
A General Technique for Analyzing Termination
in Symmetric Proof Calculi

Daniel J. Dougherty1, Silvia Ghilezan2 and Pierre Lescanne3

1 Worcester Polytechnic Institute, USA, dd@cs.wpi.edu
2 Faculty of Engineering, University of Novi Sad, Serbia, gsilvia@uns.ns.ac.yu

3 École Normale Supérieure de Lyon, France, Pierre.Lescanne@ens-lyon.fr

Abstract. Proof-term calculi expressing a computational interpretation of classical logic serve as tools
for extracting the constructive content of classical proofs and at the same time can be seen as pure pro-
gramming languages with explicit representation of control. The inherent symmetry in the underlying
logic presents technical challenges to the study of the reduction properties of these systems. We explore
the use of intersection types for these calculi, note some of the challenges inherent in applying intersection
types in a symmetric calculus, and show how to overcome these difficulties. The approach is applicable to
a variety of systems under active investigation in the current literature; we apply our techniques in a spe-
cific case study: characterizing termination in the symmetric lambda-calculus of Barbanera and Berardi.

1 Introduction

The Curry-Howard correspondence [10] expresses a fundamental connection between logic and computation.
In its traditional form, terms in the ‘l-calculus encode proofs in intuitionistic natural deduction and proofs
serve as typing derivations for the terms. Griffin extended the Curry-Howard correspondence to classical
logic in his seminal 1990 POPL paper [8], by observing that classical tautologies suggest typings for certain
control operators. This initiated a vigorous line of research: on the one hand classical calculi can be seen as
pure programming languages with explicit representations of control, while at the same time terms can be
tools for extracting the constructive content of classical proofs [13, 2]. In particular the λµ calculus of Parigot
[15] has been the foundation of a number of investigations [16, 6, 14, 3, 1] into the relationship between
classical logic and theories of control in programming languages.

In contrast to natural deduction proof systems (upon which Parigot’s λµ, for example, is based) sequent
calculi exhibit inherent symmetries in proof structures. There are several term calculi based on sequent cal-
culus, in which reduction corresponds to cut elimination. Examples include [9, 19, 4, 20, 12]. This symmetry
is appealing in its way, but it actually creates considerable technical difficulty in analyzing the reduction
behavior of these calculi. The bedrock traditional technique of reducibility makes essential use of fact that
function types are “higher” in a natural sense than argument types, permitting semantic definitions to proceed
by induction on types. The symmetry in classical calculi blocks a straightforward adaptation of the traditional
reducibility technique.

The Symmetric Lambda Calculus (here denoted λsym) of Barbanera and Berardi [2] is an elegant cal-
culus designed with the goal of extracting constructive content from classical proofs (actually what we call
λsym here is the propositional version of their calculus, in [2] the system is extended to Peano arithmetic).
Barbanera and Berardi proved termination for their calculus using a fundamental insight called the “sym-
metric candidates” technique. (A completely different approach is the arithmetical proof of termination in a
symmetric λµ calculus by David and Nour [5].)

The use of symmetric candidates is a robust technique that applies in a variety of settings [19, 17]. But a
fundamental tool for deep analysis of the reduction properties of λ-calculus, as well as semantic investiga-
tions, is the extension of simple typing to intersection types — and the adaptation of the symmetric candidates
technique to the intersection-types setting is not straightforward. Such an adaptation is the topic of this paper.
We analyze the problems that arise and show how to overcome them. Our technique applies generally to all
of the symmetric proof-calculi we have investigated, including the λµµ̃-calculus of Curien and Herbelin [4,

7], and the dual calculus of Wadler [20]. For concreteness here we outline the treatment for λsym, chosen
because it is syntactically most familiar and the issues with duality can be seen most clearly. We believe
that the presentation here may also clarify some of the subtleties of Barbanera and Berardi’s proof even for
simply-typed λsym.

The technical contribution of this paper can be summarized as follows. The key to the symmetric can-
didates technique is to interpret types in certain families of saturated sets: these are sets which are, roughly
speaking, closed under inverse β-reduction. Using a clever fixed-point computation Barbanera and Berardi
[2] define a family of saturated sets appropriate for interpreting simply-typed terms. But when we wish to
consider intersection types we face the following obstacle. In standard semantics of intersection types, the
interpretation of an intersection type (A∩B) is simply the intersection of the interpretations of A and B. But
in general intersections of saturated sets are not saturated. So it is not clear how to interpret a type of the
form (A∩B).

The solution we adopt is the following. We take seriously the fact that saturated sets are fixed points of a
monotonic operator. And as is well-known, a monotonic operator has a complete lattice of fixed points. So
we take the interpretation J(A∩B)K of an intersection type to be the meet JAKf JBK in this lattice.

A consequence of the fact that the interpretation of an intersection is not the intersection of interpreta-
tions is that the standard typing rule for intersection-introduction is not sound. So our type system has an
intersection-elimination rule only. As it turns out this is not a problem since intersection-introduction is not
needed for characterizing termination.

A natural question arises: in the absence of intersection-introduction, how do any terms ever receive a
type which is an intersection? The answer is: by double-negation elimination! Referring to the type system of
Definition 2, if x is declared with type (A∩B)⊥ in a typing of c :⊥, then λx.c will be typed with type (A∩B).

2 Intersection types for the λsym-calculus

The syntax of λsym expressions is given by the following:

t := x | 〈t1, t2〉 | σ1(t), | σ2(t), | λx.c | (t1 ∗ t2)

We depart from [2] in that we treat the operator ∗ is syntactically commutative, that is, we consider (t1 ∗ t2)
and (t2 ∗ t1) to be the same term.

The reduction rules of the calculus are

(λx.b ∗ a)→ b[x← a] (〈t1, t2〉 ∗ σi(u))→ 〈ti,u〉 λx.(b ∗ x)→ b if x not free in b

The system of [2] had an “η-reduction” rule as well as a reduction (labeled Triv there) which allowed
replacing a term by one of its closed subterms under certain circumstances. We have omitted these reduc-
tions here for convenience (only): adding it would not violate any of our results and would complicate the
presentation.

Definition 1. The set T of raw types is generated from an infinite set TVar of type-variables as follows.

T ::= TVar | T∧T | T∨T | T⊥ | T∩T

We consider raw types modulo the equations

A⊥⊥ = A (A∧B)⊥ = A⊥∨B⊥ (A∨B)⊥ = A⊥∧B⊥

A type is either an equivalence class modulo these equations or the special type ⊥. Note that by orienting
the equations above left-to-right each type has a normal form, in which the (·)⊥ operator is applied only to
type variables or intersections. It is then easy to see that each type other than ⊥ is uniquely of one of the
following forms (here τ is a type variable).

τ τ
⊥ (A1∧·· ·∧An) (A1∨·· ·∨An) (A1∩·· ·∩An) (A1∩·· ·∩An)

⊥

2

Definition 2 (Typing rules of the system B). The type assignment system B is given by the following typing
rules.

(ax)
Σ, x : (T1 ∩·· ·∩Tk) ` x : Ti

Σ ` t1 : A1 Σ ` t2 : A2

(∧)
Σ ` 〈t1, t2〉 : A1 ∧A2

Σ ` t : Ai

(∨)
Σ ` σi(t) : A1 ∨A2

Σ, x : A ` c :⊥
(⊥)

Σ ` λx.c : A⊥

Σ ` p : A Σ ` q : A⊥

(cut)
Σ ` (p ∗ q) :⊥

Theorem 3 (Main result). A λsym term is terminating if and only if it is typable in B .

The direction “every terminating term is typable” follows the standard pattern from traditional λ-calculus.
The nuance to be acknowledged is that, for the purpose of establishing this result, the standard intersection-
introduction typing rule is not needed. This is crucial for our approach since, as noted in the introduction, this
rule seems to be an obstacle to the other direction of the result, “every typable term is terminating.”

The remainder of the paper is an outline of the proof that every typable term is terminating, with an
emphasis on those aspects of the argument requiring novel treatment beyond the proof for traditional λ-
calculus.

Definition 4. A pair is given by two sets of terms X and Y , each of which is non-empty.
The pair {X1,X2} is stable if for every r ∈ X1 and every e ∈ E, the command (r ∗ e) is terminating.

For example, the pair {Vars,Vars} is stable. Since the sets in a pair are non-empty, any stable pair consists of
terminating expressions. We write pairs as {X ,Y} but we stress that this is a multiset, that is, it may be that X
and Y are the same set.

The following technical condition will be crucial to the use of pairs to interpret types (it is this condition
which makes the Type Soundness Theorem go through, specifically the cases of typing a λ expression).

Definition 5. A pair {X0,X1} is saturated if for each i, whenever λx.c satisfies: ∀e ∈ Xi,c[x← e] is terminating,
then λx.c ∈ X1−i.

We can always expand a pair to be saturated. It is more delicate to expand a stable pair to be saturated and
remain stable. The development below achieves this.

Definition 6. An expression is simple if it is not a ‘l-abstraction; a set X is simple if each term in X is simple.

Definition 7. Define the map Φ : 2Λ→ 2Λ by

Φ(X) = {e | e is of the form λx.c and ∀r ∈ X ,c[x← r] is terminating}
∪{e | e is simple and ∀r ∈ X ,(r ∗ e) is terminating}

Note that if X 6= /0 then Φ(X) is a set of terminating terms. Also, if X ⊆ SN then all variables are in Φ(X).
It is easy to see that Φ is antimonotone. So the map (Φ ◦Φ) = Φ2 is monotone. By the Knaster-Tarski

fixed point theorem [11, 18] Φ2 has a complete lattice of fixed points, ordered by set inclusion.

Definition 8. A pair {X ,Y} is a mutual fixed point for Φ if Φ(X) = Y and Φ(Y) = X.

It is easy to see that if {X ,Y} is a mutual fixed point for Φ then X is a fixed point for Φ2.

Lemma 9. Suppose {X ,Y} is a mutual fixed point for Φ. Then {X ,Y} is stable and saturated.

So now our task is to show how to make mutual fixed points which have the right structure for interpreting
types. The strategy for defining saturated pairs for types is slightly different depending on whether the type
to be interpreted is (i) an arrow-type or its dual or (ii) an intersection or its dual. In the former case we need
to establish the that the operator Φ2 is inflationary on strongly normalizing simple sets.

3

Lemma 10. If X is a simple set of terminating terms then X ⊆Φ2(X).

As is well-known, when G is a monotone operator on a complete lattice of sets and X satisfies X ⊆ G(X)
then G has a fixed point containing X . This, in light of Lemma 10, justifies the following definition.

Definition 11. If X is a simple set of terminating terms let X↑ be the least fixed point of Φ2 with the property
that X ⊆ X↑.

We note the following facts. If X is a simple set of terminating terms then {X↑,Φ(X↑)} is a mutual fixed point
of Φ, with X ⊆ X↑. If {X ,Y} is a stable pair and Y is a set of simple terms then Y ⊆Φ(X↑).

In Definition 13 we will use the above construction to interpret types which are not intersections (or
their duals). When the types we want to interpret are intersections, or types of the form (T1∩·· ·∩Tk)

◦ the
above construction does not work. The essential problem is that the intersection of saturated pairs does not in
general yield a saturated pair. This means that the interpretation of an intersection type (A∩B) will not be the
intersection of the interpretations of A and B. But the collection of fixed points of Φ2 carries its own lattice
structure under inclusion, and this is all we require to interpret intersection types.

Definition 12. Let FixΦ2 be the set of fixed points of the operator Φ2. If R1, . . . ,Rk are fixed points of Φ2, let
(R1 f . . .fRk) denote the meet of these elements in the lattice FixΦ2 .

The set of objects of the lattice FixΦ2 is a subset of the set 2Λ. Since this lattice is ordered by set inclusion,
we have (R1 f . . .fRk)⊆ Ri for each i. Since ∩ is the greatest lower bound operator in 2Λ, (R1 f . . .fRk)⊆
(R1∩·· ·∩Rk).

We stress that (R1 f . . .fRk) is a fixed point of Φ2 and so the pair {(R1 f . . .fRk), Φ(R1 f . . .fRk)}is
a mutual fixed point of Φ.

Definition 13 (Interpretation of types). For each type T we define the set JT K.

1. When T is ⊥ then JT K is the set of terminating terms.
2. When T is a type variable we set R to be the set of term variables, then construct the pair (R↑,Φ(R↑). We

then take JT K to be R↑ and JT⊥K to be Φ(R↑).
3. Suppose T is (A1∧A2). Set R to be {〈t1, t2〉 | ti ∈ JAiK, i = 1,2}. We then take JT K to be (R↑) and JT⊥K =

JA1
⊥∨A2

⊥K to be Φ(R↑).
4. When T is (A1 ∩A2 · · · ∩An), n ≥ 2, we take JT K to be (JA1K f . . .f JAnK) and then take JT⊥K to be

Φ(JT K).

Note that the interpretation JA1∨A2K of a disjunction-type is determined in part 3 above since any type
B1∨B2 is the dual of B1

⊥∧B2
⊥. Also note that by definition, for each type T the pair (JT K,JT⊥K) is a mutual

fixed point of Φ and Φ and so constitutes a stable saturated pair.

Lemma 14.

1. JT K is a set of terminating terms.
2. JA1∧A2K⊇ {〈t1, t2〉 | ti ∈ JAiK, i = 1,2}.
3. JA1∨A2K⊇ {σ1(p) | p ∈ JA1K}∪{σ2(p) | p ∈ JA2K}.
4. (λx.c) ∈ JAK if for all e ∈ JA⊥K we have c[x← e] terminates.
5. J(A1∩·· ·∩Ak)K⊆ (JA1K∩·· ·∩ JAkK).

Since each JT K consists of terminating expressions the following theorem implies that all typable expres-
sions are terminating.

Theorem 15 (Type Soundness). If expression t is typable with type T then t ∈ JT K.

The proof is by induction over typing derivations. All the hard work has been done in Lemma 14; the proof
is organized by cases according to the last inference in the derivation, and each case follows readily from the
clauses of the Lemma.

4

References

1. Z. M. Ariola and H. Herbelin. Minimal classical logic and control operators. In ICALP: Annual International
Colloquium on Automata, Languages and Programming, volume 2719 of LNCS, pages 871–885. Springer-Verlag,
2003.

2. F. Barbanera and S. Berardi. A symmetric lambda calculus for classical program extraction. Information and
Computation, 125(2):103–117, 1996.

3. G. M. Bierman. A computational interpretation of the λµ-calculus. In Proc. of Symp. on Mathematical Foundations
of Computer Science., volume 1450 of LNCS, pages 336–345. Springer-Verlag, 1998.

4. P.-L. Curien and H. Herbelin. The duality of computation. In Proc. of the 5th ACM SIGPLAN Int. Conference on
Functional Programming, ICFP’00, Montreal, Canada, 2000. ACM Press.

5. R. David and K. Nour. Arithmetical proofs of strong normalization results for the symmetric λµ-calculus. In Typed
Lambda Calculus and application, TLCA 2005, volume 3461 of LNCS, pages 162–178. Springer-Verlag, 2005.

6. Ph. de Groote. On the relation between the λµ-calculus and the syntactic theory of sequential control. In Logic
Programming and Artificial Reasoning, LPAR’94, volume 822 of LNCS, pages 31–43. Springer-Verlag, 1994.

7. D. Dougherty, S. Ghilezan, and P. Lescanne. Characterizing strong normalization in the Curien-Herbelin symmet-
ric lambda calculus: extending the Coppo-Dezani heritage. In S. Berardi and U de’ Liquoro, editors, Theoretical
Computer Science, volume Festschrift Coppo, Dezani, Ronchi. To appear.

8. T. Griffin. A formulae-as-types notion of control. In Proc. of the 19th Annual ACM Symp. on Principles Of Pro-
gramming Languages, (POPL’90), pages 47–58, San Fransisco (Ca., USA), 1990. ACM Press.

9. H. Herbelin. Séquents qu’on calcule : de l’interprétation du calcul des séquents comme calcul de λ-termes et comme
calcul de stratégies gagnantes. Thèse, U. Paris 7, Janvier 1995.

10. W. A. Howard. The formulas-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors, To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490, New York, 1980. Academic Press.

11. B. Knaster. Un théorème sur les fonctions d’ensembles. Annales de la Societé Polonaise de Mathematique, 6:133–
134, 1928.

12. S. Lengrand. Call-by-value, call-by-name, and strong normalization for the classical sequent calculus. In Bernhard
Gramlich and Salvador Lucas, editors, ENTCS, volume 86. Elsevier, 2003.

13. Ch. R. Murthy. Classical proofs as programs: How, what, and why. In J. Paul Myers Jr. and Michael J. O’Donnell,
editors, Constructivity in Computer Science, volume 613 of LNCS, pages 71–88. Springer, 1991.

14. C.-H. L. Ong and C. A. Stewart. A Curry-Howard foundation for functional computation with control. In POPL 24,
pages 215–227, 1997.

15. M. Parigot. An algorithmic interpretation of classical natural deduction. In Proc. of Int. Conf. on Logic Programming
and Automated Reasoning, LPAR’92, volume 624 of LNCS, pages 190–201. Springer-Verlag, 1992.

16. M. Parigot. Proofs of strong normalisation for second order classical natural deduction. The J. of Symbolic Logic,
62(4):1461–1479, December 1997.

17. E. Polonovski. Strong normalization of λµµ̃-calculus with explicit substitutions. In Igor Walukiewicz, editor, Foun-
dations of Software Science and Computation Structures, 7th International Conference, FOSSACS 2004, volume
2987 of LNCS, pages 423–437. Springer-Verlag, 2004.

18. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5:285–309,
1955.

19. C. Urban and G. M. Bierman. Strong normalisation of cut-elimination in classical logic. In Typed Lambda Calculus
and Applications, TLCA’99, volume 1581 of LNCS, pages 365–380. Springer-Verlag, 1999.

20. Ph. Wadler. Call-by-value is dual to call-by-name. In Proc. of the 8th ACM SIGPLAN Int. Conference on Functional
Programming, ICFP’03, pages 189–201, 2003.

5

