CS4514 Computer Networks Program 3 C06

Programming Assignment 3 (15 pts)
Due: 11.59 p.m. Tuesday, February 28, 2006

Distributed Asynchronous Distance Vector Routing

Overview

In this third programming assgnment, you will be writing a " distributed” set of procedures that implement a
distributed asynchronous distance vector routing for the network shown in Figure 1.

W

Figurel

The Basic Assignment

Theroutinesyou will write: For the basic part of the assignment, you are to write the following routines
which will ~execute" asynchronoudy within the emulated environment that | have written for this assgnment.

For node O, you will write the routines:

rtinit0() Thisroutinewill be called once at the beginning of theemulation.rti ni t 0() has no arguments. It
should initialize the distance table in node 0 to reflect the direct costs of 1, 3, and 7 to nodes 1, 2, and 3,
respectively. In Figure 1, al links are bi-directional and the costsin both directions are identical. After initializing
the distance table, and any other data structures needed by your node O routines, it should then send its directly-
connected neighbors (in this case, 1, 2 and 3) the cost of its minimum cost pathsto all other network nodes. This
minimum cost information is sent to neighboring nodesin arouting packet by calling theroutinet ol ayer 2(),
as described below. The format of the routing packet is also described below.

rtupdat eO(struct rtpkt *rcvdpkt).Thisroutinewill be caled when node 0 receives arouting packet
that was sent to it by one of itsdirectly connected neighbors. The parameter * r cvdpkt isapointer to the packet
that was received.

rt updat e0() isthe "heart" of the distance vector dgorithm. The vauesit receivesin arouting
packet from some other node i contain i's current shortest path coststo al other network nodes.
rtupdat e0() usesthese received valuesto update its own distance table (as specified by the
distance vector dgorithm). If its own minimum cost to another node changes as aresult of the update,
node O informs its directly connected neighbors of this change in minimum cost by sending them a

CS4514 Computer Networks Program 3 C06

routing packet. Recal| that in the distance vector dgorithm, only directly connected nodes will
exchange routing packets. Thus nodes 1 and 2 will communicate with each other, but nodes 1 and 3
will not communicate with eech other.

Aswe saw in class, the distance table insde each node is the principa data structure used by the
distance vector agorithm. Y ou will find it convenient to declare the distance table as a 4-by-4 array of
int's, whereentry [i,j] inthedistancetablein node 0 isnode O's currently computed cost to node
I viadirect neighbor j. If O isnot directly connected to j, you can ignore this entry. We will usethe
convention that the integer value 999 is “infinity."

Figure 2 provides a conceptud view of the relationship of the proceduresinside node O.

Similar routines are defined for nodes 1, 2 and 3. Thus, you will write 8 proceduresinal:rtinit0(), rtinit1(),
rtinit2(), rtinit3(), rtupdate0(), rtupdatel(), rtupdate2(), rtupdate3()

rtinitG()

distance table and

othor data structuras

rtupdate 0()
routing packsats routing packets
racaivad from santto othar
othar nodes nodas
| y
Figure2

Softwar e | nterfaces

The procedures described above are the ones that you will write. | have written the following routines which
can be cdled by your routines:

tol ayer2(struct rtpkt pkt2send)
wherer t pkt isthefollowing structure, which isalready declared for you. The proceduret ol ayer 2() is
defined in the file prog3.c

extern struct rtpkt {

i nt sourceid; /* id of node sending this pkt, 0, 1, 2, or 3 */
int destid; /[* id of router to which pkt being sent
(must be an inmedi ate nei ghbor) */
int mncost[4]; /[* min cost to node O ... 3 */
b
Notethatt ol ayer 2() ispassed astructure, not a pointer to astructure.
printdtO()

CS4514 Computer Networks Program 3 C06

will pretty print the distancetable for node 0. It is passed a pointer to a structure of typedi st ance_t abl e.
printdtO() and the structure declaration for the node O distance table are declared in thefilenodeO. c. Similar
pretty-print routines are defined for you in thefilesnodel. ¢, node2.c¢ node3. c.

The smulated network environment

Your proceduresrtinito(), rtinitl(), rtinit2(), rtinit3() andrtupdate0(),
rtupdatel(), rtupdate2(), rtupdate3() sendrouting packets (whoseformat is described above)
into the medium. The medium will ddiver packetsin-order, and without loss to the specified destination. Only
directly-connected nodes can communicate. The delay between sender and receiver is variable (and
unknown).

When you compile your procedures and my procedures together and run the resulting program, you will be
asked to specify only one va ue regarding the smulated network environment:

Tracing. Setting atracing value of 1 or 2 will print out useful information about what is going oninside the
emulation (e.g., what's happening to packets and timers). A tracing value of 0 will turn this off. A tracing value
greater than 2 will display all sorts of odd messages that are for my own emulator-debugging purposes.

A tracing vaue of 2 may be helpful to you in debugging your code. Y ou should keep in mind thet real
implementors do not have underlying networks thet provide such nice information about what is going
to happen to their packets!

Specifics of The Assgnment

You areto write the proceduresrtini t0(), rtinitl(), rtinit2(), rtinit3() axdrtupdate0(),
rtupdatel(), rtupdate2(), rtupdate3() whichtogether will implement adisributed, asynchronous
computation of the distance tables for the topology and costs shown in Figure 1.

Y ou should put your procedures for nodes O through 3 in files called nodeO.c, node3.c. You are NOT
alowed to declare any globd variables that are vigble outsde of agiven Cfile (e.g., any globd variables you
definein node0. c. may only be accessed inddenode0. ¢). Thisisto force you to abide by the coding
conventions that you would have to adopt if you were redly running the procedures in four distinct nodes. To
compileyour routines cc prog3. ¢ node0. c nodel.c node2.c node3. c. Besureto define any data
structures/arrays you will need to track link costs/changes and print out each step of your distance vector
dgorithm.

Prototype versions of these files are on the course website at
http://www.cswpi.edu/~emmanuel/cour ses/cs4514/. Y ou will dso need my emulator file, prog3.c.

Thisassignment can be completed on any machine supporting C. It makes no use of UNI X features.
(You can smply ftp the file from the class ftp Site to whatever machine you choose).

Asdways, you should hand in a code listing, a design document (as described in the handout accompanying
the firgt programming assgnment), and sample outpL.

For your sample output, your procedures should print out a message whenever your rti nit 0(),
rtinitdl(), rtinit2(), rtinit3() OrrtupdateO(), rtupdatel(), rtupdate2(),
rtupdat e3() procedures are cdled, giving the time (avallable viamy globd varidblecl ockt i ne). For

CS4514 Computer Networks Program 3 C06

rtupdateO(), rtupdatel(), rtupdate2(), rtupdate3() Yyou should print theidentity of the sender
of the routing packet that is being passed to your routine, whether or not the distance table is updated, the
contents of the distance table (you can use my pretty-print routines), and a description of any messages sent to
neighboring nodes asaresult of changes of our minimum costs to other nodes.

The sample output should be an output listing with a TRACE vaue of 2. Highlight the find distance teble
produced in each node. Y our program will run until there are no more routing packets in-trangit in the
network, a which point my emulator will terminate.

The Extra Credit Assgnment (Worth 3 extra pointsin addition to the 15 for the basic part)

Y ou are to write two procedures, | i nkhandl er0(i nt 1inkid, int newcost) andlinkhandl er1(i nt
linkid, int newcost),whichwill becdledif (and when) the cost of the link between 0 and 1 changes.
These routines should be defined in thefilesnode0. ¢ and nodel. ¢, respectively. The routines will be passed
the name (id) of the neighboring node on the other side of the link whaose cost has changed, and the new cost
of the link. Note that when alink cost changes, these routines will have to update the distance table and may
(or may not) have to send updated routing packets to neighboring nodes.

In order to complete the extra part of the assgnment, you will need to change the vaue of the congtant
LINKCHANGES (line3in pr og3. ¢ to 1. FYI, the cost of the link will change from 1 to 20 & time 10000
and then change back to 1 at time 20000. Y our routines will be invoked at these times.

I would again STRONGL Y recommend that you first implement the basic assgnment and then extend your
code to implement the extra credit assgnment. It will not be time wasted. (Believe me, | learned this the hard

way!)
What to turn in for Assignment 3

Turn in your assgnment using te turnin program. Turn in the source programs nodeQ.c nodel.c node2.c
node3.c and your main program prog3.c., and aREADME file.

