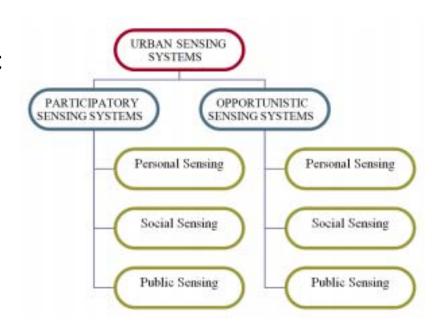
Ubiquitous and Mobile Computing CS 403x: Mobile Phone Sensing Systems: A Survey

Penelope Over, Steven Malis, Christina Aiello

Computer Science Dept. Worcester Polytechnic Institute (WPI)


"The mobile phone is well on its way to becoming a personal sensing platform in addition to a communication device."

(Khan et al. 402)

- "The collection and study of all the mobile phone sensing systems and applications, highlighting the existing work done so far in this field of research" (Khan et al. 403)
- Created categories:
 - Participatory vs. Opportunistic
 - Personal, Social, and Public

Personal Sensing

- Personal monitoring
- Focusing on user's daily life (Khan et al. 404)

Personal Participatory Sensing

- NeuroPhone
 - Neural signals to control mobile phones
 - Hands-free and silent
 - "Using cheap off-the-shelf wireless electroencephalography (EEG) headsets" (Khan et al. 404)


Test subject using NeuroPhone (Campbell et al. 4)

- - Brain-controlled address book dialing app
 - Flashes sequence of photos of contacts

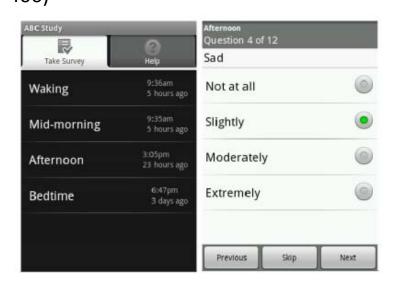
NeuroPhone

- A P300 brain potential is elicited when flashed photo matches person the user wants to call, and phone number is dialed (Khan et al. 404)
- Tested in various scenarios (sitting and walking)
- Laptop relays data through Wifi to phone
- "Initial results are promising for a limited set of scenarios and many challenges remain unsolved" (Khan et al. 404)

P300? What's that?

- "When somebody concentrates on a task-specific stimulus among a pool of stimuli, the task-related stimulus will elicit a positive peak with a latency of about 300ms from the stimulus onset in subject's EEG signal. This positive peak is known as the P300 signal in neuroscience literature." (Campbell et al. 4)
 - Brain wave elicited in decision-making process
 - Found in central-parietal region of brain

Other Examples of Personal Participatory Sensing

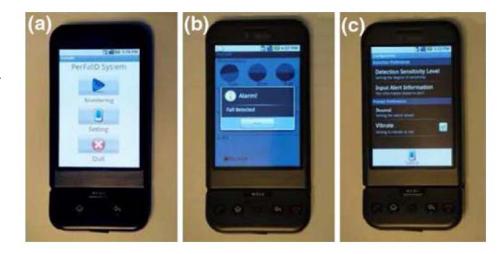


AndWellness

- "Personal data collection system" (Khan et al. 405)
- Active user-triggered experiences and surveys
- Passive recording using sensors

UbiFit Garden

"Uses technologies like small inexpensive sensors, real-time statistical modeling, and a personal, mobile display to encourage regular physical activity" (Khan et al. 406)



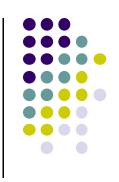
- PerFalld
 - How It Works
 - Detects if someone falls using sensor
 - Starts a timer if it detects that someone fell
 - If individual does not stop timer before it ends, emergency contacts are called (Khan et al. 416)

User interfaces in PerFallD: (a) bright, large virtual buttons on operating screen (b) clear alert window (c) simple, non-confusing preference screen

Comments

- "PerFalld achieves strong detection performance and power efficiency"
- "PerFalld outperforms existing algorithms, and achieves better balance between false negative and false positive when compared with the commercial product" (Khan et al. 417)

Other Example of Personal Opportunistic Sensing



- HeartToGo
 - "Cell phone-based personalized medicine technology for cardiovascular disease" (Khan et al. 417)
 - Monitors user and generates reports
 - "Uses state-of-the-art wireless ECG and heart monitor"
 - Light-weight, low-power wearable 2-lead ECG sensing device capable of recording 300
 8-bit samples per second
 - Uses Bluetooth to transmit data (Cheng, 1)

Early prototype for HeartToGo (Cheng, 1).

- Sensing information is shared within social groups
- Collect and share user's information with friends on social networks

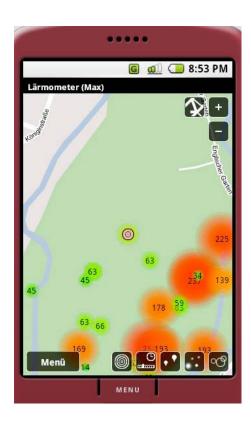
Social Participatory Sensing Example #1

- CenceMe
 - Connects to Facebook, MySpace, Skype, Pidgin
 - Users status in terms of
 - activity
 - disposition
 - habits
 - Surroundings

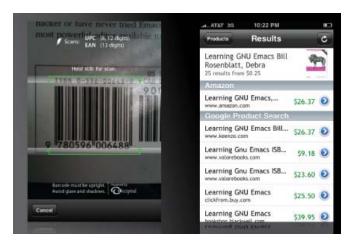
Social Participatory Sensing Example #2

- MoVi
 - Video Highlights app for mobile phones
 - Organizes video by social importance
 - Scans app from phones on the network and
 - Selects the most interesting event
 - The best video for that event then
 - A clip from that video that summarizes the event well

Social Opportunistic Sensing


- WhozThat
 - Finds music about nearby people from their social networking accounts on their phones
- OLS: Opportunistic Localization system
 - Find any phones near you to find your location in a building

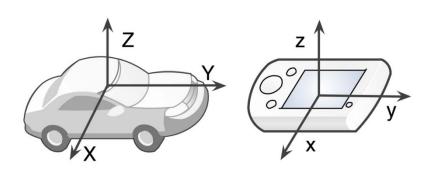
- Data is shared with everyone for public good
- Traffic
- Environmental
 - Noise levels
 - Air pollution



- LiveCompare
 - User-created database of UPCs and prices
 - GPS and cell tower info used to find nearby stores
- PetrolWatch
 - Turns phone into fully automated dash-cam
 - Uses GPS to know when gas station is near

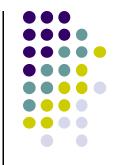
Public Participatory Sensing

- Citizen Journalist
 - Asks people location and event based questions
 - Fast response time necessary
- Party Thermometer
 - Asks you questions about parties
 - Detects parties through GPS and microphone



Public Opportunistic Sensing

- Road Bump Monitor
 - Combines GPS and accelerometer
- Nericell
 - Adds microphone listening to detect "chaos"
 - Data used for benefit of public works, traffic police



References

- Khan, Wazir Zada; Xiang, Yang; Aalsalem, Mohammed; Arshad, Quratulain. "Mobile Phone Sensing Systems: A Survey." IEEE Communications Surveys and Tutorials Vol 15 (2013).
 http://ieeexplore.ieee.org.ezproxy.wpi.edu/stamp/stamp.jsp?tp=&arnumber=6177188&tag=1
- Campbell, Andrew; Choudhury, Tanzeem; Hu, Shaohan; Lu, Hong; Mukerjee, Matthew K.; Rabbi, Mashfiqui; Raizada, Rajeev D.S. "NeuroPhone: brain-mobile phone interface using a wireless EEG headset." *Proceedings of the second ACM SIGCOMM workshop on Networking, systems, and applications on mobile handhelds (MobiHeld '10)*. ACM, New York, NY, USA, 3-8. DOI=10.1145/1851322.1851326 http://doi.acm.org/10.1145/1851322.1851326>
- Cheng, Allen C. "HeartToGo: A Smartphone-based Mobile Platform for Continuous and Real-Time Cardiovascular Disease Monitoring." University of Pittsburg (2009). http://research.microsoft.com/en-us/events/ersymposium2009/hearttogo-mobile platform.pdf>
- P. Mohan, V. N. Padmanabhan, and R. Ramjee, "Trafficsense: Rich monitoring of road and traffic conditions using mobile smartphones," Tech. Rep. no. MSR-TR-2008-59, April 2008.
- M. Bilandzic, M. Banholzer, D. Peev, V. Georgiev, F. Balagtas-Fernandez, and A. De Luca, "Laermometer: a mobile noise mapping application," in Proceedings of the 5th Nordic conference on Human-computer interaction: building bridges, ser. NordiCHI '08. New York, NY, USA: ACM, 2008, pp. 415–418. [Online]. Available: http://doi.acm.org/10.1145/1463160.1463208>
- Dong, Yi Fei, et al. "Automatic image capturing and processing for petrolwatch." *Networks (ICON), 2011 17th IEEE International Conference on.* IEEE, 2011.
- T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and A. Sharma, "Prism: platform for remote sensing using smartphones," in Proceedings of the 8th international conference on Mobile systems, applications, and services, ser. MobiSys '10. New York, NY, USA: ACM, 2010, pp. 63–76. [Online]. Available: http://doi.acm.org/10.1145/1814433.1814442
- P. Mohan, V. N. Padmanabhan, and R. Ramjee, "Nericell: rich monitoring of road and traffic conditions using mobile smartphones," in Proceedings of the 6th ACM conference on Embedded network sensor systems, ser. SenSys '08. New York, NY, USA: ACM, 2008, pp. 323–336. [Online]. Available: http://doi.acm.org/10.1145/1460412.1460444

Questions? Comments? Concerns?

(Anyone get ideas for their projects for this class?)