Ubiquitous and Mobile Computing CS 403x: *Mobile Phone Based Drunk Driving Detection*

Rafael Angelo

Daniel Benson

Andrew Han

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

- Drunk driving accounted for 32% of fatalities in 2007 and 2008
- The cost of drunk driving incidents totaled more than \$51 billion in 2008
- Officer patrols are insufficient to stop drunk driving
- Hard to notice cars exhibiting drunk driving behaviors
- Need a way to recognize drunk driving as soon as possible

- Use mobile phones for drunk driving detection
 - 120 million copies sold in 2008
 - Highly portable and equipped with the necessary sensors
- Using a drunk driving algorithm, extract the necessary information in real time using accelerometer data
- Reliable, lightweight, non-intrusive, and power-efficient system

- This research is the first of its kind involving a mobile phone in drunk driving detection
- Technology has been used to attempt to recognize fatigue in drivers and promote alertness
 - Uses eye-gaze monitors, pupil detectors, and head movement trackers
- Proposed driver information system using GPS and specific sensors to monitor the acceleration of the car
 - Not yet reached the stage of implementation
 - System is very specific and not conveniently compatible

- This research is the first of its kind using a mobile phone.
- It is non-intrusive and requires no extra work from the user
- Utilizes sensors that come standard to nearly every smartphone
- Requires no additional hardware within the car or service
- Conducted real driving tests with the system to increase accuracy and prove legitimacy of detection system

- Uses accelerometer data to detect cues of drunk driving
 - Lane position maintenance problems: 50.75%
 - Speed control problems: 45.70%
 - Judgement and vigilance problems: 40.00%.
- Combining cues increases probability of drunk driving detection
 - i.e. weaving plus swerving increases probability to 65%
- Researchers focus on lane position maintenance and speed control problems

System Design

- Lateral Acceleration
 - Abnormal curvilinear movements
- Longitudinal Acceleration
 - Abrupt acceleration and deceleration
 - Erratic braking and jerky stops

Fig. 1. Problems in maintaining the lane position: (a) weaving, (b) drifting, (c) swerving, (d) turning with a wide radius [5].

System Implementation

- Monitoring Daemon Module
- Calibration Module
- Data Processing and Pattern Matching Module
- Alert Module

Fig. 2. Working procedure of the drunk driving detection system. The components in the dashed box show the data processing and pattern matching part, reflecting the algorithm design.

- Tested situations both where phone was stationary inside car and was allowed to slide around
- Detection algorithm performs fairly well
- Phone sliding increases false negative rate for abnormal curvilinear movements significantly

	Abnormal Curvilinear Movements	Problems of Speed Control
FN Rate (%)	0	0
FP Rate (%)	0.49	2.39
FN Rate (%) (Phone Slides)	14.28	0
FP Rate (%) (Phone Slides)	1.09	2.72

- Ran phone with and without monitoring daemon on for 7 hours
- Phone running with detection system continuously will last for roughly 34 hours

Conclusion

- Effective drunk driving detection using mobile phones
- Reasonable energy consumption
- Actively identifies drunk driving behavior
- Future considerations
 - Improve the accuracy of detection
 - Integrate additional sensors such as GPS and camera to collect more data

References

- U.S. NHTSA, "Traffic Safety", http://www-nrd.nhtsa.dot.gov/Pubs/811172.pdf
- U.S. CDC, "Mobile Vehicle Safety-Impaired Driving", http://www.cdc. gov/MotorVehicleSafety/Impaired Driving/impaired-drv factsheet.html
- M. H. Lee, M. J. Mello and S. Reinert, "Emergency Department Charges for Evaluating Minimally Injured Alcohol-Impaired Drivers", in Annals of Emergency Medicine, Vol. 54, No. 4, pp. 593-599, Oct. 2009.
- U.S. NHTSA, "The Visual Detection of DWI Motorists", http://www.nhtsa.dot.gov/people/injury/alcohol/dwi/dwihtml/index.htm
- V. D. Lecce and M. Calabrese, "Experimental System to Support RealTime Driving Pattern Recognition", in Advanced Intelligent Computing Theories and Applications With Aspects of Artificial Intelligence Annals of Emergency Medicine, pp. 1192-1199, 2008.