CS 403X Mobile and Ubiquitous
Computing

Lecture 6: Maps, Sensors, Widget Catalog
and Presentations

Emmanuel Agu

Using Maps

Introducing MapView and Map Activity

e MapView: Ul widget that displays maps

{:éi} 5] =]

2 % /B 2040

Tsl RunTracker

e MapActivity: java class (extends Activity),

for displaying maps, handles map-related \
lifecycle %, ¢

S
3a? @'

19

%
;
H
ERoESES e o =38 Avondale [}
(5) Manta Decatur gyca™
z
=z =
. 55 3
e Overlay: java class used to annotate map, {5 ¢
= @
pNe @
use a canvas to draw unto map layers
’\'\5\\‘23%\ wal
ch\‘iéoql{\
) Hilldale O _ %%%
s :
E Dougherty St Win 0 E 100’
3 &
W A @ &
2 Winnona Park # 3 \3\“"
é Inman Dr +
€ Davis St B o0 %2

Google Kirk Rd

Introducing MapView and Map Activity

e MapController: enables map control,
setting center location and zoom levels

e MylocationOverlay: Display current
location and device orientation

e ItemizedOverlays and Overlayltems:
used to create markers on map

FOR &b

Tgl RunTracker

1S 4y

4, Decatur Cemetery

Commerce pr %

£ Ponce De Leon AV

) Manta Decatur
= -5
£ 3 C
=
pNe @
co\\?.%
155)
(;J Hilldale Dr
&
E Dougherty St yon 2 é
(73 =
o 3
w 4 (]
:9: Winnona Park # 3
(3
» Inman Dr
Bugs, %
E Davis St Ra

Google Kirk Rd

Nature Preserve *

2 % B 20:40

Steps for using Google Maps Android API v2

1. Install Android SDK (Done already!)

2. Download and configure Google Play services SDK, which
includes Google Maps API

3. Obtain an API key

4. Add required settings (permissions, etc) to Android Manifest
5. Add a map to app

6. Publish your app (optional)

Ref: https://developers.google.com/maps/documentation/android/
start#getting_the _google _maps_android_api_v2

Step 2: Install & Configure Google Play
Services SDK

e Google Maps API v2 is part of Google Services SDK

e Main steps to set up Google Play Services

Install Google Play services SDK
Add Google Play services as an Android library project
Reference the Google Play services in your app’s project

See:

Step 3: Get Google Maps API key E:'

e To access Google Maps servers using Maps APIl, must add Maps
APl key to app

e Maps APl key is free

e Background: Before they can be installed, android apps must
be signed with digital certificate (developer holds private key)

e Digital certificates uniquely identify an app, used in tracking:
e Apps within Google Play Store and

e App’s use of resources such as Google Map servers

e Android apps often use self-signed certificates, not authority

e See: http://developer.android.com/tools/publishing/app-signing.htmi

Step 3: Get Google Maps API key (Contd) oo

e To obtain a Maps APl key, app developer provides:

App’s signing certificate + its package name

e Certificate/package pairs => Maps API keys

e Steps to obtain a Maps API requires following steps

Retrieve information about app’s certificate

Register a project in Google APIs console and add the Maps
APl as a service for the project

Request one or more keys

Add key to app and begin development

See: https://developers.google.com/maps/documentation/android/start

Step 3: Get Google Maps API key (Contd)

e If successful, 40-character API key generated, for example

AIzaSyBdV1-cTICSwWYKrZ95SuvNw7dbMuDt1KGo

e Add this APl key to app in order to use Maps API
e Include API key in AndroidManifest.xml

e To modify AndroidManifest.xml, add following between
<application> ... </application>

<meta-data
android:name="com.google.android.maps.v2.API KEY"
android:value="API KEY"/>

\ Insert Maps API key here

Makes API key visible to any MapFragment in app
e Maps APl reads key value from AndroidManifest.xml, passes it to

Google Maps server to authenticate access

000
0000
: : : o000
Step 4: Add Settings to AndroidManifest.xml | e%5
o0
. . . . @
e Add Google Play services version to AndroidManifest.xml|
<meta-data
android:name="com.google.android.gms.version"
android:value="@integer/google play_ services_version" />
e Request the following permissions:
Used by API to download ?élngesc:roenifégﬁsctge(:k the
map tiles from Google o Used by API to cache map
determine if data can tile data in device’s
Maps servers
\ downloaded external storage
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
{uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<!-- The following two permissions are not required to use
Google Maps Android API v2, but are recommended. -->
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<uses-permissii;/j%droid:name="android.permission.ACCESS_FINE_LOCATION"{>
Allows API to use WiFl or mobile Allows the API to use GPS

cell data (or both) to determine to determine device’s
the device’s location location within a small area

Step 4: Add Settings to AndroidManifest.xml oc
(Contd) .

e Specify that OpenGL ES version 2 is required

e Why? Google Maps Android APl uses OpenGL ES version 2 to
render the map

<uses-feature
android:glEsVersion="0x00020000"
android:required="true"/>

e Due to above declaration, devices that don’t have OpenGL ES
version 2 will not see the app on Google Play

Step 5: Add a map

e Map is generated as fragment within an activity

e To add map, add following to XML layout file

<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android”
android:id="(@+1id/map”
android:layout width="match_parent”
android:layout _height="match_parent™
android:name="com.google.android.gms.maps.MapFragment”/>

Install & Configure Google Play Services SDK

e And create MainActivity.java as usual

package com.example.mapdemo;

import android.app.Activity;

import android.os.Bundle;
public class MainActivity extends Activity {

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.activity main);

Android Sensors

What is a Sensor?

e Converts some physical quantity (e.g. light,

acceleration, magnetic field) into a signal

e Example: accelerometer converts acceleration along

X,Y,Z axes into signal

Acceleration [m/s2]

Acceleration log plot

20
15

10

.10 -

-15 -

-20

0

T T T
5000 10 000 15 000

I 1 1 1 Ll 1 i
20000 25000 30000 35000 40000 45000
Time [ms]

So What?

e Raw sensor data can be processed into meaningful info

e Example: Raw accelerometer data can be processed to
infer user’s activity (e.g. walking running, etc)

Walking
Running
Jumping
Step count
Calories burned
Falling

Machine learning
Feature extraction
and classification

Raw accelerometer
Readings

+ Activity labels (e.g using Weka)

Android Sensors

Microphone (sound)
Camera

Temperature

Location
Accelerometer
Gyroscopy (orientation)
Proximity

Pressure

Light

Different phones have
different set of sensors!!!

O = ull B 13116

AndroSensor

0.0 lux
NETIC_FIELD: (4.0mA)
uT

AndroSensor

R a2 B A 5 O 09:32
Android Sensor Box

D Y e

Accelerometer Light Orientation
Sensor Sensor Sensor

o,

Proximity Temperature Gyroscope
Sensor Sensor

Magnetic
Sensor

Android
Sensor Box

Android Sensor Framework oo

e Enables apps to:
e Access sensors available on device and
e Acquire raw sensor data

e Specifically, using the Android Sensor Framework, you can:
e Determine which sensors are available

e Determine capabilities of individual sensors (e.g. max. range,
manufacturer, power requirements, resolution)

e Acquire raw sensor data and define data rate
o Register and unregister sensor event listeners

http://developer.android.com/guide/topics/sensors/sensors_overview.html

Android Sensor Framework

e Android sensors can be either hardware or software
e Hardware sensor:
physical components built into phone,
Measure specific environmental property. E.g. temperature

e Software sensor (or virtual sensor):
Not physical device
Derives their data from one or more hardware sensors
Example: gravity sensor

Accelerometer Sensor

Acceleration is rate of change of velocity
Accelerometers

e Measure change of speed in a direction
e Do not measure velocity

e Phone’s accelerometer measures
acceleration along its X,Y,Z axes

Sensor Types Supported by Android

e TYPE ACCELEROMETER
e Type: hardware

e Measures device acceleration force along X,Y,Z axes
including gravity in m/s?

e Common uses: motion detection (shake, tilt, etc)

e TYPE LINEAR_ACCELEROMETER
e Type: software or hardware

e Measures device acceleration force along X,Y,Z axes
excluding gravity in m/s?

e Common uses: monitoring acceleration along single axis

Sensor Types Supported by Android

e TYPE GRAVITY
e Type: Software or hardware

e Measures the force of gravity along X,Y,Z axes in m/s?
e Common uses: motion detection (shake, tilt, etc)

e TYPE ROTATION_ VECTOR
e Type: Software or hardware

e Measures device’s orientation by providing 3 rotation vectors
e Common uses: motion detection and rotation

Sensor Types Supported by Android

e TYPE_GYROSCOPE

Type: hardware i
Measures device’s rate of rotation

around X,Y,Z axes inrad/s

Common uses: rotation detection
(spin, turn, etc)

- <

\

Sensor Types Supported by Android e

e TYPE AMBIENT TEMPERATURE
e Type: hardware
e Measures ambient room temperature in degrees Celcius
e Common uses: monitoring room air temperatures

e TYPE LIGHT
e Type: hardware

e Measures ambient light level (illumination) in lux
e Lux is SI measure of illuminance

Measures luminous flux per unit area

e Common uses: controlling screen brightness

Sensor Types Supported by Android

e TYPE MAGNETIC FIELD
e Type: hardware

e Measures magnetic field for X,Y,Z axes in uT
e Common uses: Creating a compass

e TYPE PRESSURE
e Type: hardware

e Measures ambient air pressure in hPa or mbar
e Force per unit area

e Common uses: monitoring air pressure changes

Sensor Types Supported by Android

e TYPE ORIENTATION
e Type: software
e Measures degrees of rotation about X,Y,Z axes
e Common uses: Determining device position

» X

- <

Sensor Types Supported by Android

e TYPE PROXIMITY
e Type: hardware

e Measures proximity of an object in cm relative to view
device’s screen.

e Common uses: to determine whether a handset is being
held up to a person’s ear

Sensor Types Supported by Android oo

e TYPE RELATIVE HUMIDITY
Type: hardware

Measures relative ambient humidity in percent (%)
Relative humidity: % of max possible humidity present in air

Common uses: monitoring dewpoint, absolute, and relative
humidity

2 New Hardware Sensor in Android 4.4

TYPE_STEP _DETECTOR
e Type: hardware

e Triggers a sensor event each time user takes a step
e Delivered event has value of 1.0 and timestamp of step

TYPE_STEP _COUNTER
e Type: hardware
e Also triggers a sensor event each time user takes a step

e Delivers total accumulated number of steps since this sensor
was first registered by an app, tries to eliminate false positives

Common uses: Both used in step counting, pedometer apps
Requires hardware support, available in Nexus 5

Sensor Programming

e Sensor framework is part of android.hardware

e Classes and interfaces include:
SensorEvent -
Sensor
SensorEventListener
SensorManager

e These sensor-APls used for 2 main tasks:

|Identifying sensors and sensor capabilities
Monitoring sensor events

Sensor Events and Callbacks

e App sensors send events
asynchronously, when new data
arrives

e General approach:
App registers callbacks

SensorManager notifies app of
sensor event whenever new data
arrives (or accuracy changes)

Your App SensorManager

Register Callback

Sensor Event

Sensor Event

Sensor Event

Recall: Sensor Programming

e Sensor classes and interfaces include:

SensorEvent

Sensor €=
SensorEventListener
SensorManager

Sensor

e A class that provides methods used to determine a
sensor’s capabilities

e Can be used to create instance of a specific sensor
e E.g. create instance of accelerometer

000
0000
o000
o000
. | X J
SensorEvent Object .
e Android system provides information about a sensor
event as a sensor event object
Your App | SensorManager |
e Sensor event object includes: Reister Cellkant .
oRaw sensor data Y
e Sensor: Type of sensor that __ Sensor Event

generated the event
Sensor Event

e Accuracy: Accuracy of the data
e Timestamp: Event timestamp

Sensor values?

R T T T T

TYPE_ACCELEROCMETER

TYPE_GRAVITY

TYPE_GYROSCOPE

TYPE_GYROSCOPE_UNCALIBRATED

SensorEvent.values[@]

SensorEvent.values[1]

SensorEvent.values[2]

SensorEvent.values[@]

SensorEvent.values[1]

SensorEvent.values[2]

SensorEvent.values[8]

SensorEvent.values[1]

SensorEvent.values[2]

SensorEvent.values[@]

SensorEvent.values[1]

SensorEvent.values[2]

SensorEvent.values[3]

SensorEvent.values[4]

SensorEvent.values[5]

Acceleration force
along the x axis
(including gravity).
Acceleration force
along the y axis
(including gravity).
Acceleration force
along the z axis
(including gravity).
Force of gravity along
the x axis.

Force of gravity along
the y axis.

Force of gravity along
the z axis.

Rate of rotation around
the x axis.

Rate of rotation around
the y axis.

Rate of rotation around
the z axis.

Rate of rotation
(without drift
compensation) around
the x axis.

Rate of rotation
(without drift
compensation) around
the y axis.

Rate of rotation
(without drift
compensation) arcund
the z axis.

Estimated drift around
the x axis.

Estimated drift around
the y axis.

Estimated drift around
the z axis.

Sensor Values
Depend on
Sensor Type

Sensor Values Depend on Sensor Type
e [S e

TYPE_LINEAR_ACCELERATION SensorEvent.values[@] Acceleration force
along the x axis
(excluding gravity).

SensorEvent.values[1] Acceleration force
along the y axis
(excluding gravity).

SensorEvent.values[2] Acceleration force
along the z axis
(excluding gravity).

TYPE_ROTATION VECTOR SensorEvent.values[@] Rotation vector Unitless
component along the x
axis (x * sin(8/2)).

SensorEvent.values[1] Rotation vector
component along the y
axis (y * sin(8/2)).

SensorEvent.values[2] Rotation vector
component along the z
axis (z * sin(8/2)).

SensorEvent.values[3] Scalar component of
the rotation vector
((cos(8/2)).!

TYPE_SIGNIFICANT MOTION N/A N/A N/A

TYPE_STEP_COUNTER SensorEvent.values[@] Number of steps taken Steps
by the user since the
last reboot while the
sensor was activated.

TYPE_STEP_DETECTOR N/A N/A N/A

Recall: Sensor Programming

e Sensor classes and interfaces include:
e SensorEvent
e Sensor
e SensorEventlistener &=
e SensorManager

SensorEventListener

e An interface used to create 2 callbacks that receive
notifications (sensor events) when:

e Sensor values change (onSensorChange()) or
e When sensor accuracy changes (onAccuracyChanged())

000
000
[X X
XX
. o0
Recall: Sensor Programming .
e Sensor classes and interfaces include:
e SensorEvent
e Sensor _ |
Your App SensorManager
e SensorEventlListener

Register Callback

.

e SensorManager &

Sensor Event

Sensor Event

N

Sensor Event

SensorManager

e A class that provides methods for:
e Accessing and listing sensors
o Registering and unregistering sensor event listeners
e Acquiring orientation information

e Can be used to create instance of sensor service

e Also provides sensor constants used to:
e Report sensor accuracy
e Set data acquisition rates
e Calibrate sensors

Sensor Availability

e Different sensors are available on different Android versions

Android 4.0 Android 2.3 Android 2.2 Android 1.5
(API Level 14) (API Level 9) (API Level 8) (API Level 3)

TYPE_ACCELEROMETER

TYPE_AMBIENT_TEMPERATURE
TYPE_GRAVITY
TYPE_GYROSCOPE
TYPE_LIGHT
TYPE_LINEAR_ACCELERATION
TYPE_MAGNETIC_FIELD
TYPE_ORIENTATION
TYPE_PRESSURE
TYPE_PROXIMITY
TYPE_RELATIVE_HUMIDITY
TYPE_ROTATION_VECTOR

TYPE_TEMPERATURE

Yes
Yes
Yes
Yes
Yes
Yes
Yes?
Yes
Yes
Yes
Yes

Yes?

n/a
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
n/a
Yes

Yes

n/a
n/a
n/a’
Yes
n/a

Yes

Yes?

n/a’
Yes
n/a
n/a

Yes

n/a
n/a
n/a’
Yes
n/a

Yes
Yes
n/a’
Yes
n/a

n/a

Yes

Sensor API Tasks

Sensor API Task 1: Identifying sensors and their capabilities

Why identify sensor and their capabilities at runtime?
Disable app features using sensors not present, or
Choose sensor implementation with best performance

Sensor APl Task 2: Monitor sensor events
Why monitor sensor events?

To acquire raw sensor data

Sensor event occurs every time sensor detects change in parameters
it is measuring (in physical world. E.g. temperature changes)

Identifying Sensors and Sensor Capabilities

e Need a reference to the sensor service.

e How? First create instance of SensorManager by calling
getSystemService() and passing in SENSOR_SERVICE argument

private SensorManager mSensorManager;

mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

e Then list sensors available on device by calling getSensorList()

List<Sensor> deviceSensors = mSensorManager.getSensorList(Sensor.TYPE_ALL)]

/

e To list particular type, use|TYPE_GYROSCOPE, TYPE_GRAVITY, etc

http://developer.android.com/guide/topics/sensors/sensors_overview.html

Determing if Device has at least one of
particular Sensor Type

e Device may have multiple sensors of a particular type.

e E.g. multiple magnetometers

e If multiple sensors of a given type exist, one of them must be
designated “the default sensor” of that type

e To determine if specific sensor type exists use getDefaultSensor()

e Example: To check whether device has a netometer

private SensorManager mSensorManager;

mSensorManager = (SensorManager) ystemService(Context.SENSOR_SERVICE);
if (mSensorManager.getDefaultSensor(Sensor.TYPE MAGNETIC FIELD) !'= null){
// Success! There's a magnetometer.
}
else {
// Failure! No magnhetometer.

}

Determining Capabilities of Sensors

e Some useful methods of Sensor class methods:

getResolution(): get sensor’s resolution
getMaximumRange(): get maximum measurement range
getPower(): get sensor’s power requirements

getMinDelay(): min time interval (in microseconds) sensor
can use to sense data. Return values:

0 value: Non-streaming sensor, reports data only if sensed parameters
change

Non-zero value: streaming sensor

Monitoring Sensor Events .

e To monitor raw sensor data, 2 callback methods exposed
through SensorEventListener interface need to be implemented:

e onSensorChanged:
e Called by Android OS to report new sensor value

e Passes SensorEvent object containing information about new
sensor data to your app
e New sensor data includes:
Accuracy: Accuracy of data
Sensor: Sensor that generated the data
Timestamp: Times when data was generated
Data: New data that sensor recorded

Monitoring Sensor Events

onAccuracyChanged:
invoked when accuracy of sensor being monitored changes

Provides reference to sensor object that changed and the new
accuracy of the sensor

Accuracy represented as status constants
SENSOR_STATUS_ACCURACY_LOW,
SENSOR_STATUS_ACCURACY_MEDIUM,

SENSOR_STATUS_ACCURACY_HIGH,
SENSOR_STATUS_UNRELIABLE

Example: Monitoring Light Sensor Data

e Goal: Monitor light sensor data using onSensorChanged(),
display it in a TextView defined in main.xml

public class SensorActivity extends Activity implements SensorEventlListener {
private SensorManager mSensorManager;

private Sensor mLight;

@Override
public final void onCreate(Bundle savedInstanceState) { O e o Of
super.onCreate(savedInstanceState); Sensor manager

setContentView(R.layout.main);

mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
mLight = mSensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);

) \ Get default

Light sensor
@Override

public final void onAccuracyChanged(Sensor sensor, int accuracy) {

// Do something here if sensor accuracy changes.

Example: Monitoring Light Sensor Data
(Contd)

@Override
public final void onSensorChanged(SensorEvent event) {
// The light sensor returns a single value.
// Many sensors return 3 values, one for each axis.
float lux = event.values[@]; €

// Do something with this sensor value.

Get new light
sensor value

Register sensor when

@0verride app becomes visible

protected void onResume() {
super.onResume();
mSensorManager.registerListener(this, mLight, SensorManager.SENSOR_DELAY NORMAL);

@Override

protected void onPause() { _ _
Unregister sensor if app

IS no longer visible to
reduce battery drain

super.onPause(); <€
mSensorManager.unregisterListener(this);

Handling Different Sensor Configurations

e Different phones have different sensors built in

e E.g. Motorola Xoom has pressure sensor, Samsung Nexus S
doesn’t

e |f app uses a specific sensor, how to ensure this sensor exists
on target device? Two options

Option 1: Detect device sensors at runtime, enable/disable app
features as appropriate

Option 2: Use Google Play filters so only devices possessing
required sensor can download app

Option 1: Detecting Sensors at Runtime

e Following code checks if device has a pressure sensor

private SensorManager mSensorManager;

mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
if (mSensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE) != null){
// Success! There's a pressure sensor.

}

else {

// Failure! No pressure sensor.

}

Option 2: Use Google Play Filters to Target
Specific Sensor Configurations

e Can use <uses-feature> element in AndroidManifest.xml to filter
your app from devices without required sensors

e Example: following manifest entry ensures that only devices with
accelerometers will see this app on Google Play

<uses-feature android:name="android.hardware.sensor.accelerometer™
android:required="true" />

e Can list accelerometers, barometers, compass (geomagnetic field),
gyroscope, light and proximity using this approach

Example Step Counter App

e Goal: Track user’s steps, display it in TextView

e Note: Phone hardware must support step counting

package com.starboardland.pedometer;

import android.app.Activity; I8 CounterActivity
import android.content.Context;
import android.hardware.*;
import android.os.Bundle;
import android.widget.TextView;

import android.widget.Toast;

public class CounterActivity extends Activity implements SensorEventListener { Step count since reboot

154.0

private SensorManager sensorManager;
private TextView count;
boolean activityRunning;

@0override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);
count = (TextView) findViewById(R.id.count);

sensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Example Step Counter App (Contd)

@Override
protected void onResume() {
super.onResume();
activityRunning = true;
Sensor countSensor = sensorManager.getDefaultSensor(Sensor.TYPE_STEP_COUNTER);
if (countSensor != null) {
sensorManager.registerListener(this, countSensor, SensorManager.SENSOR_DELAY UI);
} else {
Toast.makeText(this, "Count sensor not available!", Toast.LENGTH_LONG).show();

@Override
protected void onPause() {
super.onPause();
activityRunning = false;
// if you unregister the last listener, the hardware will stop detecting step events
// sensorManager.unregisterListener(this);

https://itheelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Example Step Counter App (Contd)

@Override
public void onSensorChanged(SensorEvent event) {
if (activityRunning) {
count.setText(String.valueOf(event.values[@]));

@Override

public void onAccuracyChanged(Sensor sensor, int accuracy) {

}

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Best Practices for Sensor Usage

1. Unregister sensor listeners: when done using sensor or
when app is paused

Otherwise sensor continues to acquire data, draining
battery

2. Don’t test sensor code on emulator

Must test sensor code on physical device, emulator
doesn’t support sensors

Best Practices for Sensor Usage (Contd)

3. Don’t block onSensorChange() method:
Android system may call onsensorChanged() often
So... don’t block it

Perform any heavy processing (filtering, reduction of sensor
data) outside onSensorChanged() method

4. Avoid using deprecated methods or sensor types:

E.e. TYPE_TEMPERATURE sensor type deprecated, use
TYPE_AMBIENT_TEMPERATURE sensor type instead

Best Practices for Sensor Usage (Contd)

5. Verify sensors before you use them:

Don’t assume sensor exists on device, check first before trying
to acquire data from it

6. Choose sensor delays carefully:
Sensor data rates can be very high
Choose delivery rate that is suitable for your app or use case

Choosing a rate that is too high sends extra data, wastes
system resources and battery power

Widget Catalog

What Widget Catalog?

e Several larger widgets are available

e Can use easily just like smaller widgets, to make your apps
look nice and professional

e Several described in Busy Coders book section “Widget
Catalog”, code available

e Examples:
CalendarView
DatePicker
TimePicker
SeekBar

e Will not explain coding here. Check book

CalendarView

e Allows user pick a date from a
displayed calendar

e Sample project from Busy Coders
book:

WidgetCatalog/CalendarView

*g" CalendarView Demo

February 2013

CalendarView Android 4.0

DatePicker

Allows user pick a date

*@" DatePicker Demo

U ses d ate w h ee I *@" DatePicker Demo

June 2012

Can optionally display a
CalenderView as well

12
3456789
10111213141516

17181920212223

Sample project from Busy
Coders book:

WidgetCatalog/DatePicker

24252627282930

v Show Calendar

Show Calendar

DatePicker without DatePicker_ with |
CalendarView Android 4.0 CalendarView Android 4.0

DatePicker

®
DatePicker Demo

November 2014
T T

Show Calendar

DatePicker with CalendarView Android 5.0, landscape

TimePicker

e Allows user pick a time

e Sample project from Busy
Coders book:

WidgetCatalog/TimePicker

*@" TimePickerDemo TimePickerDemo

TimePicker Android 4.1 TimePicker Android 5.0

Class Timeline: What’s left?

What’s left?

e Total of 15 papers on class website assigned

e Each group will present 1 paper (tag team style)

e 4 classes during which students will present papers

3 or 4 student talks per class

e Timeline:

Apr 6: | will talk

April 9, 13: Student Talks

Apr 16: Final project proposal (all 15 groups)
Apr 27, 30: More student talks

May 4: Final project presentation + submissions

Presentation Guidelines

Overview

e No class Mon Apr 20 (patriots day) and Apr 23 (proj)

e Starting next Thursday, new phase of class

Paper presentations

Writing critiques of papers

Final project: brainstorming, proposal, implement, submit
e Each class, 3 or 4 groups present

e All students not presenting each class, pick ANY 1 of the
papers presented that class and write critiques of them

e Critigues MUST be submitted (via turnin) BEFORE paper
presented

e Next, | provide guidelines on presenting papers and writing
critiques

Your Presentation

e About 20 mins

e Estimate: about 2 mins per slide

e About 12 slides should be enough excluding front page and
references

e Allow 10 mins for questions, discussions => participation
points

e Prepare slides using powerpoint template on course site

Main Points Presentation Should Cover

e Introduction/motivation:
What was main problem addressed by the paper?
Why is the problem solved important

e \ision:
How will the solution be used eventually?

How will this new approach save time, resources,
incovenience, etc?

Main Points Presentation Should Cover

e Related Work:

e What else has been done to solve this problem?

e How is the approach proposed in this paper different or
novel?

New approach:
New algorithm
New technique
New experiments
e Focuson:
scientific results, what was learned

Engineering results: new design + justification for
choices

Main Points Presentation Should Cover

e Methodology/Approach:
Summarize the approach/design
Describe the implementation used

State any assumptions of the authors and limitations of the
proposed work

What are the design tradeoffs?

Main Points Presentation Should Cover

e Results:

Present a few of the most significant results/graphs

Results/graphs should show how well proposed approach
worked or findings

Do the presented results back up the claims of the
authors?

Main Points Presentation Should Cover

e Discussions/Conclusions/Future Work
Summarize what was achieved
What did you learn from this paper?
What extensions do the authors plan for future work?

Critique Guidelines

Critique Guidelines

e Capture key points of paper
e Half a page max, submitted through turnin
e Don’t just cut-and-paste abstract blindly

e In ayear’s time, summary should recall key aspects
of paper, refresh memory without re-reading paper

e Provide key important details:

Problem, idea, concepts, algorithms tools
proposed?

e See guidelines on course website

Critique Guidelines (Contd) e

e Assumptions made.

e Design trade-offs?

e How is the organization of the paper, clarity of writing?
e Did the graphs, results support the claims by authors?
e What was good? Bad about paper?

e Suggestions for improvement?

e Similar app that you know of

References

e Busy Coder’s guide to Android version 4.4
e CS 65/165 slides, Dartmouth College, Spring 2014
e CS 371M slides, U of Texas Austin, Spring 2014

