in an Android Project

 res/ (resources) folder contains static resources
you can embed in Android screen (e.g. pictures,
string declarations, etc)

 res/menu/: XML files for menu specs

 res/drawable-xyz/: images (PNG, JPEG, etc) at
various resolutions

 res/raw: general-purpose files (e.g. audio clips,
mpeg, video files, CSV files

 res/values/: strings, dimensions, etc

Concrete Example: Files in an Android Project

 res/layout: layout, dimensions (width, height) of
screen cells are specified in XML file here

 res/drawable-xyz/: The images stored in jpg or
other format here

 java/: App’s response when user clicks on a
selection is specified in java file here

 AndroidManifext.XML: Contains app name
(Pinterest), list of app screens, etc

Editting in Android Studio

Editting Android
 Can edit apps in:

 Text View: edit XML directly

 Design View: or drag and drop widgets unto emulated phone

Android UI Design in XML

Recall: Files Hello World Android Project

 3 Files:
 Activity_main.xml: XML file specifying screen layout

 MainActivity.Java: Java code to define behavior,
actions taken when button clicked (intelligence)

 AndroidManifest.xml:

 Lists all app components and screens

 Like a table of contents for a book

 E.g. Hello world program has 1 screen, so
AndroidManifest.xml has 1 item listed

 App starts running here (a bit like main() in C), launching
activity with a tag “LAUNCHER”

XML file used to design Android UI

Widgets
 Android UI design involves arranging widgets on a screen

 Widgets? Rectangles containing texts, image, etc

 Screen design: Pick widgets, specify attributes (dimensions, margins, etc)

Widgets

Design Option 1: Drag and Drop Widgets

 Drag and drop widgets in Android Studio Design View

 Edit widget properties (e.g. height, width, color, etc)

Drag and drop

button or any

other widget

or view
Edit widget

properties

Design Option 2: Edit XML Directly

 Text view: Directly edit XML file defining screen
(activity_main.xml)

 Note: dragging and dropping widgets in design view auto-generates
corresponding XML in Text view

Edit XMLDrag and drop widget

Android Widgets

Example: Some Common Widgets

 TextView: Text in a rectangle

 EditText: Text box for user to type in text

 Button: Button for user to click on

TextView Widget

 Text in a rectangle

 Just displays text, no interaction

 Common attributes:
 typeface (android:typeface e.g monospace), bold, italic, (android:textStyle),

text size, text color (android:textColor e.g. #FF0000 for red), width, height,
padding, background color

 Can also include links to email address, url, phone number,

 web, email, phone, map, etc

XML code TextView Widgets

TextView

 TextView widget is available in widgets palette in
Android Studio Layout editor
 Plain TextView, Large text, Medium text and Small text

 After dragging Textview widget in, edit properties

Widget ID

 Every widget has ID, stored in android:id attribute

 Using Widget ID declared in XML, widget can be referenced,
modified in java code (More later)

Button Widget

 Clickable Text or icon on a Widget (Button)

 E.g. “Click Here”

 Appearance can be customized

 Declared as subclass of TextView so similar
attributes (e.g. width, height, etc)

Button in Android Studio

 Button widget available in palette of
Android Studio graphical layout editor

 Drag and drop button, edit its attributes

Responding to Button Clicks

 May want Button press to trigger some action

 How?

1. In XML file (e.g. Activity_my.xml),

set android:onClick attribute

to specify method to be invoked

2. In Java file (e.g. MainActivity.java)

declare method/handler to take

desired action

Activity_my.xml MainActivity.java

Embedding Images:
ImageView and ImageButton

 ImageView: display image (not clickable)

 ImageButton: Clickable image

 Use android:src attribute to specify image source in
drawable folder (e.g. @drawable/icon)

File molecule.png in drawable/ folder

ImageView in Widgets Palette

 Can drag and drop ImageView from
Widgets Palette

 Use pop-up menus (right-click) to specify:

 src: choose image to be displayed

 scaleType: choose how image should
be scaled

Options for Scaling Images (scaleType)

“center” centers image

but does not scale it

“centerCrop” centers

image, scales it

(maintaining aspect ratio) so

that shorter dimension fills

available space, and

crops longer dimension

“fitXY” scales/distorts image

to fit ImageView, ignoring

aspect ratio

EditText Widget

 Widget with box for user input

 Example:

 Text fields can have different input types
 e.g. number, date, password, or email address

 android:inputType attribute sets input type, affects

 What type of keyboard pops up for user

 E.g. if inputType is a number, numeric keyboard pops up

EditText Widget in Android
Studio Palette

 A section of Android Studio palette
has EditText widgets (or text fields)

Text Fields

Section of Widget

palette EditText

inputType menu

Some Other Available Widgets

Rectangle that

contains a map

Rectangle that

contains a web page

Pickers

 TimePicker: Select a time

 DatePicker: Select a date

 Typically displayed in pop-up dialogs (TimePickerDialog or
DatePickerDialog)

TimePicker DatePicker

Spinner Controls

 user must select one of a set of choices

Checkbox

 Checkbox has 2 states: checked and unchecked

 XML code to create Checkbox

Other Indicators

 ProgressBar

 RatingBar

 Chronometer

 DigitalClock

 AnalogClock

Android Layouts in XML

Android UI using XML Layouts

 Layout? Pattern in which multiple widgets are arranged

 Layouts contain widgets

 In Android internal classes, widget is child of layout

 Layouts (XML files) stored in res/layout

Some Layouts

 FrameLayout,

 LinearLayout,

 TableLayout,

 GridLayout,

 RelativeLayout,

 ListView,

 GridView,

 ScrollView,

 DrawerLayout,

 ViewPager

LinearLayout
 aligns child elements (e.g. buttons, text

boxes, pictures, etc.) in one direction

 Example:

 orientation attribute defines direction
(vertical or horizontal):

 E.g. android:orientation="vertical"

Layout

properties

Layout Width and Height Attributes

 wrap_content: widget as wide/high as its content (e.g. text)

 match_parent: widget as wide/high as its parent layout box

 fill_parent: older form of match_parent

Text widget width

should be as wide as

Its parent (the layout)

Text widget height

should Be as wide as

the content (text)

TextView

Linear Layout

Screen (Hardware)

Hierarchy

LinearLayout in Android Studio

 LinearLayout in Android Studio Graphical Layout Editor

 After selecting LinearLayout, toolbars buttons to set parameters

Toggle width, height between

match_parent and wrap_content

Change gravity of

LinearLayout

(more on this later)

LinearLayout Attributes

Ref: https://developer.android.com/reference/android/widget/LinearLayout.html

in layout xml file

Can also design UI, set attributes in Java

program (e.g. ActivityMain.java) (More later)

Setting Attributes

Adding Padding

 Paddings sets space between layout sides and its parent (e.g.
the screen)

Setting Margins

 Can increase gap (margin) between adjacent widgets

 E.g. To add margin between two buttons, in declaration of bottom button

 Other options

Gravity Attribute

 By default, linearlayout left-
and top-aligned

 Gravity attribute changes
alignment :
 e.g. android:gravity = “right”

right

center

Linear Layout Weight Attribute

 Specifies "importance“, larger weights takes up more space

 Can set width, height = 0 then

 weight = percent of height/width you want element to cover

Scrolling
 Phone screens are small, scrolling content helps

 Examples: Scroll through

 large image

 Linear Layout with lots of elements

 Views for Scrolling:

 ScrollView for vertical scrolling

 HorizontalScrollView

 Rules:

 Only one direct child View

 Child could have many children of its own

RelativeLayout

 First element listed is placed in "center"

 Positions of children specified relative to parent or to each other.

RelativeLayout available

In Android Studio palette

Positioning Views Relative to Parent Layout

 Position a view (e.g. button, TextView) relative to its parent

 Example: Button aligned to top, right in a Relative Layout

See Head First Android Development (2nd edition) page 169-220 for more examples

Table Layout

 Specify number of rows and columns of views.

 Available in Android Studio palette

TableRows

GridLayout

 In TableLayout, Rows can span multiple columns only

 In GridLayout, child views/controls can span multiple
rows AND columns

 See section “GridLayout Displays Views in a Grid” in
Head First Android Development 2nd edition (pg 824)

Absolute Layout

 Allows specification of exact x,y
coordinates of layout’s children.

FrameLayout

 child elements pinned to top left
corner of layout

 adding a new element / child draws
over the last one

Other Layouts: Tabbed Layouts

Android Example: My First App
(Ref: Head First Android)

My First App

 Hello World program in Head First Android Development (Chapter 1)

 Creates app, types “Sup doge” in a TextView

HW0: Tutorials from YouTube Android Development
Tutorials 1-8 by Bucky Roberts

 Tutorials 1 & 2 (Optional): Installing Java, Android Studio on your own
machine

 Tutorial 1: Install Java (Android studio needs this at least ver. 1.8)

 Tutorial 2: Install Android Studio

 Tutorial 3: Setting up your project

 How to set up a new Android Project, add new Activity (App screen)

 Tutorial 4: Running a Simple App

 How to select, run app on a virtual device (AVD)

 Tutorial 5: Tour of Android Studio Interface
 Intro to Android Studio menus, toolbars and Drag-and-drop widget palette

References

 Android App Development for Beginners videos by Bucky
Roberts (thenewboston)

 Ask A Dev, Android Wear: What Developers Need to Know,
https://www.youtube.com/watch?v=zTS2NZpLyQg

 Ask A Dev, Mobile Minute: What to (Android) Wear,
https://www.youtube.com/watch?v=n5Yjzn3b_aQ

 Busy Coder’s guide to Android version 4.4

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

