Ubiquitous and Mobile Computing CS 403x: Automatically Characterizing Places with Opportunistic CrowdSensing using Smartphones

Ankit Kumar Vishal Rathi Axe Soota

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Problem Statement

- Traditional location sensing systems only make use of WiFi and GPS
- The error in GPS-, GSM-, or WiFi-based location estimates often ranges between 10 and 400 meters
- 426 of the 1,241 place visits incorrectly reported based on the location estimate

Introducing CSP

- CSP CrowdSense@Place
- Interpretation of a location from Location Sensor to user - as a place
- Framework that exploits sensors that most phone's have
- Smartly capture images and audio clips from smartphones
- Goal is to link place visits to various place categories

Place-discovery techniques these days:

 Exploit large-scale data collections, like point-ofinterest databases (Google) to allocate place descriptors

Related Work

- Bing, Yelp
- Facebook, Twitter, FourSquare
- CenceMe Similar application but doesn't infer from images
- SenseCam Goal to understand user's environment
- VibN Identifies points of interest in the city

How is CSP different?

 CrowdSense@Place - Place classification based on existing methods to perform place segmentation

Overview

- Smartphone Application
 - Sensing and Data Collection
 - Privacy Settings

- Offline server-side processing
 - Processing and Location Detection

Data Collection

- Audio detection
 - "Do you have a Large size of these pants?"
- Pictures of objects

Written Texts

Methodology

Smartphone Client

- Place Segmentation WiFi fingerprinting and GPS to discover places
- Sensor Sampling Simple heuristic to improve quality of data collected
- Privacy Data resides on device for 24 hours

Sensor Data Classifiers

- Optical Character Recognition (OCR)
- Indoor Scene Classification
- Objects Recognition
- Speech Recognition
- Sound Classification

Place Modeling

- Data preprocessing
 - Classifier Terms
 - Mobility Terms
- Place Categorization

Results - Classifiers

- Indoor scene classification (GIST features) has the largest impact
- OCR does not have a strong overall effect
- Object detection, speech recognition, and sound classification had major effects

Figure 6. Accuracy of different classifiers used by isolation.

Results - Location Accuracy

- 69% Accuracy
- CSP outperforms GPS and Mobility by around 22% to 40%
- Mobility has 44% accuracy for workplace and 52% for college while CSP has 80% and 71% respectively

Applications of CSP

 Enhanced Local Search & Recommendations

•

Rich Crowdsourced Point-of-Interest Category Maps

Understanding City-scale Behavior Patterns

Limitations and Future Work

Finer Place Categorization

Privacy

Activity vs. Place Category

Energy Issues

Conclusions

36 person study

Seven-weeks total

1241 places on 5 locations

Average accuracy of 69%

What we liked/disliked about the paper?

Likes:

- Graphs and tabulated data findings
- The intensive study conducted
- Limitations and issues considered

Dislikes:

Doesn't address privacy concerns appropriately

Questions

References

 http://www.fengzhao. com/pubs/ubicomp12_cps.pdf

