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Abstract. Model-finders such as SAT-solvers are attractive for pro-
ducing concrete models, either as sample instances or as counterexam-
ples when properties fail. However, the generated model is arbitrary. To
address this, several research efforts have proposed principled forms of
output from model-finders. These include minimal and maximal models,
unsat cores, and proof-based provenance of facts.

While these methods enjoy elegant mathematical foundations, they
have not been subjected to rigorous evaluation on users to assess their
utility. This paper presents user studies of these three forms of output
performed on advanced students. We find that most of the output forms
fail to be effective, and in some cases even actively mislead users. To
make such studies feasible to run frequently and at scale, we also show
how we can pose such studies on the crowdsourcing site Mechanical Turk.

Keywords: Models · User studies · HCI · Minimization · Provenance ·
Unsat core

1 Introduction

Model-finding tools like SAT solvers have seen an explosive growth over the
past two decades. In addition to automation, speed, and a flexible input lan-
guage, they also produce concrete instances: either instances of the specification
(henceforth, “spec”), or counterexamples. Therefore, they are now used either
directly or indirectly to produce tools in numerous domains such as network-
ing [20,28,33], security [2], and software engineering [21,22]. In particular, the
concrete instances are valuable because they are accessible to users, such as
network operators, who are not usually schooled in formal methods.

The models that these tools produce are, however, arbitrary and reflect inter-
nal algorithmic details and sometimes also probabilities. That is, the output does
not follow any particular principle beyond satisfying the given spec. To counter
this, many authors have proposed principled forms of output following well-
defined mathematical properties, such as minimality [6,9,17,27,34]. Other prin-
cipled output forms, like provenance [26] and unsatisfiable (henceforth, “unsat”)
cores [36], augment output to aid in understanding.
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These output forms have elegant mathematical properties, making them espe-
cially attractive to researchers. However, there has not been any real investiga-
tion of whether they are actually effective for users. We therefore present the first
effort at evaluating these output forms. We find that they are often misleading to
users, with the very properties that make them mathematically attractive caus-
ing confusion. Though our efforts are preliminary, they point to a need for the
design of principled output forms to be done in conjunction with user studies:
merely appealing to elegant mathematical properties for output is insufficient.

Our studies are conducted on students (Sect. 3) and on workers on a crowd-
sourcing platform (Sect. 4). It would be valuable to also evaluate this work with
experts. Unfortunately, experts are difficult to assemble in numbers that yield
statistical significance.1 Nevertheless, as many model finders are integrated into
tools (such as those cited) for end-users, advanced students and technology pro-
fessionals are a reasonable proxy for (or even members of) these audiences.

Space precludes presenting the full details of our study specs; we provide full
versions at http://cs.brown.edu/research/plt/dl/model-exploration-studies/,
hereafter referred to as the “supplement.”

2 Principled Output Methods Being Evaluated

We first describe the formalisms that this paper evaluates. Our studies use
Alloy [16], a model-finder popular in the software-engineering community. Alloy
searches, up to a user-specified size bound, for models that satisfy an input
specification.

2.1 Minimality and Maximality

The choice of which models to present usually depends on the underlying solver
algorithms. Users might be shown any models so long as they all satisfy the
spec. Several authors (Sect. 5) have proposed the principle of minimization—an
intuitively appealing notion similar to filing bug reports with only minimal test
cases. In a minimal model-finder, users are shown minimal models (first). In this
context, minimality is defined in terms of set containment: a model M is said to
be smaller than another model M′ if M contains a subset of what M′ does. Note
that there may be more than one minimal model. E.g., there are two different
minimal models for the propositional formula p ∨ q. A “maximal” model finder
is the dual: it finds the largest models with respect to user-specified bounds on
model size.

1 We tried to conduct a study at the ABZ conference (which has exactly the expertise
we need), handing out well over a hundred brief surveys on paper and electronically
over several days. Sadly, we received only two responses.

http://cs.brown.edu/research/plt/dl/model-exploration-studies/
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2.2 UNSAT Cores

If the spec is unsatisfiable, no models can be found. A lack of models is often
not sufficiently informative. Thus, some model finders return a subset of the
spec that is itself unsatisfiable: an unsat core. This allows the user to focus on
(what is often) a small portion of the spec to localize faults and refine their
understanding. When a model search is actually a verification task, an unsat
core represents a portion of the spec that suffices to prove the desired property
up to the bounds specified. As Torlak, et al. [36] note, an unexpectedly small core
can point to problems with the original property or user-specified size bounds.

2.3 Provenance

Even if models are found, each shows only what is possible, i.e., an example of
what the spec permits. It gives no information about which model elements are
necessary rather than only present due to (possibly intentional) under-constraint.
Amalgam [26] is an extension of Alloy that fills this explanatory hole. For each
component of a model, Amalgam can identify when that component is necessi-
tated by other pieces of the model, along with identifying (as cores do) portions
of the spec that serve in the implication.

3 Evaluation with Student Subjects

Attracting student volunteers does not appear to be easy. In a previous year, we
had tried to run studies in relevant courses at both our institutions by offering
students various rewards for participation. However these yielded unusably low
participation rates, and it was difficult to judge the motivation of those students
who did participate. Therefore, instead of seeking volunteers, this study was
integrated directly into a course. This addressed our enrollment problem: out of
about 70 students in the class, over 60 students participated in our studies.

Our students are from an upper-level course entitled “Logic for Systems”
at Brown University. The course begins with property-based testing, leading to
writing and checking specifications in Alloy. Most students are in the second
half of their undergraduate education, having had numerous courses on pro-
gramming, basic theory, and other topics in computer science; many also have
summer internship experience in industry. A handful are graduate students (both
master’s and PhD). Many of the students will end up at elite companies within
a year or two. As a result, though most of the students have not yet graduated,
they have extensive computer science experience that is representative of many
of the skills and preparation of industrial developers.

The studies were conducted at the ends of course labs; students were allowed
to opt out of this part with no impact on their grade. The lab setting is useful
in two ways. First, students are motivated to do the material since it is part of
their course learning. (The course is not required, so students take it by choice
and out of interest.) Second, students are required to attend lab, and are thus
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likely to stay to perform the study. Integrating the studies into the labs meant
we had certain constraints—such as the size of specifications, their placement in
the semester, the number of studies, etc.—that were unavoidable. Nevertheless,
we do not believe these overly limited our studies.

All the tools have been implemented and were presented as conservative
extensions to Alloy. Therefore, students did not need to switch tools, use a new
syntax, learn a new visualizer, etc. This eliminates many confounding variables
and makes comparisons easier.

3.1 Minimality and Maximality

In this study, we evaluated how counterexample minimization helps students
debug satisfiable specifications. By default, Alloy produces arbitrary models:
either as concrete instances or counterexamples to help users understand why
their assertion about the spec is invalid. As discussed in Sect. 2.1, minimal models
are a principled output where only facts necessary to satisfy the specification
are included (and maximality is the dual).

In lab, students first wrote a reference-counting scheme for garbage collec-
tion. Reference-counting is well-known to be sound (it never deallocates reach-
able memory), but it is incomplete (it can fail to deallocate unreachable mem-
ory) when the heap contains cyclic references. Teaching assistants checked that
students had completed this before proceeding to the study, in which students
explored counterexamples to completeness (models that contain a heap reference
cycle) and were asked to propose a constraint to make the algorithm complete—
in effect, by banning cycles. (The supplement provides an example spec.)

Study Design. We split the class into two experimental groups: 35 students saw
only minimal counterexamples while 25 saw only maximal ones (the imbalance
is an artifact of lab section sizes). We did not otherwise modify Alloy’s user
interface. The first minimal and maximal counterexamples are shown in Fig. 1.

We restricted students to constructing a constraint that fits the template
(all s:State | all m:HeapCell | ...). An ideal solution would use transi-
tive closure, which catches cycles of any size:

all s:State | all m:HeapCell | m not in m.^(s.references)

Results. Our first finding was both surprising and disappointing: in both the
minimal and maximal model groups, a significant proportion of participants
dropped out of the study, switching back to unprincipled output (i.e., regular
Alloy). We had 10 students drop out of the maximal group (leaving 15) and 28
students drop out of the minimal group (leaving 7). While we had no official
complaints submitted along with the study results, many students in the lab
expressed that the principled output frustrated them.

Out of the 7 remaining students in the minimal group, only 3 correctly
restricted all reference cycles. 3 students incorrectly restricted self-loops only.
The one other student proposed an incorrect and irrelevant edit. In retrospect



172 N. Danas et al.

Fig. 1. Maximal (top) and minimal (bottom) counterexamples to GC completeness.
Three states are shown from left to right. The transition from left to center updates
the current memory references. The transition from center to right applies the specified
reference-counting scheme.

this is perhaps unsurprising given the nature of models shown in minimal output,
which focus attention entirely on self-loops.

In principle, maximal models do not suffer from this same tunneling of vision.
Still, out of the 15 remaining maximal-group students, only 2 correctly restricted
all reference cycles. 5 students incorrectly restricted self-loops only. The 8 other
students proposed edits that were incorrect and irrelevant to reference cycles.
Surprisingly, a higher proportion of the maximal group neglected to restrict
reference cycles of any size. We discuss this and other issues in Sect. 3.4.

3.2 UNSAT Cores

In this study, we evaluated how helpful unsat cores are to students debugging
unsatisfiable specs. By default, Alloy provides unsat cores to help users under-
stand why their specification is unsatisfiable.

We presented participants with a playful, feline rendition of the “Connec-
tions of Kevin Bacon” game, where “Kitty Bacon’s” connections are defined as
the transitive closure of his friends. Figure 2 gives the specification in full; we
explain the colored highlights below. The first group of facts (lines 1–4) define cats
and how friendship works; in particular, line 3 states there is NoSelfFriendship
allowed. Lines 6–11 define Kitty Bacon and the bounded transitive closure oper-
ator ConnectionsOf[Cat]. Lines 13–17 show a comparison between the bounded
and unbounded notions of transitive closure. Lines 19–20 create the CoolCatClub,
with only the connections of Kitty Bacon as members. The remainder of the
specification defines the respective queries for generating cores and provenance
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Fig. 2. Kitty Bacon spec with unsat core highlighting why Kitty Bacon is excluded
(Color figure online)

(used by Sect. 3.3); here the students ran the KittyBaconIsCool predicate and
found it was unsatisfiable—i.e., that Kitty Bacon could never be in the club.

The lab asked students to explain why the specification excluded Kitty Bacon
from the set. They were shown an unsat core (the red and pink highlights in
Fig. 2). We used Alloy’s core minimization and granularity settings to reduce
the core (i.e., the number of highlights) to its smallest size.

The core highlights the constraints responsible for unsatisfiability. The pred-
icate being run (KittyBaconIsCool) fails when Kitty Bacon is excluded from
the club, and the rest of the constraints together imply that he is never included.
The core highlights three fragments of the specification: forbidding self-friendship
(NoSelfFriendship), defining the connections of a cat (ConnectionsOf[Cat]),
and the definition of club membership (CoolCatClub). Forbidding self-friendship
means Kitty Bacon cannot be his own friend. Because he is not his own friend,
Kitty Bacon is excluded from his connections. Since club membership is defined
to be equivalent to the connections of Kitty Bacon, Kitty Bacon is never included
in the club.

Study Design. To evaluate whether the core helped students debug their spec,
we asked students to provide a free-form explanation of why Kitty Bacon was
not in the club, and choose the best fix from three candidate edits. The edits
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were based on the three fragments of the spec highlighted by the unsat core.
The correct specification fix is to update the definition of club membership
to be equivalent to the union of the connections of Kitty Bacon and Kitty
Bacon himself (fixing CoolCatClub). This avoids changing the semantics of other
predicates, which might have wider-ranging consequences. Two erroneous edits
were to allow self-friendship (which violates NoSelfFriendship), and to add
Kitty Bacon to his own connections, which invalidates the prior portion of the
lab (where ConnectionsOf[Cat] defined bounded transitive closure). Students
could optionally apply no edit if they did not know which one to choose.

Results. We split the pool of students between this study and the study
of provenance (Sect. 3.3). For both groups, we code2 the free-form explana-
tions to match them with the candidate edits related to NoSelfFriendship,
ConnectionsOf[Cat], and CoolCatClub. The 28 students could blame any com-
bination of those three3, but could choose at most one constraint to edit.

Table 1. Effects of unsat cores on debugging Kitty Bacon spec

Constraint # Student Blames # Student Edits Correct?

CoolCatClub 18 (64%) 22 (79%) Y

ConnectionsOf[Cat] 27 (96%) 0 (0%) N

NoSelfFriendship 14 (50%) 1 (4%) N

No edit N/A 5 (18%) N

Table 1 shows the results. Half of the students exposed to the unsat core
blamed disallowing self-friendship, but only one student applied the related
(erroneous) edit. This suggests extraneous constraints in the unsat core distract
students enough to widen their explanation, but not necessarily enough to cause
them to apply the wrong edit. However, we constrained students to make only
one change; had we permitted multiple edits, more students may have attempted
erroneous ones.

3.3 Provenance

In this study, we evaluated how provenance output helps students debug a sat-
isfiable spec (as opposed to debugging unsatisfiable specs aided by unsat cores).
As discussed in Sect. 2.3, provenance is an alternative principled output to unsat
cores, and highlights facts necessary to explain the presence or absence of certain
tuples in an output model.
2 Here, “coding” denotes classifying responses, not the colloquial term for program-

ming.
3 Only one author coded the free-form explanations into the 0–3 possible categories;

thus, no inter-coder-reliability is reported. This is reasonable because the objective
nature of having students give explanations along the different blame categories
suggests a low likelihood of inaccurate coding.
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Study Design. We had the other 35 students do the same study as in Sect. 3.2,
except using provenances instead of unsat cores. The students looked at the first
model returned for the specification, then asked the tool why Kitty Bacon was
not in the Cool Cat Club. The tool produces two provenances. Both are subsets
of the unsat core in Fig. 2. One is the same as the unsat core, except it excludes
NoSelfFriendship. The other is the same as the previous provenance, except it
excludes ConnectionsOf[Cat].

Results. We code the student explanations in the same way. Again, the stu-
dents could blame any combination of those three spec fragments but could
only choose one edit. We expect the provenance students to blame and edit
NoSelfFriendship less, as it is not highlighted in either provenance.

Table 2. Effects of provenance on debugging the Kitty Bacon spec

Constraint # Student Blames # Student Edits Correct?

CoolCatClub 20 (57%) 23 (66%) Y

ConnectionsOf[Cat] 21 (60%) 6 (17%) N

NoSelfFriendship 9 (26%) 0 (0%) N

No edit N/A 6 (17%) N

Table 2 reports our results. As expected, not highlighting NoSelfFriendship
resulted in a only a quarter of students mentioning this constraint, and none
proposing to remove it. The students who still mentioned self-friendship most
likely fixated on the highlighted portions of the ConnectionsOf[Cat] definition
that removes KittyBacon from his connected group of friends. Almost a fifth of
students proposed an edit that invalidates the pedagogic portion of the lab (vio-
lating ConnectionsOf[Cat]). Considering that no student exposed to the unsat
core proposed this erroneous edit, this result was quite surprising. A possible
explanation for this surprise is discussed in Sect. 3.4.

3.4 Discussion

We hypothesize some causes for the effects that we have seen. These clearly
indicate areas for future study.

Misleading Visualization. Alloy’s model-visualization can impact understanding.
We see several ways in which this output might have caused more maximal-group
students to pick the erroneous edit; these suggest future studies. Figure 1 shows
the first maximal model that students saw. Even though this model contains
cycles of length 2 and 3, the immediacy and prominence of the 3 self-loops
draws the eye. This may have led students in the maximal-model group to jump
to the conclusion that self-loops (not cycles in general) were the problem to
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be fixed. Moreover, Alloy’s visualizer represents cycles of length 2 as a single,
double-headed arrow. It is easy to not notice that the line represents a pair
of (cycle-inducing) edges. In addition, the small arrowheads are easy to miss.
Furthermore, self-loops and 2-cycles are explicit, requiring only one visual object
to communicate. In contrast, cycles of size 3 and above are implicit ; users must
follow directed edges through multiple nodes to discover the cycle. This may
lead to a tendency to pick out shorter cycles and miss larger ones.

Table 3. Comparing unsat core and provenance on student edits

Constraint # Unsat Core Edits # Provenance Edits Correct?

CoolCatClub 22 (79%) 23 (66%) Y

ConnectionsOf[Cat] 0 (0%) 6 (17%) N

NoSelfFriendship 1 (4%) 0 (0%) N

No edit 5 (18%) 6 (17%) N

Unnecessary Information is Useful. The provenance output highlighted only the
constraints that, for a current model, lead to KittyBacon’s exclusion. In contrast,
the unsat core output highlighted constraints that together imply KittyBacon’s
exclusion for all models. We initially expected provenance to produce higher-
quality results since its output was more focused, but almost a fifth of the
students exposed to provenance proposed the incorrect ConnectionsOf[Cat]
edit—versus zero in the unsat core group (Table 3). This change invalidated
bounded transitive closure from the pedagogic portion of the lab. It appears
that in directing the students’ attention to the extraneous NoSelfFriendship
constraint, unsat core output helped them realize the erroneous edit would inval-
idate the constraint. Thus, we suspect that the “unnecessary” highlight made the
students think about the problem more globally, leading to a higher-quality fix.

4 Evaluation with Crowd-Sourced Subjects

While working with classes gives us useful insights, it also imposes several con-
straints: we have to fit into the time the class can afford, we can run studies
only when the course runs, our population size is bounded by the number of
enrolled students, and so on. We would prefer larger samples to improve sta-
tistical power, and faster responses to efficiently refine our studies. In several
domains, crowdsourcing has proven very useful for this purpose.

We have been trying to evaluate principled output using Amazon’s Mechani-
cal Turk (MTurk), which provides a virtually limitless population of people who
will perform tasks for pay. MTurk happens to attract many technically savvy
survey workers [23]; indeed, many of them fit the demographic of users of tools
that employ model finders underneath.
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We did not reuse the specs of Sect. 3 because we did not want to assume
knowledge of garbage collection, and the Kitty Bacon spec is very intricate,
making it difficult to develop concise and quick MTurk tasks. (Also, Herman
et al. [15] could be read as implying that it is unwise to too directly com-
pare formal and natural language specs, which we use on MTurk.) Instead, we
used two others: one based on an address book and the other on a grade book.
They are similar (but not isomorphic) in that they contain levels of indirection
(the address book has aliases; the grade book has role-based access), and have
constraints to prohibit erroneous configurations (“dead end” chains of address
redirections; students who can both enroll in and assist grading for a course).
Both are understandable to a lay person, and non-trivial while being small.

4.1 Design Decisions

Our MTurk task designs draw on research in both HCI and crowdsourcing.
Ghoniem et al. [12] show that graphs larger than twenty vertices are bet-

ter represented as a matrix. We therefore avoided showing Alloy graphs. This
decision was compounded by Ottley et al.’s work on multiple simultaneous rep-
resentations for Bayesian reasoning tasks [30], which found the lone textual rep-
resentation had most impact and, maybe even more counter-intuitively, present-
ing two representations at once drastically decreases performance. They also
suggest presenting the problem and feedback model in a similar language, so
users can easily make connections between the two. This inspired the match-
ing syntax between the spec and model in our framework. Simons [35] remarks
on participants’ difficulty observing changes across sequential images. We there-
fore switched from multi-page, dynamically changing layouts to a single-page,
static layout. We italicized relations across the specification and model because
Wills [37] states that linked visualizations increase a user’s chances of cognitively
linking information. We used Munzner’s [25] work on designing user interfaces
as a general reference.

We were also inspired by the (rare) non-expert user interfaces for formal
methods tools. DeOrio and Bertacco [8] pose SAT problems to humans in a way
to optimize performance and engagement. Their use of shapes and highlighting
to present logic puzzles to users influenced many of our visualization choices.

Kittur, Chi, and Suh [18] report on the trade-offs of sample sizes, cost, and
quality on MTurk. We therefore collected meta-data in our prototypes to assess
common Turker misconceptions. We paid our respondents a living wage. We also
developed an informal adversarial model to filter out the remaining low quality
responses; the specific number of responses removed are in line with Kittur et
al.’s results on the rate of uninformative responses on MTurk.

Peer, Vosgerau, and Acquisti [31] investigate MTurk’s quality controls and
conclude that reputation and productivity do correlate with response quality.
Therefore, we restricted our studies to Mechanical Turkers with thousands of
completed tasks and high approval rates. Mason et al. [23] evaluate the differ-
ences in expert and crowdsourced populations, while also providing a blueprint
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on how to properly conduct studies on Mechanical Turk. Gould et al. [13] dis-
cuss the difficulty of keeping the attention of crowdsourced subjects, finding
that without intervention, crowd-workers reach inattention after about 5 min;
this influenced our prototypes and final design.

4.2 Training Crowd Workers in Formal Methods

Because we cannot expect workers to know a specific formal language,4 we sys-
tematically translate the specs to English, with a little smoothing of prose. (The
full Alloy and translated specs are provided in the supplement.) For instance,

fact { all a: Assignment | one a.associated } =⇒
“Each assignment is associated with exactly one class.”

We present the specs on MTurk as “logic puzzles”. This hopefully attracts a
more logic-minded audience, but we still want to make sure our workers under-
stand the idea of satisfying models. We therefore include a training phase—which
also serves as an assessment of the workers—before we present the actual study.
This is also important for weeding out people who don’t develop an understand-
ing of the task, people clicking at random (for pay), bots, etc.

We train workers on one of the two specs, and perform the study on the full
version of that spec. During training, we present the spec incrementally, adding
one constraint at a time. At each step, workers are shown a collection of models
and asked to classify them as satisfying or not. The non-satisfying models are not
generated at random, since they might be too easy to tell apart. Rather (on steps
after the first), we choose models that satisfied all but the last added constraint,
and therefore “look about right”. This forces workers to actually engage with
the spec. (The first task’s unsatisfying models are ones with type errors.)

Fig. 3. Classifying crowd workers by understanding

4 We did try to find Alloy users on MTurk. However, in twice the time it took to
complete the studies of this section, we received at most 8 valid responses.
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At each step, we calculate the percentage of correct classifications. At the end,
we compute a weighted average of these percentages. The last step is weighted
at 50%, with each previous step halving the next step’s weight. This primarily
weights their grade by their final classification, but also considers their earlier
scores to invalidate workers who happened to guess correctly at the end. Based
on the histogram of answers shown in Fig. 3, we found it useful to consider
workers with a weighted average of 55% for address book and 70% for grade
book. Doing so eliminated 40% and 39% of workers respectively.

We allowed all workers to proceed with the study. However, in the results
presented in Sect. 4.3, we only show data from the 60% of workers who were
above threshold. We analyzed the results from all workers, and found that those
above threshold did perform significantly better than those below. Therefore,
including all workers would result in even weaker findings below.

On MTurk, we only studied unsat cores and provenance. We did not study
minimality because we presented only minimal models during the training phase.
We made this choice to keep the studies small, in keeping with advice for using
MTurk. Observe that Sect. 3.1 presents problems with minimality for debugging,
not learning. Nevertheless, studying the use of minimality for learning remains
an open question, and may require revisiting these studies.

Our MTurk studies trained 320 workers in total (192 above the threshold).
The average response time was less than a minute per constraint. At a “living
wage” of 15 cents a minute, grade book (with 9 constraints) would require less
than $1.50 to train each respondent. We collected final results in about 6 h
between two weekday mornings.

4.3 Effects of Unsat Cores and Provenance

After training, we present workers with the aforementioned erroneous configu-
rations that the spec explicitly forbids. We generate the unsat core and prove-
nance (shown in the supplement) for these situations similarly to the student
studies. Workers are asked to blame the constraint responsible for forbidding the
situation.

Table 4. Comparing proof output effects on crowd workers

Address book Grade book

Proof output type # Correct Proof output type # Correct

Unsat core 9/49 (18%) Unsat core 23/53 (43%)

Provenance 25/46 (54%) Provenance 32/44 (73%)

Table 4 shows our results. For both specs, the group of workers exposed to
provenance output blamed the truly responsible constraint more than those
shown the unsat core. We performed a Chi-square test with Yates’ continu-
ity correction on the difference between these two proof outputs. Blaming the
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proper constraint differed significantly by proof output for the address book spec
(χ2(1, N = 95) = 11.85, p < 0.001, φ = 0.375, the odds ratio is 0.28) and for
the grade book spec (χ2(1, N = 97) = 7.27, p < 0.01, φ = 0.295, the odds ratio
is 2.04). As shown by Cramer’s V(φ), the effect size for both specs is roughly
medium (0.3).

4.4 Discussion

It is interesting that provenance is useful for MTurk workers. However, we should
note three salient points. First, the specs are (intentionally) much simpler than
those given to students. Second, they are working with English translations;
these findings may not carry over to formal specs. Finally, these numbers only
show a relative improvement: they may say more about the difficulty with unsat
cores than about the utility of provenance.

To see the latter, we note that in address book, the provenance highlighted
only one constraint, yet 46% did not select it! In fact, fewer workers correctly
chose the single highlighted constraint of address book than between the two
in grade book. It is possible that the single highlight led workers to think they
were being “tricked” and made them choose a different constraint, though some
free-form responses indicate this is not the case: workers genuinely intended to
blame a different constraint.

In short, the studies on MTurk are very preliminary and raise many questions.
Nevertheless, we believe it is worth continuing to try crowdsourcing studies to
understand their limits. In particular, combining a training-and-evaluation phase
with an actual evaluation task seems worth considering in future designs. Also,
it may be possible, with much more time, to find several qualified Alloy users
on MTurk or other platforms.

5 Related Work

Principled Model Finding. Model finders, such as Alloy [16], that rely on
SAT/SMT solving techniques after converting specs into boolean logic are known
as “MACE-style” model finders [24]. Koshimura et al. [19] compute minimal
boolean models to solve job-scheduling problems; Aluminum [27] is a general-
purpose variant of Alloy that has a similar approach. Razor [34] is a stand-
alone minimal model finder that also enriches models with provenance for facts.
Janota [17] generates all minimal models to aid in interactive system configu-
ration. CPSA [9] produces minimal models specifically for the cryptographic-
protocol domain. Other approaches to minimal-model generation often rely on
tableaux [29] or hyper-resolution [5]. The semantics of non-monotonic reason-
ing [32] and database updates [10] use a more general definition of minimality.
Our work has focused on evaluating Aluminum’s definition of minimality; we
leave exploring variations for future work. In contrast to minimality, Fu and
Malik develop efficient algorithms for generating maximal models [11]. Cunha,
et al. [6] implement a target-oriented model finder that generates models based
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on a user-defined target metric. While general approaches like Cunha’s have their
own mathematical benefits, we focus on minimality (and its opposite, maximal-
ity) as a first step in user evaluation.

User Evaluation of Formal Methods Tools. Much previous work in the intersec-
tion of formal methods and HCI (e.g., much of the work appearing at the Work-
shop on Formal Methods in Human Computer Interaction) centers on using
formal methods to improve user interfaces. These works are not significantly
related to ours as we focus on the opposite: improving formal tools via user-
centric evaluation.

We are not the first to use rigorous human-factors methods to evalu-
ate formal-methods tools. Aitken, et al. [1] perform a user study to validate
their hypothesis about the way experts use the HOL theorem prover. Beckert,
et al. [3,4] use focus groups to detect gaps between a theorem prover’s proof
state and a user’s internal model of the proof. Hentschel, Hähnle, and Bubel [14]
evaluate two different interfaces for a program verifier and find that less experi-
enced users performed significantly better using the interactive debugger inter-
face. These studies all evaluate theorem proving tools, rather than a model finder.
The two are fundamentally different, both in their user interfaces and in their
essential function: one focuses on finding proofs, the other on constructing con-
crete examples. These results are therefore not directly applicable to us.

D’Antoni et al. [7] contrast the effectiveness of different feedback styles in
an automata-theory tutoring program. Although their tool translates regular-
language logic to English, the translation is intrinsic to part of the interface
being evaluated. Our translation from Alloy to English (Sect. 4) was created
solely for user evaluation and is not a component of Alloy.

All of these works evaluate interfaces, whereas we investigate a semantic con-
cept: selecting which models to present. (In the case of D’Antoni et al., although
counterexamples feature in the feedback, the choice of which to present is not
studied.) Our work also targets a broader range of potential user backgrounds
via crowdsourcing in order to obtain larger sample sizes.

6 Conclusion

Though our efforts are preliminary, they point to a need for the design of princi-
pled output forms to be done in conjunction with user studies: merely appealing
to elegant mathematical properties for output is insufficient. We investigated
three forms of principled output and found that, in isolation, these properties
often harm user understanding. Our results suggest that minimality (and its
maximal dual) can at times be frustrating and misleading, while provenance
can lure users into a narrow, local perspective on their spec. While unsat cores
do widen the user’s vision, their full impact is not clear. User studies can help
identify these unforeseen effects.

While evaluating formal methods with crowd-workers requires more effort
in study design, our preliminary efforts show that it can be viable, especially
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when utilizing a “train-classify-evaluate” chain of activity. Crowd-sourced user
evaluations have economic, time, and sample size benefits, and hence nicely
complement more in-depth, in-person studies. Additionally, effort invested into
training crowd-workers may yield techniques that we can also use more broadly
to educate both students and laypeople in logic and formal methods.
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Foundation.
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