Ubiquitous and Mobile Computing

CS 403x: BeWell: A Smartphone Application to Monitor, Model and Promote Wellbeing

Jonas Rogers Narut Akadejdechapanich Peerapat Luxsuwong

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Problem Introduction/Motivation

- No smartphone system that provides automatic, intelligent feedback on daily activities
- Lifestyle choices have impact on personal health
- Alternatives require manual data input
- Main focus is on sleep, physical activity and social interactions

- Monitor sleep, physical activity and social interactions
- Summarize the effects from the gathered data
- Provide feedback enabling users to make better lifestyle choices
- Main goal is convenience

Related Work

- Fitbit
- Google Fit
- BALANCE
- AndWellness

Methodology - Approach & Design

- Approach
 - Automatic tracking
 - 3 wellbeing dimensions
 - Phone sensors
- Design
 - Monitor behavior
 - Model wellbeing
 - Promote and inform end users
 - 3 wellbeing scores given (out of 100)

Smartphone

- Sensing Daemon
- Mobile Ambient Wellbeing Display
- Mobile BeWell Portal

Server & Desktop

- Desktop BeWell Portal
- BeWell Cloud
 Infrastructure

Methodology - Assumptions & Limitations of Work

- Doesn't take into account certain factors
- Still reliant on user input for some aspects
- 1 week is enough for a proof of concept
- Privacy

Design Tradeoffs

- Records a lot of data each day
- Battery life is reduced due to daemon constantly running
- Privacy
- Manual v.s. Automatic data entry

Benchmarks:

- Max CPU: 31%,
- Max RAM: 16MB,
- Average battery: 15h
 Improved activity detection

	Voicing	Walking	Stationary	Running
Accuracy	85.3%	90.3%	94.3%	98.1%

TABLE II
BEHAVIOR CLASSIFICATION ACCURACY

Errors: ±1.5h sleep, +14% social, ±22% physical activities

Discussion and Conclusions

- Successfully monitors user activity with little to no user input
- Proves concept of a minimal interaction mobile health app
- Novel social activity measurement

- Mobile phone calorie expenditure estimating
- Improvements to conversation recognition
- Improvements to physical activity recognition

BeWell paper:

http://pac.cs.cornell.edu/pubs/PervasiveHealth BeWell.pdf