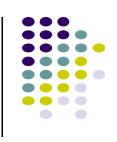
Ubiquitous and Mobile Computing CS 403x: A Survey of Mobile Phone Sensing

Michael French, Shadi Ramadan

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Sensors

- Gyroscope
- Compass
- Accelerometer
- Proximity Sensor
- Ambient Light Sensor
- Front and Back facing cameras
- Dual microphones
- GPS
- WiFi
- Bluetooth



Sensor Applications

- Sensors added to support the user interface
- Accelerometers determine phone orientation to reorient display
- Proximity and light sensor used to disable touch screen when phone is held to the face to speak
- Light sensors used to adjust screen brightness
- GPS for location-based apps such as local search or navigation
- Compass/Gyroscope provides additional location information such as direction and orientation

Sensor Applications

- Activity Recognition
 - Determine activities such as walking, running, or standing
- Hands free voice control
- Eye tracking

Predicted Sensors

- Barometer
- Thermometer
- Humidity
- Blood Pressure
- Heart Rate
- EEG
- Gas Sensors

Modern Sensors

- Barometer
- Hall Sensor
- Thermometer
- Humidity
- Pedometer
- Heart rate monitor
- Fingerprint Sensor
- Radiation Sensor

Sensor Applications

- Transportation
 - Fine grained traffic information
 - Accurate travel time estimation
- Social Networking
 - Determine events in people's lives
- Environmental Monitoring
 - Personalized environmental impact reports
- Health and Well Being
 - Track physical activity and personal health goals

App Store and Large Scale Research

- Easy app distribution
 - Facilitates reaching a large user base quickly
- Perform experiments and studies with participants all over instead in small laboratory controlled conditions

Sensing Scale

- Personal Sensing
 - Single individual, data collection and analysis
 - Usually private data
- Group Sensing
 - Sensing applications with a common goal or concern
 - Aggregate data protects individual
- Community Sensing
 - Large number of participators
 - Track spread of disease, traffic congestions patterns

Sensing Types

- Participatory Sensing
 - Active participation in the sensing process
- Opportunistic Sensing
 - Passively sense such as while in your pocket

Sensing Paradigms

- Opportunistic Sensing
 - Lowers burden placed on user
 - Relies on context sensing
 - Easier to have lots of users but hard to develop
- Participatory Sensing
 - Higher burden placed on user
 - Manual data collection
 - Solves context problem

Sensing Architecture

- Sense
 - Collect raw sensor data
- Learn
 - Information is extracted using machine learning and data mining techniques
 - On the phone or on the cloud
 - Need to consider privacy, real-time feedback
- •Inform, Share, and Persuasion

Sensing Architecture (Cont.)

- •Inform, Share, and Persuasion
 - Personal application only informs user
 - Group/Community sensing shares aggregate information obfuscating individual data
 - Main benefit is big data analysis from large user base

Mobile Phones as Sensors: Programmability

- Difficult to access sensors on most traditional phones
 - Phones which included sensors often didn't have APIs to access them.
- Smartphones offer SDKs, APIs, etc. for third-party programming
 - Smartphones tend have unreliable sensor output
 - Nokia Symbian returns accelerometer samples at a rate of 25-38 Hz depending on CPU load
- Different vendors have different APIs
 - Cross-platform support difficult
- Today, Android features function calls to directly access sensors (IOS does as well).

Mobile Phones as Sensors: Continuous Sensing

- Constant data collection, useful for healthcare
- Requires ability to run in the background
 - High resource consumption
 - Paper claims it detracts significantly from phone experience
 - Paper is hopeful hardware will improve enough to make continuous sensing viable
 - Jigsaw Continuous Sensing Engine, developed and tested on IPhone and Nokia N95, considered energy efficient and usable

Mobile Phones as Sensors: Phone Context

- Context of phone use changes rapidly
 - In hand? In pocket? Walking? Driving? Etc.
 - Context matters
 - Example: an application which requires voice input might work differently in a quiet space than in a loud one.
 - Training data and machine learning
 - •Supervised machine learning used to model human behaviour.
 - Output data is compared to an expected output when training
 - Data for sensing behaviour can come from any combination sensors on the phone
 - Microphone, accelerometer, GPS, etc.

Interpreting Sensor Data: Scaling Models

- No two human beings behave the same, and some human behaviours can overlap.
- Context models must be able to adapt to different users.
 - Active learning: phone periodically queries user and asks what they are doing
 - •Community Guided Learning: data from multiple phones in a given group is combined.
 - Used for modeling community behaviour

Closing the sensing loop

- •Once behaviours and data are inferred from sensors, what do you do with them?
- Sharing via social media and other media outlets
 - Build community awareness
- Personalization: adapt applications to user's behaviour and environment
 - Ads, voice recognition, etc.
- Persuasion: convince user to change behaviour
 - Example: "You have spent 4 hours sitting down, you should get some exercise."

Privacy

- The ability to sense user behaviour has obvious privacy implications.
- Doing computations on sensor data 100% locally improves privacy
- •Sending sensor data to a remote server for computations might be more powerful
- Second Hand Smoke problem when apps are designed to collect data from nearby phones
 - How can the privacy of third parties be effectively protected when other people wearing sensors are nearby?
 - How can mismatched privacy policies be managed when two different people are close enough to each other for their sensors to collect information from the other party?

Conclusion

- Lots of Sensors!
- Sensor access has come a long way
- Ability to do big data research
- Continuous sensing is possible, but consumes battery
- Context modeling is possible through machine learning and statistical models.

References

Android sensor access: http://developer.android.com/quide/topics/sensors/sensors overview.html

Apple sensor access: http://www.slideshare.net/thomasfankhauser/ios-sensors-15579340

Continuous sensing on smarphones: http://www.cs.dartmouth.edu/~campbell/papers/jigsaw.pdf

Face and Eye-tracking: http://www.computerworld.com/article/2495384/smartphones/inside-samsung-galaxy-s4-s-face-and-eye-

tracking-technology.html

Radiation Sensor: http://www.telegraph.co.uk/news/worldnews/asia/japan/9299526/Japan-unveils-first-new-mobile-phone-

with-inbuilt-radiation-detector.html