CS 4518 Mobile and Ubiquitous Computing

Smartphone Sensing

Emmanuel Agu
Smartphone Sensors

- Typical smartphone sensors today
 - accelerometer, compass, GPS, microphone, camera, proximity

Future sensors?
- Heart rate monitor,
- Activity sensor,
- Pollution sensor,
- etc
Mobile CrowdSensing

- **Mobile CrowdSensing**: Sense collectively
- **Personal sensing**: phenomena pertain to individual
 - E.g: activity detection and logging for health monitoring

- **Group**: friends, co-workers, neighborhood
 - GarbageWatch to improve recycling, neighborhood surveillance
Mobile CrowdSensing

- Community sensing (mobile crowdsensing):
 - Large-scale phenomena monitoring
 - Many people contribute their individual readings
 - Examples: Traffic congestion, air pollution, spread of disease, migration pattern of birds, city noise maps
Mobile Crowd Sensing Types

- Many people cooperate, share sensed values
- 2 types:
 1. **Participatory Sensing**: User enters sensed values (active involvement)
 - E.g. Comparative shopping: Compare price of toothpaste at CVS vs Walmart
 2. **Opportunistic Sensing**: Mobile device automatically senses values (passive involvement)
 - E.g. Waze crowdsourced traffic
Sense What?

- **Environmental**: pollution, water levels in a creek
- **Transportation**: traffic conditions, road conditions, available parking
- **City infrastructure**: malfunctioning hydrants and traffic signs
- **Social**: photoblogging, share bike route quality, petrol price watch
- **Health and well-being**:
 - Share exercise data (amount, frequency, schedule),
 - share eating habits and pictures of food
Smartphone Sensing Examples
Personal Sensing

- Personal monitoring
- Focusing on user's daily life (Khan et al. 404)
Other Examples of Personal Participatory Sensing

- **AndWellness**
 - “Personal data collection system” (Khan et al. 405)
 - Active user-triggered experiences and surveys
 - Passive recording using sensors

- **UbiFit Garden**
 - “Uses smartphone sensors, real-time statistical modeling, and a personal, mobile display to encourage regular physical activity” (Khan et al. 406)
Personal Opportunistic Sensing

- PerFallD
 - How It Works
 - Detects if someone falls using sensor
 - Starts a timer if it detects that someone fell
 - If individual does not stop timer before it ends, emergency contacts are called (Khan et al. 416)

User interfaces in PerFallD: (a) bright, large virtual buttons on operating screen (b) clear alert window (c) simple, non-confusing preference screen
Public Sensing

- Data is shared with everyone for public good
- Traffic
- Environmental
 - Noise levels
 - Air pollution
Public Participatory Sensing

- **LiveCompare**
 - User-created database of UPCs and prices
 - GPS and cell tower info used to find nearby stores

- **PetrolWatch**
 - Turns phone into fully automated dash-cam
 - Uses GPS to know when gas station is near
Public Participatory Sensing

- **Pothole Monitor**
 - Combines GPS and accelerometer

- **Party Thermometer**
 - Asks you questions about parties
 - Detects parties through GPS and microphone
Smartphone Sensing vs Dedicated Sensors
Sensing with Smartphones vs Dedicated Sensors

- **More resources:** Smartphones have much more processing and communication power

- **Easy deployment:** Millions of smartphones already owned by people
 - Instead of installing sensors in road, we detect traffic congestion using smartphones carried by drivers

- **Time-varying data:** population of mobile devices, type of sensor data, accuracy changes often due to user mobility and differences between smartphones
Sensing with Smartphones vs Dedicated Sensors

- **Reuse of few general-purpose sensors:** While sensor networks use dedicated sensors, smartphones reuse relatively few sensors for wide-range of applications
 - E.g. Accelerometers used in transportation mode identification, pothole detection, human activity pattern recognition, etc

- **Human involvement:** humans who carry smartphones can be involved in data collection (e.g. taking pictures)
 - Human in the loop can collect complex data
 - Incentives must be given to humans
Smartphone Sensing Architecture
Smartphone Sensing Architecture

- **Sense**: Phones collect sensor data
- **Learn**: Information is extracted from sensor data by applying machine learning and data mining techniques
- **Inform, share and persuasion**: inform user of results, share with group/community or persuade them to change their behavior
Smartphone Sensing Architecture

- **Sense:** Phones collect sensor data
- **Learn:** Information is extracted from sensor data by applying **machine learning and data mining** techniques
- **Inform, share and persuasion:** inform user of results, share with group/community or persuade them to change their behavior
 - **Inform:** Notify users of accidents (Waze)
 - **Share:** Notify friends of fitness goals (MyFitnessPal)
 - **Persuasion:** avoid speed traps (Waze)
References

1. **A Survey of Mobile Phone Sensing.** Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, Andrew T. Campbell, In IEEE Communications Magazine, September 2010