Ubiquitous and Mobile Computing CS 403x: Visage

Ross Foley, Chris Hanna, Dan True

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

What is Visage?

- Real-time Face Interpretation Engine
- Input to Apps
 - 3D Head Poses
 - Mood Interpretation

Motivation

- Front-Facing Camera Enables New Possibilities
- Search for New Solution for Onboard Facial Recognition
 - Resource Aware
 - Mobile Camera

Vision

- Onboard System
 - Without need for backend server
- Resource-limited Mobile Devices

- Makes use of head pose inference
- Provide user with navigation on-the-go

- Senses users' expressions
- Visualized summaries while users are interacting with specific applications

Related Work

- Sense Cam
- MoVi
- Recognizer
- PEYE

Methodology

- Preprocessing Stage
- Tracking Stage
- Inference Stage

Methodology

- Preprocessing Stage
- Tracking Stage
- Inference Stage

Preprocessing Stage

Phone Posture Component

- Raw data from sensors
- Estimates direction of gravity

http://archive.gogadgetnews.com/wp-content/uploads/2010/07/iphone4-now-available-t-mobile-0.jpg

Preprocessing Stage

Face Detection with Tilt Compensation

- Locates face
- Normalizes the face angle

http://eclecti.cc/files/2008/03/face.jpg

Preprocessing Stage

Adaptive Exposure Component

Methodology

- Preprocessing Stage
- Tracking Stage
- Inference Stage

Tracking Stage

Feature Point Tracking

- Searches for Facial Feature Points
 - Looks for lips and eyes
 - Multiple frames of video required
 - Uses spatial relationships for further calculation

http://www.mymakeupshow.com/wp-content/uploads/2013/10/perfect365-adjust-key-points.jpg

Tracking Stage

Pose Estimation

- Estimates 3D pose of head
- Models head as cylinder
- Compensates for error

Tracking Stage

Pose Estimation

Methodology

- Preprocessing Stage
- Tracking Stage
- Inference Stage

Inference Stage

Active Appearance Model

- Machine Learning Algorithm
- Generates Triangular
 Mesh over Image

Inference Stage Expression Classification

- Support Vector
 Machine Classifier
 - Angry, Disgust, Fear Happy, Neutral, Sad Suprise

- Pose Estimation
- Expression Estimation
- Computation Expenses

Pose Estimation

- Head in constant position
- Phone rotated

Pose Estimation

- Head rotated
- Phone constant

Expression Estimation

- 5 Volunteers make facial expressions
- Visage categorized resulting expressions

Expressions	Anger	Disgust	Fear	Нарру	Neutral	Sadness	Surprise
Accuracy(%)	82.16	79.68	83.57	90.30	89.93	73.24	87.52

Overall accuracy = 83.78%

Results *Expression Estimation*

Expression	s Anger	Disgust	Fear	Happy	Neutral	Sadness	Surprise
Anger	93.33	6.67	0	0	0	0	0
Disgust	6.90	75.86	17.24	0	0	0	0
Fear	0	7.41	92.54	0	0	0	3.23
Happy	0	0	0	87.10	6.45	3.23	0
Neutral	0	0	0	0	90.00	10.00	0
Sadness	0	6.45	9.68	3.23	9.68	70.97	0
Surprise	0	0	3.33	3.33	0	0	93.33

Computation Estimation

Tasks	Avg. CPU usage	Avg. memory usage
GUI only	< 1%	3.18MB
Pose estimation	58%	$6.07 \mathrm{MB}$
Expression inference	29%	4.57MB
Pose estimation		
& expression inference	68%	$6.28 \mathrm{MB}$

Conclusions

- Succeeded in creating an onboard facial recognition platform
 - Comparable to traditional cloud-based image analysis systems
- Could be Useful?

Questions?

References

 The Visage Face Interpretation Engine for Mobile Phone Applications Xiaochao Yang, Chuang-Wen You, Andrew Campbell, in Proc MobiCase 2012

Insert your Title here

• Insert your stuff here

