Ubiquitous and Mobile Computing CS 403x: *Mobile Phone Based Drunk Driving Detection*

Josh Hebert Anthony J. Ruffa Himanshu Sahay

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Introduction

12,407 ~32% \$51 Billion

<1% of drunk drivers are arrested each year

Why?

- Detection relies on visual observations
- Too much road, not enough patrol officers
- Drunk driving patterns are subjective

Motivation

How can we solve this?

Motivation

- Smartphones
 - Contain all necessary sensors
 - Self-contained
 - Highly portable

Motivation (cont.)

- Only simple sensors needed
 - E.g. accelerometer and orientation

 Communication and speakers good enough for alerting

Vision

- Mobile application
 - Reliable
 - Non-intrusive
 - Lightweight
 - Power Efficient
 - NO Additional hardware or service cost

Related Work

- Visual observation eyelid, gaze, head movement, facial expression
 - Safety hazard
- Saab AlcoKey
 - Compatibility compromised
- Experimental work

- Acceleration based detection algorithm
 - Accelerometer & orientation sensors

Methodology - Scientific Explanation

Fig. 3. (a) Acceleration readings in direction of x-, y-, and z-axis with regard to the body of the mobile phone. (b) The posture of mobile phone is decided by yaw (θ_x) , pitch (θ_y) and roll (θ_z) .

Methodology - Scientific Explanation (contd.)

- Lateral acceleration pattern matching
- Longitudinal acceleration pattern matching
- Multiple round pattern matching
- Historical information catch component

https://www.youtube.com/watch?v=pAkfccmIHt8

Methodology - Implementation

- In paper used Eclipse and Android 1.6 SDK
- 5 major components -
 - user interface, system configuration, monitoring daemon, data processing, alert notification
- Triggering condition 2 matching patterns

Methodology

- Assumptions
- Limitations
 - Limited data sets 72 sets for drunk driving, 22 sets for regular driving
 - Phone slide impacts result accuracy
 - April 2010 paper

Results

- Collected data based on drunk driving behaviors
 - Lane position maintenance
 - Speed control
 - Separate datasets for training and evaluation

Experimental performance test

	Abnormal Curvilinear Movements	Problems of Speed Control
FN Rate (%)	0	0
FP Rate (%)	0.49	2.39
FN Rate (%) (Phone Slides)	14.28	0
FP Rate (%) (Phone Slides)	1.09	2.72

Energy Efficiency

Discussion

- Some issues in design and implementation
 - GPS
 - Camera

Conclusions

- Low false detection rates
- Reasonable energy consumption
- Use all mobile sensors in the future

References

 Mobile Phone Based Drunk Driving Detection, J. Dai et al in PervasiveHealth 2010