# Ubiquitous and Mobile Computing CS 403x: CrowdSense@Place

Yo Karita Steven Ireland Johnny Hernandez



Computer Science Dept. Worcester Polytechnic Institute (WPI)

#### **Motivation**



- Location sensors: Most successful and widely used sensor in mobile computing
  - Local Search
  - Point-Of-Interest services
  - Navigation
  - Geo-tagging
- Location data and "Place"
  - Giving context to location
  - Link locations with categories or actions
- Location and Context based apps
- Activity recognition

## CrowdSense@Place

- Framework for categorizing locations
- Uses opportunistically collected data
  - Phone calls, check email, browse the web, etc
  - Analyze image and audio data to infer hints
    - Image data: Written text, objects
    - Audio data: Spoken words
  - Places are categorized using most dominant topic

## CrowdSense@Place



- Existing Approaches
  - Point-Of-Interest databases
  - Location based community-generated content
- Problems
  - GPS Inaccuracy
- Solve this by relying on other sensors

## **Related App**

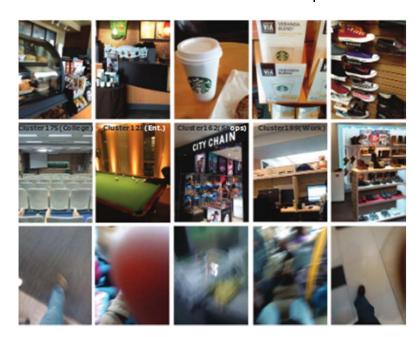


- Application improves point-of-interest search recommendation
- Both use audio data from microphone
- VibN requires users to analyze audio clips
- Techniques in CSP could be applied in VibN's manual stages

#### **Sensors Used**

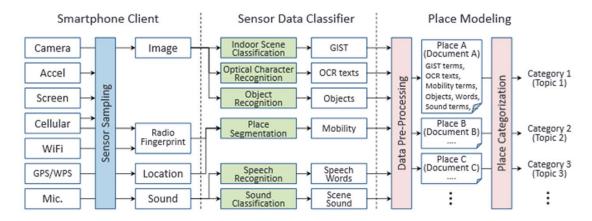


- Opportunistic Sensing
  - Camera
    - Takes pictures of the area
  - Microphone
    - Records conversations/sounds in the area
- Identifying "Places"
  - WiFi
    - Uses radio fingerprinting of nearby access points
  - GPS
    - Location tied when encountering a place for the first time



## Methodology

- Smartphone Client
  - Background process
  - Privacy configuration
- Server Side Classification
  - Object recognition
  - Indoor scene classifier
  - OCR
  - Speech recognition
  - Sound event classifier



## **Privacy**

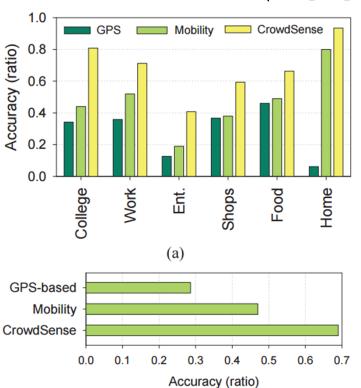


- Users have rights to control sensitivities
- All data stays in the smartphone for 24 hours
- Remove all data collected for previous 1, 6, or 24 hours
- Pause data collecting
  - For upcoming time interval
  - Location based

#### Results

- Outperforms GPS and Mobility by 40% and 22%
- 69% Overall Accuracy
- Better at distinguishing college and workplace than Mobility alone
- Food and Shopping locations have good OCR detection





## **Accuracy**

- Hard time differentiating between entertainment and food
- Some locations have more than one category

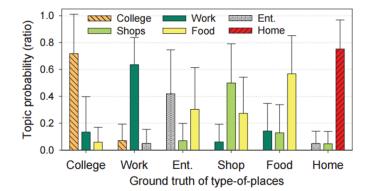


Figure 4. Mobility pattern of several categories

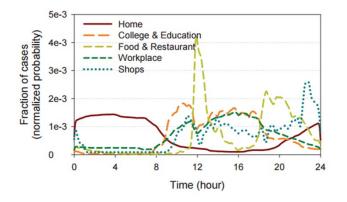
Mobility-based Method

| Result<br>Label | Col. | Work | Ent. | Shops | Food | Home | Oth. |
|-----------------|------|------|------|-------|------|------|------|
| College         | 0.44 | 0.30 | 0.01 | 0.04  | 0.04 | 0.04 | 0.12 |
| Work            | 0.33 | 0.52 | 0.01 | 0.03  | 0.07 | 0.01 | 0.03 |
| Ent.            | 0.07 | 0.07 | 0.19 | 0.15  | 0.11 | 0.19 | 0.22 |
| Shops           | 0.00 | 0.06 | 0.13 | 0.38  | 0.06 | 0.06 | 0.31 |
| Food            | 0.10 | 0.04 | 0.02 | 0.08  | 0.49 | 0.05 | 0.20 |
| Home            | 0.00 | 0.00 | 0.00 | 0.09  | 0.00 | 0.80 | 0.11 |
| Others          | 0.06 | 0.14 | 0.17 | 0.14  | 0.04 | 0.16 | 0.30 |

CrowdSense@Place

| Result<br>Label | Col. | Work | Ent. | Shops | Food | Home | Oth. |
|-----------------|------|------|------|-------|------|------|------|
| College         | 0.80 | 0.10 | 0.01 | 0.01  | 0.03 | 0.00 | 0.04 |
| Work            | 0.05 | 0.71 | 0.03 | 0.01  | 0.02 | 0.01 | 0.03 |
| Ent.            | 0.04 | 0.04 | 0.41 | 0.04  | 0.33 | 0.00 | 0.15 |
| Shops           | 0.00 | 0.03 | 0.00 | 0.59  | 0.28 | 0.00 | 0.09 |
| Food            | 0.02 | 0.11 | 0.05 | 0.09  | 0.66 | 0.00 | 0.06 |
| Home            | 0.00 | 0.00 | 0.04 | 0.02  | 0.00 | 0.93 | 0.00 |
| Others          | 0.05 | 0.09 | 0.09 | 0.20  | 0.12 | 0.10 | 0.36 |

Table 3. Confusion matrices of place categories for *Mobility* and CrowdSense@Place.





#### **Classifier Effectiveness**



- GIST and OCR had the strongest discriminative value
- Object detection only effective outside
- Speech recognition and sound classification have weak discriminative power

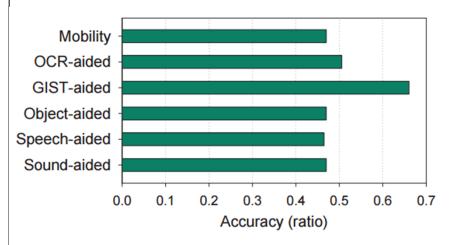


Figure 6. Accuracy of different classifiers used by isolation.

#### **Limitations and Future Work**



- Finer grain categorization can occur with specific place hints
- Better privacy protection
- Better suited to incrementally learning information over long time scales

#### **Potential Uses**



- Enhanced recommendation services
- Crowdsourced point category maps
- Category to category behavior patterns



## Questions?