Ubiquitous and Mobile Computing CS 403x: Mobile *Malware in the Wild*

Anthony Dresser, Nicholas Kalamvokis, Nicholas Muesch

> Computer Science Dept. Worcester Polytechnic Institute (WPI)

Problem

- Article: A Survey of Mobile Malware in the Wild
- iOS, Android, and Symbian were the largest mobile platforms in 2011
- They were/are all vulnerable to many forms of attack

iPhone 3G (iOS)

Tmobile G2X (Android)

Omnia HD i8910 (Symbian)

Motivation

- Study malware on various mobile platforms
 - iOS, Symbian, Android
- Discuss possible preventions on a per OS basis
 - Permissions
 - Application Signing Process
 - Root privileges/Customization
 - Data was used to
 - Understand malware developer's motivation
 - Evaluate how well current defense mechanisms protect phone users
- Propose possible future exploits

- Studied 46 Known Mobile Malware
 - 24 Symbian, 18 Android, 4 iOS
 - Public databases of anti-virus companies (At least 2)
 - News releases
- Analyzed the permission of 956 Android 2.2 apps
 - 100 top paid apps
 - 756 most popular free apps
 - 100 most recently uploaded apps

Types of Threats

- Malware
 - Gains access through device vulnerabilities
 - Includes Trojans, worms, botnets, and viruses
- Spyware
 - Installed via physical access to the device
 - Collects personal user information
- Grayware
 - Legitimate software that acts as Spyware
 - Barely legal

Malware

 Survey included 24 for Symbian, 18 for Android, and 4 for iOS

- Malware was used to...
 - Collect user information (61%)
 - Send premium-rate SMS (52%)
 - SMS spam (17%)
 - Amusement (13%)
 - Extract user credentials (9%)
 - Search engine optimization fraud (2%)
 - Ransom (2%)

Root Exploits

- Used by consumers to evade phone stock limitations
- Malware developers obtain superuser access in order to bypass security
 - This allows access to parts of the API that are permission protected

App Marketplaces

- Apple App Store
 - Allows some GrayWare
 - Non-automated app review process (high security)
- Android App Store
 - User complaint driven
 - Unofficial apps can be obtained from other markets
- Symbian (Ovi) App Store
 - Unreliable automated signing process
 - Many other unregulated app markets existed

Android Permissions

- Dangerous Permissions
 - Access to user's "confidential" data
 - Requires User Auth
 - Camera, Calendar, Location, Contacts, etc
- Hard to correlate number of dangerous permissions to malicious apps

Number of	Numb	oer of	Number o	of
Dangerous	non-malicious		malicious	
permissions	applications		applications	
0	75	(8%)	-	_
1	154	(16%)	1	
2	182	(19%)	1	
3	152	(16%)	_	
4	140	(15%)	2	
5	82	(9%)	1	
6	65	(7%)	_	
7	28	(3%)	2	
8	19	(2%)	1	
9	21	(2%)	1	
10	10	(1%)	1	
11	6	(0.6%)	1	
12	7	(0.7%)	-	
13	4	(0.4%)	-	
14	4	(0.4%)	-	
15	2	(0.2%)	-	
16	1	(0.1%)	-	
17	1	(0.1%)	-	
18	-		-	
19	-		-	
20	1	(0.1%)	-	
21	-		-	
22	-		-	
23	1	(0.1%)	-	
24	-		-	
25	-		-	
26	1	(0.1%)	-	

Suggested Countermeasures

- Allow Users to customize their phones to prevent the need to jailbreak/root
- Use Apple's review process to deter malware
- Use Android's Permissions to give the user control over what an application can do.
 - Provide real time permission access over install time
 - Android M does this
- Symbian seems to offer no security valuable features

Future Incentives

- Government Monitor Citizens
- Distributed Denial of Service (DDoS)
- Advertising Click Fraud
- Invasive Advertising
- In-App Billing Fraud
- Spam
- NFC Credit Card Payments

Related Works

- In 2007, a paper read IRC logs of black market
 [1]
 - Discovered a compromised desktop sells for \$2-\$25
- In 2009, researchers estimated 11,750 phones in could reduce network usability by 93% [2]
- In 2011, researchers discussed potential attacks on mobile phones [3]

References/Questions?

- A survey of mobile malware in the wild Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David Wagner in Proc SPSM 2011
- [1] M. Fossi (Editor). Symantec Report on the Underground Economy. Symantec Corporation, 2008.
- [2] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, P. McDaniel, and T. La Porta. On Cellular Botnets: Measuring the Impact of Malicious Devices on a Cellular Network Core. In CCS, 2009.
- [3] M. Becher, F. Freiling, J. Hoffmann, T. Holz, S. Uellenbeck, and C. Wolf. Mobile Security Catching Up? Revealing the Nuts and Bolts of the Security of Mobile Devices. In IEEE Symposium on Security and Privacy, 2011.