
CS4514 Computer Networks  Program 2 C06 
 

 1 

Programming Assignment 2 (15 pts) 
Due:  11.59 p.m. Tueday, February 14, 2006 
 
Client Server for downloading MPEG Video files 
Using Tanenbaum’s 1-bit Sliding WindowProtocol (Protocol 4) 
 
Introduction 
 
The goal of this assignment is to send mpeg video files located at a server to a client. The client and server run 
on separate CCC Linux machines and communicate at the data link layer by sending and receiving frames. 
Both the client and server emulate three OSI layers (application/network, data link and physical layer). 
 
This assignment exposes the student to data link layer issues by implementing a 1-bit sliding window protocol 
on top of an emulated physical layer {real TCP does the actual transmissions for your physical layer}.  
 
The responsibilities of these two processes include: byte stuffing, error detection and the 1-bit sliding window 
protocol with a timeout mechanism that causes a frame retransmission when frames are not promptly 
acknowledged. Since data is sent only from the server to the client, no piggybacking of acknowledgements 
should be implemented.  
 
THE SERVER 
 
The server should be written to run on any arbitrary CCC Linux machine. The server emulates the lower three 
OSI layers (network, data link, and physical layer). The server is always started first. 
 
The command line for initiating the server is: 
 
 server 
 
The server also creates a log file server.log that you can use later for debugging. 
 
Server Application/Network Layer 
 
You should place three short mpeg files (about 2-5MB) at the server. The server application layer’s 
responsibility is to read each of your mpeg files in turn (filename.mpg)  and send them to the client. The 
server application layer indicates to the server network layer when it has completely read in a video by 
setting the end-of-video indicator. Note that for this assignment, you do not have to separate the application 
and network layers. 
 
Initially, the client network layer calls the physical layer to establish a with the server network layer. The 
server network layer begins receiving 300-byte “chunks” of videos and depositing each 300 byte chunk into 
a packet payload. Additionally, the packet payload contains one byte as an end-of-video indicator for the 
application layer. The server network layer sends the packet to the data link layer and waits for an ACK 
from the video client network layer.  



CS4514 Computer Networks  Program 2 C06 
 

 2 

 
Server data link layer 
 
The responsibilities of the data link layer involve error detection and the 1-bit sliding window protocol with a 
timeout mechanism that causes a frame retransmission when the frames are not promptly acknowledged. 
 
Frame Format 
 
Information at the data link layer is transmitted between the server and client in frames.  All frames need a 
frame-type byte to distinguish data and ACK frames. All data frames must have two bytes for the sequence 
number, two bytes for error-detection, and one end-of-packet byte. The client server process sends data 
frames that contain from 1 to 80 bytes of payload (encapsulated data from the network layer packet). ACK 
frames consist of zero bytes of payload, a two-byte sequence number, and a two-byte error detection field. 
 
The server data link layer receives packets from the server network layer, converts packets into frames 
and sends frames to the server physical layer. Upon receiving each packet from the server network layer, 
the server data link layer splits the packet into frames payloads. The data link layer builds each frame as 
follows: 
 
• Put the payload in the frame 
• Deposit the proper contents into the end-of-packet byte to indicate if this is the last frame of a packet 
• Compute the value of the error-detection bytes and put them into the frame. 
• Start a frame timer 
• Send the frame to the server physical layer 
 
The server data link layer then waits to receive a frame. If the received frame is a data frame, then its 
payload is a network layer ACK packet. The server data link layer then sends the valid ACK packet up to 
the server network layer and then waits to receive a packet from the client network layer. If the received 
frame is an ACK frame successfully received before the timer expires, the server sends the next frame of the 
packet. When the last frame of a packet has been successfully ACK’ed, the server data link layer waits to 
receive a data frame. If an ACK frame is received in error, this event is recorded in the log and the server 
data link layer continues as if the ACK was never received. If the timer expires, the server data link 
layer retransmits the frame. 
 
Server physical layer 
 
The server physical layer sends the frame received from the server data link layer as an actual TCP 
message to the client physical layer. The server physical layer receives frames as actual TCP messages 
from the client physical layer. This triggers a received frame event from the server data link layer. 
 
The server records significant events in a log file client.log. Significant events include: packet sent, frame sent, 
frame resent, ACK frame received successfully, ACK packet received successfully, ACK frame received in 
error, and timer expires. For logging purposes identify the packet and the frame within a packet by number for 
each event. Begin counting packets and frames at 1 (e.g. “frame 2 of packet 218 was retransmitted”). 



CS4514 Computer Networks  Program 2 C06 
 

 3 

 
THE VIDEO CLIENT  
 
The client should also be written to run on an arbitrary CCC Linux machine. The client emulates the lower 
three OSI layers (network, data link, and physical layer). 
 
The command line for initiating the client is: 
 
 client    servername 
where 
 
servername indicates the logical name for the server machine (e.g., ccc4.wpi.edu). The client communicates 
with the server through an ephemeral port that you can choose and hardcode in your program. The client also 
creates a log file client.log that you can use later for debugging. 
 
Client Application/Network Layer 
 
The client application layer receives 300-byte chunks of video in the form of network packets. It puts 
these chunks together to reconstruct the original mpeg file and writes them out to a local directory. The client 
application layer interrogates the end-of-video byte in the packet to know when the current packet is the 
last packet for an mpeg video so the specific mpeg file is closed. 
 
After the server application layer has processed each packet, the server network layer creates an ACK 
packet and sends it to the server data link layer.  
 
Client Data Link Layer 
 
The client data link layer initiates a connection with the server data link layer. Once the connection is 
established, the client data link layer cycles between receiving a frame from the physical layer, 
reassembling the packet and possibly sending the packet up to the network layer, and sending an ACK 
frame back to the server via the client physical layer. The client data link layer sends ACK frames 
consisting of two bytes of sequence number and the two error detection bytes. There is no need for a timer at 
the client. Note:  the setting of the end-of-packet byte is used to indicate to the client the last frame 
of a packet.  When the client closes the connection to the server, the server terminates. 
 
The client data link layer has to check for an error using the error-detection byte.  If the received data 
frame is in error, the client records the event and waits to receive another frame from the server. The client 
data link layer checks received frames for duplicates and reassembles frames into packets and sends one 
packet at a time to the client network layer.  Note – the client needs to send an ACK when a duplicate 
frame is received due to possibly damaged ACKs. The client records significant events including frame 
received, frame received in error, duplicate frame received, ACK sent, and packet sent to the network layer 
in client.log. 
 



CS4514 Computer Networks  Program 2 C06 
 

 4 

Frame Error Simulation 
 
Since real TCP guarantees no errors at the emulated physical layer, you must inject artificial transmission 
errors into your physical layer. 
 
Force a client transmission error in every 6th ACK frame sent by flipping any single bit in the error-
detection byte prior to transmission of the frame.  Force a server transmission error every 4th data frame 
sent by using the same flipping mechanism. (i.e., frames 6, 12, 18, … ACKs sent by the client will be 
perceived as having an error by the server and frames 4, 8, 12, … sent by the server will be perceived as 
having an error by the client.)  When the client times out due to either type of transmission error, it resends the 
same frame with the correct error-detection byte. 
 
Assume for this assignment that all data frames sent by the client data link layer are transmitted “error free”. 
Therefore, the server data link layer does NOT need to ACK the data frames sent by the server data link 
layer. 
 
 
Hints 
 
• [DEBUG] Build and debug your programs in stages.  Begin by getting the programs to work without 

errors and without the timer.  Then add the error generating functions and the timer mechanism on the 
client.  Get the assignment working on a single machine first. When it is all working on one machine, move 
the client and server processes to separate machines prior to turning in the assignment. Note - Make sure 
your client and server runs on one of the CCC Linux machines. Include the name of the CCC machine that 
you tested on, in your documentation. 

 
• [Error-Detection] While CRC at the bit level has been discussed in class, I recommend using a byte-by-

byte XOR of all the internal bytes for creating your error-detection byte. For the ACK frame, the error-
detection byte then becomes simply a copy of the sequence number byte. 

  
• The correct way to handle a timer and an incoming TCP message requires using a timer and the select 

system call.  You will lose points if you use polling to do this assignment. Since each client packet will have 
an associated timer, you need to design your client to track multiple timers.  

 
• [Performance Timing] You must measure the total execution time of the complete emulated transfer and 

print this out in file server.log. 
         
• [Timer] The protocol implemented can fail if there is a premature timeout.  Set the timeout 

period large enough to insure no premature timeouts. 
 
• port numbers:  You can “hardwire in “ the port numbers for this assignment because there is only 

one client and one server.  A more general solution is possible but you do not have to implement it. 
 



CS4514 Computer Networks  Program 2 C06 
 

 5 

• The actual content of the mpeg video files received by the client should match the initial mpeg files sent 
by the server. Differences shall result in loss of points.  

 
• [Documentation] You should document all your design choices and all significant aspects of your work..  

Remember: This a team project and all routines must specify the author as part of the 
documentation!! You CANNOT simply attribute all routines to both team members!! 

  
Do not wait for the test mpeg files. Just get three short mpeg files from the web and get going.  

 
What to turn in for Assignment 2 
 
The TA will make an 3 official mpeg files available a couple of days before the due date.  Turn in your 
assignment using the turnin program. Turn in the two source programs client.c and server.c, the client and 
server output files corresponding to running the programs using the TA's data, and a README file.  
 


