CS 403X Mobile and Ubiquitous
Computing
Lecture 10: Sensors

Emmanuel Agu

Android Sensors

What is a Sensor?

e Converts physical quantity (e.g. light, acceleration,

magnetic field) into a signal

e Example: accelerometer converts acceleration along X,Y,Z

axes into signal

Acceleration [m/s2]

20
15

10

.10 -

-15 -

Acceleration log plot

-20

0

T
5000

1 1 I 1 1 1 1
10 000 15 000 20000 25000 30000 35000 40000 45000
Time [ms]

So What?

e Raw sensor data can be processed into meaningful info

e Example: Raw accelerometer data can be processed/classified to
infer user’s activity (e.g. walking running, etc)

e Audio samples can be processed/classified to infer stress level in
speaker’s voice

Walking
Running
Jumping
Step count
. Calories burned
Falling

Machine learning
Feature extraction
and classification

Raw accelerometer
readings

Android Sensors

Microphone (sound)

O=ml B 316 A & & B A 080 0932

Ca m e ra AndroSensor Android Sensor Box

Temperature _ 1 -~
_ s c -.: L : Jle - . | _&./'I :'-:
Locatlo n (G PSI A_G PS) " : etw “ Accelerometer Ugrht Orientation

Accelerometer
Gyroscope (orientation) Ol : Q!

\ETIC_FIELD: (4.0mA)
. . uT
P rOXI m Ity Proximity Temperature Gyroscope

Sensor Sensor

Pressure
Light

Magnetic
Sensor

Different phones do not |
AndroSensor Android
have all sensor types!! Sensor Box

Android Sensor Framework

e Enables apps to:
Access sensors available on device and
Acquire raw sensor data

Specifically, using the Android Sensor Framework, you can:
Determine which sensors are available

Determine capabilities of individual sensors (e.g. max. range,
manufacturer, power requirements, resolution)

Register and unregister sensor event listeners
Acquire raw sensor data and define data rate

http://developer.android.com/guide/topics/sensors/sensors_overview.html

Android Sensor Framework

e Android sensors can be either hardware or software

e Hardware sensor:
physical components built into phone,
Measure specific environmental property. E.g. temperature

e Software sensor (or virtual sensor):
Not physical device
Derives their data from one or more hardware sensors

Example: gravity sensor

Accelerometer Sensor

e Acceleration is rate of change of velocity
e Accelerometers

e Measure change of speed in a direction
e Do not measure velocity

e Phone’s accelerometer measures
acceleration along its X,Y,Z axes

(XY
XX
eooso

Sensor Types Supported by Android o
e TYPE ACCELEROMETER
e Measures device acceleration along X,Y,Z axes including gravity in m/s?
e Common uses: motion detection (shake, tilt, etc)

e TYPE LINEAR ACCELEROMETER
e Measures device acceleration along X,Y,Z axes excluding gravity in m/s?
e Common uses: monitoring acceleration along single axis

e TYPE GRAVITY
f 1 -

e Measures gravity along X,Y,Z axes in m/s? e
e Common uses: motion detection (shake, tilt, etc) e

(Y X
Y
. | X XN
Sensor Types Supported by Android 0o
o
e TYPE ROTATION_VECTOR e TYPE GYROSCOPE
e Measures device’s orientation e Measures device’s rate of rotation
expressed as 3 rotation vectors around X,)Y,Z axes in rad/s
e Common uses: motion e Common uses: rotation detection
detection and rotation (spin, turn, etc)
A Y

S N

Euler angles — The xyz (fixed) system is shown in blue, &
the X¥'Z (rotated) system is shown in red. The line of nodes,
labeled N, iz shown in green.

Blue: Fixed reference axes
Red: Rotated axes

Sensor Types Supported by Android

e TYPE_AMBIENT_TEMPERATURE

e Measures ambient room temperature in degrees Celcius
e Common uses: monitoring room air temperatures

e TYPE_LIGHT

e Measures ambient light level (illumination) in lux
e Luxis SI measure of illuminance, measures luminous flux per unit area
e Common uses: controlling screen brightness

e TYPE_MAGNETIC_FIELD

e Measures magnetic field for X,Y,Z axes in uT
e Common uses: Creating a compass

Sensor Types Supported by Android

e TYPE_PRESSURE

e Measures ambient air pressure in hPa or mbar
e Force per unit area

e Common uses: monitoring air pressure changes

e TYPE_ORIENTATION

e Measures degrees of rotation about X,Y,Z axes
e Common uses: Determining device position

> ¢

> X

Sensor Types Supported by Android

e TYPE_PROXIMITY

e Measures an object’s proximity to device’s screen
e Common uses: determine whether handset is held to a person’s ear

e TYPE_RELATIVE HUMIDITY

e Measures relative ambient humidity in percent (%)
e Expresses % of max possible humidity currently present in air
e Common uses: monitoring dewpoint, absolute, and relative humidity

e TYPE_TEMPERATURE

e Measures temperature of phone (or device) in degrees Celsius.
e Replaced by TYPE_AMBIENT _TEMPERATURE in APl 14

e Common uses: monitoring temperatures

2 New Hardware Sensor in Android 4.4

TYPE_STEP_DETECTOR

e Triggers sensor event each time user takes a step

e Delivered event has value of 1.0 + timestamp of step

TYPE_STEP_COUNTER

e Also triggers a sensor event each time user takes a step

e Delivers total accumulated number of steps since this sensor was first
registered by an app,

e Tries to eliminate false positives

Common uses: Both used in step counting, pedometer apps
Requires hardware support, available in Nexus 5
Alternatively available through Google Fit (more later)

Sensor Programming

e Sensor framework is part of android.hardware

e Classes and interfaces include:
SensorManager
Sensor
SensorEvent
SensorEventListener

e These sensor-APls used for 2 main tasks:
Ildentifying sensors and sensor capabilities
Monitoring sensor events

000
0000
o000
Sensor Events and Callbacks 0o
®
e App sensors send events
asynchronously, when new data A 1
arrives i
Your App | SensorManager |
o General approach: Register Callback _
e App registers callbacks
e SensorManager notifies app of Sensor Event

sensor event whenever new data B Sensor Event
arrives (or accuracy changes)

Sensor Event

Sensor

e A class that can be used to create instance of a specific
sensor

e Has methods used to determine a sensor’s capabilities

o0
o [
® [
o
SensorEvent oo
e Android system provides information about a sensor event|as
a sensor event object ?
o . “ - \
e Sensor event object includes: ST E—

e Sensor: Type of sensor that Renidher Callback

generated the event
e Values: Raw sensor data Sensor Event
e Accuracy: Accuracy of the data | Sensor Event

e Timestamp: Event timestamp

Sensor Event

R T T T T

TYPE_ACCELEROCMETER

TYPE_GRAVITY

TYPE_GYROSCOPE

TYPE_GYROSCOPE_UNCALIBRATED

SensorEvent.values[@]

SensorEvent.values[1]

SensorEvent.values[2]

SensorEvent.values[@]

SensorEvent.values[1]

SensorEvent.values[2]

SensorEvent.values[8]

SensorEvent.values[1]

SensorEvent.values[2]

SensorEvent.values[@]

SensorEvent.values[1]

SensorEvent.values[2]

SensorEvent.values[3]

SensorEvent.values[4]

SensorEvent.values[5]

Acceleration force
along the x axis
(including gravity).
Acceleration force
along the y axis
(including gravity).
Acceleration force
along the z axis
(including gravity).
Force of gravity along
the x axis.

Force of gravity along
the y axis.

Force of gravity along
the z axis.

Rate of rotation around
the x axis.

Rate of rotation around
the y axis.

Rate of rotation around
the z axis.

Rate of rotation
(without drift
compensation) around
the x axis.

Rate of rotation
(without drift
compensation) around
the y axis.

Rate of rotation
(without drift
compensation) arcund
the z axis.

Estimated drift around
the x axis.

Estimated drift around
the y axis.

Estimated drift around
the z axis.

Sensor Values
Depend on
Sensor Type

Sensor Values Depend on Sensor Type
e [S e

TYPE_LINEAR_ACCELERATION SensorEvent.values[@] Acceleration force
along the x axis
(excluding gravity).

SensorEvent.values[1] Acceleration force
along the y axis
(excluding gravity).

SensorEvent.values[2] Acceleration force
along the z axis
(excluding gravity).

TYPE_ROTATION VECTOR SensorEvent.values[@] Rotation vector Unitless
component along the x
axis (x * sin(8/2)).

SensorEvent.values[1] Rotation vector
component along the y
axis (y * sin(8/2)).

SensorEvent.values[2] Rotation vector
component along the z
axis (z * sin(8/2)).

SensorEvent.values[3] Scalar component of
the rotation vector
((cos(8/2)).!

TYPE_SIGNIFICANT MOTION N/A N/A N/A

TYPE_STEP_COUNTER SensorEvent.values[@] Number of steps taken Steps
by the user since the
last reboot while the
sensor was activated.

TYPE_STEP_DETECTOR N/A N/A N/A

SensorEventListener

e Interface used to create 2 callbacks that receive
notifications (sensor events) when:

Sensor values change (onSensorChange()) or
When sensor accuracy changes (onAccuracyChanged())

000
000
(| X
o
SensorManager
e A class that provides methods for:
Accessing and listing sensors
Registering and unregistering sensor event listeners
e Can be used to create instance of sensor service
e Also provides sensor constants used to:
Report sensor accuracy $
L

Set data acquisition rates

Your App SensorManager

Register Callback

Calibrate sensors

Sensor API Tasks

Sensor API Task 1: Identifying sensors and their capabilities

Why identify sensor and their capabilities at runtime?
Disable app features using sensors not present, or
Choose sensor implementation with best performance

Sensor APl Task 2: Monitor sensor events
Why monitor sensor events?

To acquire raw sensor data

Sensor event occurs every time sensor detects change in parameters
it is measuring

Sensor Availability

e Different sensors are available on different Android versions

Android 4.0 Android 2.3 Android 2.2 Android 1.5
(API Level 14) (API Level 9) (API Level 8) (API Level 3)

TYPE_ACCELEROMETER

TYPE_AMBIENT_TEMPERATURE
TYPE_GRAVITY
TYPE_GYROSCOPE
TYPE_LIGHT
TYPE_LINEAR_ACCELERATION
TYPE_MAGNETIC_FIELD
TYPE_ORIENTATION
TYPE_PRESSURE
TYPE_PROXIMITY
TYPE_RELATIVE_HUMIDITY
TYPE_ROTATION_VECTOR

TYPE_TEMPERATURE

Yes
Yes
Yes
Yes
Yes
Yes
Yes?
Yes
Yes
Yes
Yes

Yes?

n/a
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
n/a
Yes

Yes

n/a
n/a
n/a’
Yes
n/a

Yes

Yes?

n/a’
Yes
n/a
n/a

Yes

n/a
n/a
n/a’
Yes
n/a

Yes
Yes
n/a’
Yes
n/a

n/a

Yes

Identifying Sensors and Sensor Capabilities

e First create instance of SensorManager by calling
getSystemService() and passing in SENSOR_SERVICE argument

private SensorManager mSensorManager;

mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

e Then list sensors available on device by calling getSensorList()

List<Sensor> deviceSensors = mSensorManager.getSensorList(Sensor.TYPE_ALL)]

/

e To list particular type, use|TYPE_GYROSCOPE, TYPE_GRAVITY, etc

http://developer.android.com/guide/topics/sensors/sensors_overview.html

Determing if Device has at least one of
particular Sensor Type

e Device may have multiple sensors of a particular type.

e E.g. multiple magnetometers

e If multiple sensors of a given type exist, one of them must be
designated “the default sensor” of that type

e To determine if specific sensor type exists use getDefaultSensor()

e Example: To check whether device has a netometer

private SensorManager mSensorManager;

mSensorManager = (SensorManager) ystemService(Context.SENSOR_SERVICE);
if (mSensorManager.getDefaultSensor(Sensor.TYPE MAGNETIC FIELD) !'= null){
// Success! There's a magnetometer.
}
else {
// Failure! No magnhetometer.

}

Determining Capabilities of Sensors

e Some useful methods of Sensor class methods:
getResolution(): get sensor’s resolution
getMaximumRange(): get maximum measurement range
getPower(): get sensor’s power requirements

getMinDelay(): min time interval (in microseconds) sensor
can use to sense data. Return values:

0 value: Non-streaming sensor, reports data only if sensed parameters
change

Non-zero value: streaming sensor

Monitoring Sensor Events

e To monitor raw sensor data, 2 callback methods exposed
through SensorEventListener interface need to be implemented:

e onSensorChanged:
Invoked by Android system to report new sensor value

Provides SensorEvent object containing information about
new sensor data
New sensor data includes:

Accuracy: Accuracy of data

Sensor: Sensor that generated the data

Timestamp: Times when data was generated

Data: New data that sensor recorded

Monitoring Sensor Events

onAccuracyChanged:
invoked when accuracy of sensor being monitored changes

Provides reference to sensor object that changed and the new
accuracy of the sensor

Accuracy represented as status constants
SENSOR_STATUS_ACCURACY_LOW,
SENSOR_STATUS_ACCURACY_MEDIUM,

SENSOR_STATUS_ACCURACY_HIGH,
SENSOR_STATUS_UNRELIABLE

Example: Monitoring Light Sensor Data

e Goal: Monitor light sensor data using onSensorChanged(),
display it in a TextView defined in main.xml

public class SensorActivity extends Activity implements SensorEventlListener {
private SensorManager mSensorManager;

private Sensor mLight;

@Override
public final void onCreate(Bundle savedInstanceState) { O e o Of
super.onCreate(savedInstanceState); Sensor manager

setContentView(R.layout.main);

mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
mLight = mSensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);

) \ Get default

Light sensor
@Override

public final void onAccuracyChanged(Sensor sensor, int accuracy) {

// Do something here if sensor accuracy changes.

Example: Monitoring Light Sensor Data
(Contd)

@Override
public final void onSensorChanged(SensorEvent event) {
// The light sensor returns a single value.
// Many sensors return 3 values, one for each axis.
float lux = event.values[@]; €

// Do something with this sensor value.

Get new light
sensor value

Register sensor when

@0verride app becomes visible

protected void onResume() {
super.onResume();
mSensorManager.registerListener(this, mLight, SensorManager.SENSOR_DELAY NORMAL);

@Override

protected void onPause() { _ _
Unregister sensor if app

IS no longer visible to
reduce battery drain

super.onPause(); <€
mSensorManager.unregisterListener(this);

Handling Different Sensor Configurations

e Different phones have different sensors built in

e E.g. Motorola Xoom has pressure sensor, Samsung Nexus S
doesn’t

e |f app uses a specific sensor, how to ensure this sensor exists
on target device? Two options

Option 1: Detect device sensors at runtime, enable/disable app
features as appropriate

Option 2: Use Google Play filters so only devices possessing
required sensor can download app

Option 1: Detecting Sensors at Runtime

e Following code checks if device has a pressure sensor

private SensorManager mSensorManager;

mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
if (mSensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE) != null){
// Success! There's a pressure sensor.

}

else {

// Failure! No pressure sensor.

}

Option 2: Use Google Play Filters to Target
Specific Sensor Configurations

e Can use <uses-feature> element in AndroidManifest.xml to filter
your app from devices without required sensors

e Example: following manifest entry ensures that only devices with
accelerometers will see this app on Google Play

<uses-feature android:name="android.hardware.sensor.accelerometer™
android:required="true" />

e Can list accelerometers, barometers, compass (geomagnetic field),
gyroscope, light and proximity using this approach

Example Step Counter App

e Goal: Track user’s steps, display it in TextView

e Note: Phone hardware must support step counting

package com.starboardland.pedometer;

import android.app.Activity; I8 CounterActivity
import android.content.Context;
import android.hardware.*;
import android.os.Bundle;
import android.widget.TextView;

import android.widget.Toast;

public class CounterActivity extends Activity implements SensorEventListener { Step count since reboot

154.0

private SensorManager sensorManager;
private TextView count;
boolean activityRunning;

@0override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);
count = (TextView) findViewById(R.id.count);

sensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Example Step Counter App (Contd)

@Override
protected void onResume() {
super.onResume();
activityRunning = true;
Sensor countSensor = sensorManager.getDefaultSensor(Sensor.TYPE_STEP_COUNTER);
if (countSensor != null) {
sensorManager.registerListener(this, countSensor, SensorManager.SENSOR_DELAY UI);
} else {
Toast.makeText(this, "Count sensor not available!", Toast.LENGTH_LONG).show();

@Override
protected void onPause() {
super.onPause();
activityRunning = false;
// if you unregister the last listener, the hardware will stop detecting step events
// sensorManager.unregisterListener(this);

https://itheelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Example Step Counter App (Contd)

@Override
public void onSensorChanged(SensorEvent event) {
if (activityRunning) {
count.setText(String.valueOf(event.values[@]));

@Override

public void onAccuracyChanged(Sensor sensor, int accuracy) {

}

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Best Practices for Sensor Usage

1. Unregister sensor listeners: when done using sensor or
when app is paused

Otherwise sensor continues to acquire data, draining
battery

2. Don’t test sensor code on emulator

Must test sensor code on physical device, emulator
doesn’t support sensors

Best Practices for Sensor Usage (Contd)

3. Don’t block onSensorChange() method:
Android system may call onsensorChanged() often
So... don’t block it

Perform any heavy processing (filtering, reduction of sensor
data) outside onSensorChanged() method

4. Avoid using deprecated methods or sensor types:

TYPE_TEMPERATURE sensor type deprecated, use
TYPE_AMBIENT _TEMPERATURE sensor type instead

Best Practices for Sensor Usage (Contd)

5. Verify sensors before you use them:

Don’t assume sensor exists on device, check first before trying
to acquire data from it

6. Choose sensor delays carefully:
Sensor data rates can be very high
Choose delivery rate that is suitable for your app or use case

Choosing a rate that is too high sends extra data, wastes
system resources and battery power

References

e Android Sensors Overview, http://developer.android.com/

guide/topics/sensors/sensors_overview.html
e Busy Coder’s guide to Android version 6.3
e CS 65/165 slides, Dartmouth College, Spring 2014
e CS 371M slides, U of Texas Austin, Spring 2014

