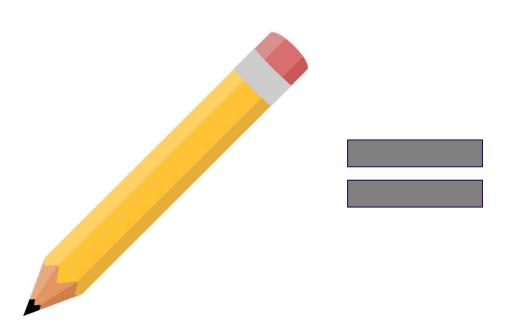
Ubiquitous and Mobile Computing CS 403x: Using Mobile Phones to Write in Air

Jay Baia, Kevin Martin, and Dalton Tapply


Computer Science Dept. Worcester Polytechnic Institute (WPI)

Introduction

 Use built-in accelerometer in modern mobile phones as an easy and ubiquitous way of capturing short

written information

Alternatives

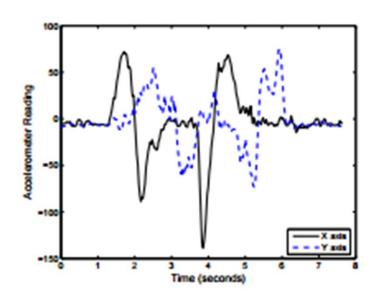
- Text to speech
 - They argue that it was difficult to process speech (2011)
- Physical Typing

Motivations

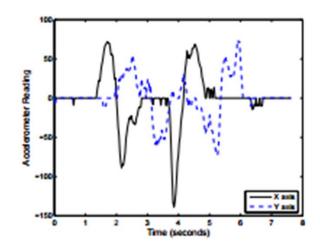
- Typing SMS is hard for a moderate section of society
- Studies show discomfort when typing
 - Small key sizes
 - Short inter-key spacing
 - Need for multi-tapping

- Explore the viability of using the mobile phone accelerometer to write in the air
- Characterize the nature of the challenges and propose a multi-phase approach to recognize alphabets and words
- Prototype the PhonePoint Pen (P3) on Nokia N95s, and test it with 10 student users and 5 hospital patients

Use Cases


- Make reminder at stoplight
- Walking
- Assistive Communications for Impaired Patients
- Equations and Sketching
 - Difficult to write equations with standard phone keyboard
- Emergency Operations and First Responders
 - Typing and talking on phone difficult when engaged in critical situations
- Creative Actions
 - Write "CNN" and TV changes channel to CNN

Challenges


- Lack of Power 2011
- Filtering out rotation without gyroscope 2011
- Unknown movements such as repositioning
- Noise in mobile phone accelerometers

- Filtering Rotation Force user to write without rotating phone
- Phone Displacements Users were asked to briefly pause between strokes while writing letters
- Accelerometer Noise refining it through simple numerical and signal processing algorithms

Methodology

- Alphabet character is distinguished as a series of Strokes
- Each stroke identified by getting correlation between ideal stroke and human stroke

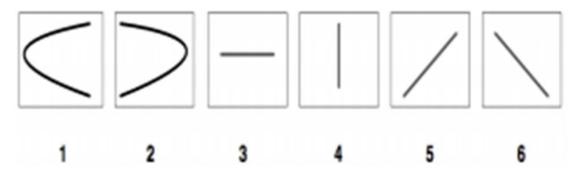
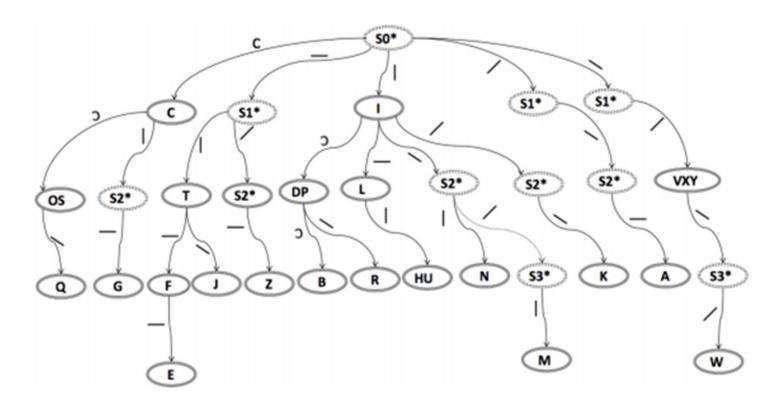



Figure 4: Basic strokes for English characters.



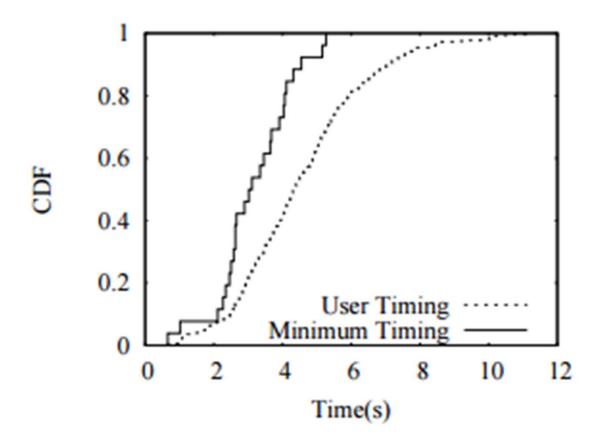
•English Characters identified using Stroke grammar in the form of a tree

Methodology Cont.

- Spelling Correction implemented to help identify words
 - Uses standard "edit distance" approach to identify words
 - Also accounts for commonly misinterpreted letters to increase word confidence
- Control Gestures
 - Inserting Space: horizontal movement, or two dots
 - Deleting Character: shake four times briskly
 - Send email: draw a checkmark

Implementation

- Used matlab libraries for processing accelerometer readings
- Prototyped code in Python for on-phone processing
- Users wrote with phone, output shown on screen

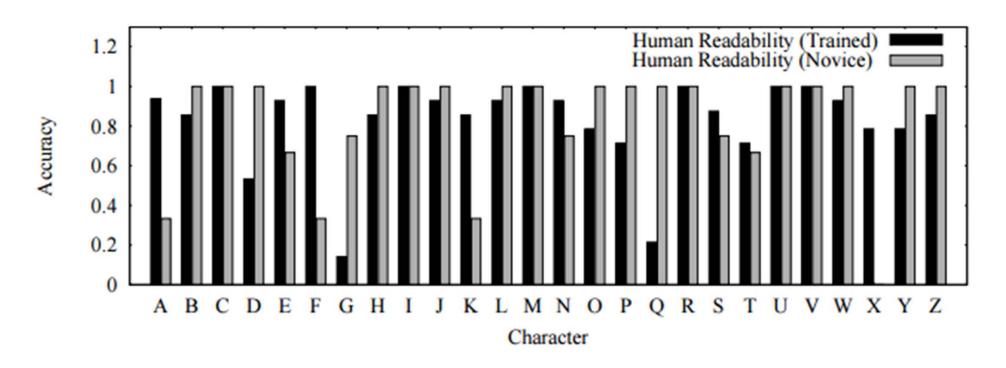

Metrics and Testing

- Evaluation Metrics centered around
 - Writing Speed
 - Character Recognition Accuracy
 - Human Readability Accuracy
- 10 students, 5 hospital patients

Results - Writing Speed

 Average character writing time is between 3.02 to 4.3 seconds

Results - Character Recognition Accuracy


 With 3-4 minute user practice, average character recognition of 91.9% and 78.2% for trained and novice

Results - Human Readability Accuracy

 Average readability is 83% and 85.4% for trained and novice writers respectively

Limitations

- Quicker writing
- Need to pause between strokes/chars
- Long words
- Drawing pictures
- Cursive handwriting
- Writing while moving
- Better testing population
 - Mostly tested on engineering students, who may have adapted to the tech
- Better Algorithms

Related Work

- uWave
 - Accelerometers
 - Gesture with mobile phones to authenticate, open/close apps, etc
 - 99% accuracy with 8 gestures and negligible training
- TinyMotion
 - Vision based
 - Uses built in camera to detect cell phone movement
- 'Write in air'
 - Vision based, Microsoft project
 - Cameras track an apple that is used to air-write alphabets

Related Work (cont.)

- SketchREAD
 - Stylus based sketch recognition
 - Electrical diagrams and family trees
- Electronic Cocktail Napkin
 - Stylus based sketch recognition
 - Sketching environment that could identify sketches
- Unistrokes
 - XEROX
 - Maps a special gesture alphabet to english
- Logitech Air Mouse
 - Mouse like functionality but held in air
- SmartPen and SmartQuill
 - Use any surface for writing

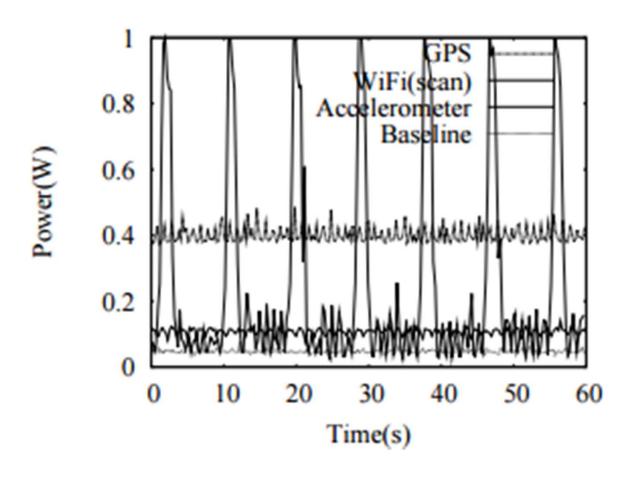
Conclusion

- Make use of accelerometer in mobile phones
- Goal was to use phone as a pen
- Negligible Practice
- Can run on phone's processor due to algorithm simplicity
- Message is displayed on screen and can be emailed
- Performance results and user feedback are positive

References

 Using mobile phones to write in air Sandip Agrawal, lonut Constandache, Shravan Gaonkar, Romit Roy Choudhury, Kevin Caves, and Frank DeRuyter, in Proc. MobiSys 2011

Word	Phone	Spell	P3-Aware	Human
Length	Pen	Correct	Spell Correct	Readable
2	17/20	19/20	20/20	11/20
3	18/20	19/20	19/20	12/20
4	13/20	18/20	19/20	10/20
5	13/20	16/20	17/20	14/20



Word Recognition

Table 3: Patient performance.

Patient ID	1	2	3	4	5
Accuracy	1/8	1/8	1/8	5/8	could not press button

