
Razor: Provenance and Exploration in Model-Finding ∗

Salman Saghafi and Daniel J. Dougherty

Department of Computer Science
Worcester Polytechnic Institute

Worcester, MA 01609, USA

Abstract

Razor is a model-finder for first-order theories presented geometric form; geometric logic
is a variant of first-order logic that focuses on “observable” properties. An important guiding
principle of Razor is that it be accessible to users who are not necessarily expert in formal
methods; application areas include software design, analysis of security protocols and policies, and
configuration management.

A core functionality of the tool is that it supports exploration of the space of models of a
given input theory, as well as presentation of provenance information about the elements and
facts of a model. The crucial mathematical tool is the ordering relation on models determined by
homomorphism, and Razor prefers models that are minimal with respect to this homomorphism-
ordering.

1 Introduction
In this paper we report on some aspects of our model-finding tool Razor. Model-finding is a
well-established technique in automated deduction, most typically used in hardware and software
development and verification. Razor’s goals are complementary to these uses of model-finding in formal
verification: it is conceived as a tool to allow users to explore artifacts such as software designs, policies,
protocols, and system configurations. Formally, this corresponds to exploring the space of models of a
first-order specification. We specifically aim at users not expert in formal methods; in this regard our
project is closer in spirit to Alloy [13] than to tools aimed primarily at verification. But our main focus
is on exploration. We are interested in questions such as, “which models should the user see first?”,
“how can the user understand why this model satisfies the specification?” and “how can the user plot a
path through space of all models of the specification?”

In previous work [18] the authors and colleagues have developed a tool, Aluminum, that was an
initial exploration of these ideas, based on SAT-solving technology and evaluated specifically in the
context of software engineering. Razor is an extension and generalization of Aluminum. The crucial
differences are (i) a focus on the notion of homomorphism between models as a reflection of information
content and (ii) specialization to theories presented in a convenient form: geometric logic [1, 5, 24].
These two aspects support exploration of individual models via provenance information for elements
and facts, and exploration of the space of all models of a theory by augmentation. Crucial differences
between Aluminum and Razor are that Aluminum does not treat languages with equality, and compares
models with the same domain with respect to the property of being a submodel, which is a cruder notion
of information-ordering.

There is natural preorder on models of a given signature, given by : A 4 B if there is a
homomorphism from A to B. We write A ≈ B if A 4 B and B 4 A. This preordering has a natural
“information content” interpretation: when A4B, the model B has all the information in A (and perhaps
more). Suppose a user is wondering whether a certain state of affairs S is consistent with a theory T ,

∗This material is based upon work supported by the National Science Foundation under Grant No CNS-1116557

1

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

that is, she is looking for examples of T in which S holds. If A and B are models of T ∪{S}, with
A4 B, then exhibiting A conveys a clearer picture to the user: the extra information in B as compared
with A is not required for S to hold, indeed this extra information is a distraction. We suggest that the
ideal model to present to a user is one which contains only information required to be present in order
to be a model of the underlying theory T and the state-of-affairs S in question. One only has to think of
the familiar notion of a “minimal bug report” to appreciate the principle involved here. Of course there
will not be unique minimal models for a theory, as there are for Horn theories. We understand “M is
minimal” here to mean that for any model N, if N4M then M≈ N.

We should note that Razor does not always return strictly minimal models: to do so is possible in
theory but computationally expensive to guarantee (this is best explained after Razor’s algorithm has
been presented). The tool is intended as a lightweight formal method, allowing users to gain intuitions
based on examples, and the role of minimality—typically obtained and never violated drastically—is to
guide the choice of which models to display. See Example 8 for more discussion.

On the other hand, Razor is sound and refutationally complete (Theorem 4): models returned are
guaranteed to be models of the input theory, and if the theory is unsatisfiable, Razor is guaranteed in
principle to terminate with no models. Needless to say, if a theory has only infinite models, Razor will
not terminate, and termination can be intractable for unsatisfiable theories.

The notion of geometric theory is defined in Section 2. As explained there, any first-order theory is
equisatisfiable with a theory in geometric form and a wide class of specifications are actually logically
equivalent with such theories. For theories in geometric form there is a model-finding approach, the
Chase, that supports the construction of models with the following properties, which together comprise
our notion of provenance in a model.

• No junk, no confusion:1 Every element in the model is there for a reason: concretely, every
element can be named by a Skolem term. Furthermore, if two names denote the same element in
a model, there is a particular equation in the theory whose instantiation with those names induced
this equality.

• Justification: Every fact in the model can be traced back to a specific instance of a particular
axiom in the specification.

Put simply, a user can always ask, “why is this element in the model?”, or “why is this fact true?”, or
“why these two elements equal?” and always be pointed to an axiom that can be “blamed”.

Any one model by itself can only give limited information about the background theory. But it can
be shown that all other models are obtained by adding facts to minimal ones. This suggests presenting
the user with the capacity to play “what if?” games on a given model M. Suppose a certain fact F does
not hold in a model. The user can reasonably ask: “can I add F to the model M?” The answer might be
“no, F is inconsistent with T ”. The answer might be “yes, but if so then G must also be true”: that is,
there may be other facts that follow logically from F in the presence of T .

These two user-focused activities, exploring individual models via provenance information, and
exploring the space of all models through augmentation, are the core functionalities of Razor.

We remark in passing that the ability to specify a theory using infinite disjunctions allows us to
specify certain inductive relations, for example transitive closure, or adversary derivability in protocol
analysis, going beyond first-order specification. We don’t focus on that in this paper, though it requires
very little change to our model-building apparatus: a fuller discussion of this phenomenon and its
applications will appear elsewhere.

1We have not been able to resist this evocative terminology, typically applying to initial algebra specifications, even though
our usage is subtly different from that setting.

2

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

The Name: We are inspired by Ockham’s Razor, “Pluralitas non est ponenda sine neccesitate.” Bertrand
Russell [23] formulated the principle as follows: “Whenever possible, substitute constructions out of
known entities for inferences to unknown entities.”

Related Work

Model-Finding. The development of algorithms for the generation of relational models is an active area
of research. The two most prominent methods are “MACE-style” [17], which reduce the problem to be
solved into propositional logic and employ a SAT-solver, and “SEM-style” [25], which work directly in
first-order logic. The goals of these works are mostly orthogonal to ours, since their concern is usually
not the exploration of the space of all models of a theory. Lightweight formal methods tools such as
Alloy [13] and Margrave [11, 19] also support model-finding as their primary activity.

Minimality. Logic programming languages produce single, least, models as a consequence of their
semantics. Because user specifications are not limited to the Horn-clause fragment, our previous model-
finding tool Aluminum can offer no such guarantee. The more general notion of minimal model in this
paper has already been used in specifying the semantics of disjunctive logic programming [15] and of
database updates [10] and in non-monotonic reasoning, especially circumscription [21].

In more specialized settings, generation of minimal models specifically usually relies on dedicated
techniques, often based on tableaux (e.g., [20]) or hyperresolution (e.g., [4]). Aluminum [18] supports
exploration by returning minimal models: it instruments the model-finding engine of Alloy. It
thus inherits the limitation that it requires user-supplied bounds, and it cannot generate provenance
information. The goals of the Cryptographic Protocol Shapes Analyzer [8] are closely aligned with
ours; in analyzing protocols, it also generates minimal models. However, its application domain and
especially algorithms are quite different from ours.

Geometric Logic. The case for geometric logic as a logic of observable properties was made clearly
by Abramsky [1] and has been explored as a notion of specification by several authors [24], [12].
Geometric logic for theorem-proving was introduced in [3]. In [5] deNivelle generalized the setting
of [3] to incorporate equality, and introduced a technique to augment the underlying theory as the
system “learns” lemmas. The crucial difference with the current work is of course the fact that we
focus on model-finding and exploration.

Chase. Our model-building is founded on the Chase, an algorithm well-known in the database
community [2, 7, 16] Challenges arise for us in managing the complexity that arises due to disjunction,
and in treating equality. Our strategies for addressing these challenges comprise much of the rest of this
paper.

2 Geometric Logic and The Chase
We work over a first-order signature with relations symbols only. As syntactic sugar for users, we allow
function symbols in the concrete syntax: formulas are translated in the usual way to eliminate function
symbols in favor of relation symbols. Theories are augmented with axioms ensuring singled-validness
but not necessarily with totality axioms. This means that we treat functions as being partially defined.

2.1 Geometric Logic

A positive-existential formula is one built over ∧, ∃ and possibly-infinitary
∨

. A geometric sequent is
a construct ϕ ~̀x ψ, here ϕ and ψ are positive-existential formulas that contain free variables from a set
of variables~x: this behaves semantically as ∀~x.(ϕ→ ψ). We refer to ϕ and ψ respectively as body and

3

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

head of ϕ ~̀x ψ. A geometric theory is a set of geometric sequents. (The term “geometric” arises from
the original study of this class of formulas in the nexus between algebraic geometry and logic.)

If α(~x) is a positive-existential formula true of a tuple ~a in a model M then the truth of this fact
is witnessed by a finite fragment of M. Thus if M satisfies α with ~a and is expanded, by adding
new elements and/or new facts, α(~x) still holds of ~a in the resulting model. For this reason, properties
defined by positive-existential formulas are sometimes called observable properties [1]. More generally,
positive-existential formulas are precisely the formulas preserved under homomorphisms; indeed this
holds even if we restrict attention to finite models only [22].

By standard logical manipulations, we may assume that every geometric sequent ϕ ~̀x ψ is in a
simplified form

α(~x) ~̀x
∨

j

(∃y j1 . . .∃y jp.β j(~x,y j1, . . . ,y jp)),

where α and each β j is a conjunction of atoms (perhaps equations). In the rest of this paper, we will
assume geometric sequents to be in this form unless stated otherwise. Note that an empty conjunction
may be regarded as truth (>) and an empty disjunction head as falsehood (⊥). In this way a simple
positive-existential formula, or the negation of such, comprises a geometric sequent itself.

Homomorphism A homomorphism between models M and N is a map from the domain of M to the
domain of N, h : |M| → |N|, such that for every relational symbol R of arity n and any n-tuple (e1, . . .en)
over the elements of M, the fact R(e1, . . . ,en) ∈M implies R(h(e1), . . . ,h(en)) ∈ N. We write M 4 N
for the preorder defined by the existence of a homomorphism from M to N, and M≈N for the reflexive
closure of 4. We say that M is a minimal model in a class C of models if N ∈ C and N 4M implies
N≈M. A set M of models is a set-of-support for a class C if N ∈ C implies that for some M ∈M we
have M4 N.

Thus the homomorphism preorder captures the observable properties of models. In particular, if M
is a minimal model for the class of models of geometric theory T , then no elements or facts of M can
be removed and still yield a model of T . This generalizes the well-known notion of minimal model for
a Horn theory: the difference is that minimal models for a geometric theory need not be unique.

Skolemization Skolem functions will play an important role in the following, especially as regards
provenance of elements. Given a sequent ϕ ≡ α ~̀x

∨
j(∃y j1 . . .∃y jp.β j(~x,y j1, . . . ,y jp)), we assign a

unique, fresh, Skolem function symbol fσ
jk to every existential quantifier ∃y jk, deriving an associated,

Skolemized, sequent α ~̀x
∨

j β j(~x, f σ
j1(~x), . . . , f σ

jp(~x)).

Notation 1. To make it convenient for the reader to refer back and forth between an existential quantifier
and the associated Skolem function, we will adopt the following convention: a quantifier that induces
the Skolem function f may be decorated with f as a superscript in the text. This decoration has no logical
significance for the formula itself, it is simply a convenient meta-notation recording the association. See
Example 13, for instance.

We stress that this Skolemization is not a source-transformation of the input theory, it is a component
of the under-the-hood activity of the Razor tool. The models that Razor constructs are models of the
user’s original input language. The reasons for this distinction are subtle, but important.

Skolemization is sound for refutation theorem-proving since a formula is equisatisfiable with its
Skolemization. The situation for model-finding is different. We do not view Skolemization as
expanding the signature for our models, since the notion of homomorphism is central for us, and
expanding the signature changes the notion of homomorphism: specifically, we do not want to insist
that homomorphisms preserve Skolem functions. Rather, we view Skolemization as the passage from

4

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

a sequent σ to a new sequent σ′ that is existentially quantified by the new function symbols. Note that
in this second-order reading, σ′ is actually logically equivalent to the original σ. Models constructed by
the Chase have the property that every element is added to the model to satisfy an (original) existential
quantifier, so, in a very real sense, the process of model-finding is nothing more than the incremental
construction of witnesses for these Skolem functions. The expanded signature with Skolemization
provides a language to communicate provenance to the user, and also plays a role in bounded model-
finding (Section 3.4).

Expressiveness Any first-order theory is equisatisfiable to a geometric theory, via Skolemization and
passage to conjunctive normal form. So geometric logic does not offer itself as a tractable class for
model-finding, since satisfiability is undecidable. The virtue of geometric form is that it lends itself to a
natural way of constructing models: the Chase.

2.2 The Chase
The standard Chase algorithm proceeds as follows. When the input theory contains disjunctions (in the
consequents of sequents) the Chase must branch in order to do an exhaustive search for minimal models.
It will be easiest to present the algorithm as a non-deterministic procedure. Various runs of the Chase
induced by the non-deterministic choices lead to various models of the theory. Let C be an infinite set of
fresh constants. A fact over C is a closed atomic sentence over C. Now suppose M is a set of facts over
C viewed as candidate model for the theory. If M is not yet a model of T then there is some sequent

σ≡ α(~x) ~̀x
∨

j

γ j(~x)

and environment η≡ {x1 7→ c1, . . . ,xk 7→ ck} making the sequent false in M, i.e., α(η~x) holds in M yet
for no j do we have γ j(η~x) true in M. A chase-step on M, σ, and η that returns a new candidate model

M′ is denoted by M (σ,η)−−−→M′ and proceeds as follows:

Operation 1 choose some disjunct γ j ≡ ∃z j1 . . .z jp . R j1 ∧ . . . ∧R jn ;

Operation 2 add new elements e1, . . . ,ep to C ;

Operation 3 add each of the facts η′R ji (1≤ i≤ n) to M, where η′ is the environment obtained by
adding the bindings z jk 7→ ek (1 ≤ k ≤ p) to η. If any of the R ji is an equality, then
we induce an identification between the appropriate elements of M.

The Chase consists of starting with the empty set of facts and iterating chase-steps. We halt with
success if we reach a set M of facts where we cannot apply a step, i.e. when M is a model of T . We
halt with failure if we reach a set M of facts where a sequent with empty head fails in M (which is to
say, its body is true): we cannot “repair” M to make such a sequent true.

We now prove a lemma that will be later used to prove our main theorem about the Chase:

Lemma 2. Let T be a geometric theory and M a model of T . Let N be a structure such that N 4M.
Then for an environment η and sequent σ ∈ T , if N is not a model of T in η, there exists a chase-step

N (σ,η)−−−→ N′ where N′ 4M.

Proof. Let σ be ϕ ~̀x ψ. Because N is not a model of σ, ϕ is true under η in N but ψ is false under η.
Letting h be the homomorphism from M to N, ϕ is true in M under (h◦η). Since M is a model of T ,
some disjunct ∃y1 . . .∃yp.β(~x,y1, . . . ,yp)), of ψ must also be true in M under (h◦η). That is, there are
elements d1, . . .dp of M with β true in M under (h◦η+) where η+ extends η by mapping the yi to the
di.

5

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

There exists a chase-step N (σ,η)−−−→N′ that chooses this disjunct: it extends N by adding fresh elements
e1, . . . ,ep if p > 0, and ensures that β is true in N′ under η′, where η′ extends η by mapping the yi to the
ei.

If we extend h to map each ei to di, 1 ≤ i ≤ p, it is easy to check that the resulting map is a
homomorphism from N′ to M.

2.2.1 Fairness

A deterministic implementation of the standard Chase that utilizes a scheduler to select the sequent σ

and the environment η is said to be fair if the scheduler guarantees that every pair of possible choices
for σ and η will be eventually evaluated. Definition 3 captures this idea formally:

Definition 3. Let T be a geometric theory and ρ be an infinite run of the chase starting from an empty
model M0:

ρ =M0
(σ0,η0)−−−−→M1

(σ1,η1)−−−−→ . . .Mi
(σi,ηi)−−−−→Mi+1

(σi+1,ηi+1)−−−−−−→ . . .

Let D =
⋃
{|Mk| | 0≤ k} be a domain of elements, where |Mk| denotes the domain of Mk. We say

that ρ is a fair run of the Chase if for every (σ,η), where σ ∈ T and η is an environment from the free
variables of σ to the elements of D , and a structure M j such that M j is not a model of σ in environment
η, there exists i such that j ≤ i and (σi,ηi) = (σ,η).

The following records the basic properties of the Chase; each result is either well-known or a routine
generalization of known facts. Note that it is possible that the Chase may not halt. In this case, if the
Chase is done in a fair manner, the resulting infinite set of facts will be a model of T .

Theorem 4. Let T be a geometric theory. Then T is satisfiable if and only if there is a fair run of the
Chase which does not fail. Let U be the set of models obtained by some execution of the Chase (here we
include the possibility of infinite runs). For any model M of T , there is a U ∈U and a homomorphism
from U to M.

Proof. We show that for every model N of T , there exists a run ρ of the Chase computing a model
M where M 4 N: Let M0 be the empty model. The empty function h : |M0| → |N| is a trivial
homomorphism, thus, M0 4 N. Create a fair run ρ by iterating Lemma 2 on the models generated
by successive chase-steps starting from M0:

ρ =M0
(σ0,η0)−−−−→M1

(σ1,η1)−−−−→ . . .Mi
(σi,ηi)−−−−→Mi+1

(σi+1,ηi+1)−−−−−−→ . . .

If the Chase stops after n steps with Mn, then Mn is a model of T , and Mn 4 N by Lemma 2.
Conversely, if the Chase never stops, the resulting structure M∞ will be infinite. Lemma 2 yields
M∞ 4 N, thus, it suffices to show M∞ is a model of T . That is, for every sequent σ ≡ ϕ ~̀x ψ in T
and every environment η :~x→ |M∞|, M∞ is a model of σ in η: clearly, if ϕ is not true in M∞, σ is
true in M∞. Otherwise, if ϕ is true in M∞, then for some i, η~x ⊆ |Mi|. Since ρ is fair, there exists a

chase-step M j
(σ j+1,η j+1)−−−−−−−→M j+1 for some j where i ≤ j. Finally, because M j+1 is a submodel of M∞

and ψ is positive, ψ is true in M∞ for environment η, hence σ holds.

The set U in Theorem 4 is said to be a set of jointly universal models for T .
A subtle point is that simply running the Chase does not ensure that the models returned are strictly

minimal (Example 8): certain anomalies may cause a naive chase sequence to return a non-minimal
model (though these are still models of the input theory, and it is guaranteed that every minimal model
will certainly be obtained). In theory this can be addressed by post-processing of the space of models

6

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

generated, but this is expensive and non-minimality seems not arise often in practice, so the default is to
return models as computed by the Chase.

2.2.2 Termination

In general, termination of the Chase for an arbitrary geometric theory is undecidable [6]. However,
Fagin et al. [9] define a syntactic condition on geometric theories, known as weak acyclicity, by which
the Chase is guaranteed to terminate. Briefly, one constructs a directed graph whose nodes are positions
in relations and whose edges capture possible “information flow” between positions; a theory is weakly
acyclic if there are no cycles of a certain form in this graph. (The notion of weakly acyclicity in [9]
is defined for theories without disjunction, but the obvious extension of the definition to full geometric
logic supports the argument for termination in the general case.)

Observe that if T is such that all runs of the Chase terminate, then—by König’s Lemma—there is
a finite set of models returned by the Chase. Thus we can compute a finite set that jointly provides a
set-of-support for all models of T relative to the homomorphism order 4.

For theories that do not guarantee termination of the Chase, we must resort to bounding our search
arbitrarily. A simple way to do so, used by Alloy, Margrave, and Aluminum, is to use user-supplied
upper bounds on the domain of the model. In Section 3.3, we describe a somewhat more subtle device
in Razor, based on Skolemization, which allows for controlled confusion in order to bound the search.

2.2.3 Chase Examples

Soon we introduce an extended running example for the paper but we pause here for some simple
examples to demonstrate the Chase.

Example 5.

` ∃x y . R(x,y)

R(x,w) ` ∃y . Q(x,y)

Q(u,v) ` ∃z . R(u,z)

Starting with an empty model, in the first step we treat the first sequent: we create new element e1
and e2 and add the fact R(e1,e2). Then the second sequent fails, so we add an element e3 to instantiate
∃y, and add the fact Q(e1,e3). The third sequent is satisfied in the model {R(e1,e2),Q(e1,e3)} so the
procedure terminates with this model.

Example 6. This example is a very slight syntactic modification of the previous one (in the head of the
third sequent).

` ∃x y . R(x,y)

R(x,w) ` ∃y . Q(x,y)

Q(u,v) ` ∃z . R(z,v)

In this example, the first two steps are the same as above, yielding {R(e1,e2),Q(e1,e3)}. But now
the third sequent requires creation of a new element e4 and the fact R(e4,e3). Then the second sequent
fails in the model {R(e1,e2),Q(e1,e3),R(e4,e3)} and so we add another element . . . and it is easy to see
that the Chase will never terminate on this theory.

7

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

Note, however, that the infinite run of the Chase that is induced does create an (infinite) model of the
theory. As noted above, this is a general fact about fair Chase runs. Although such infinite models are
not presented as output of the tool, the fact that the process creates models “in the limit” is a necessary
component of the completeness proof: unsatisfiable theories will necessarily lead to finitely-failing
computations.

Example 7. This example demonstrates the importance of fairness for correctness of Theorem 4:

` ∃x y . R(x,y)

R(x,y) ` ∃z . R(y,z)

R(x,y) ` ⊥

Consider an “unfair” run of the Chase, which starts with the first sequent, then, continuously favors
the second sequent over the last one: it repeatedly creates new facts R(e1,e2), R(e2,e3), R(e3,e4), . . . ,
thus, never terminates. However, a fair run of the Chase will eventually treat the last sequent and
terminate with failure.

Example 8 (A Failure of Minimality). To gain some intuition about minimality and disjunction,
consider the (propositional) theory

` (A∨B)

A ` B

The Chase can generate two models here, one of which fails to be minimal. What has gone wrong is that
the disjunction is spurious, in the sense that one disjunct is subsumed by the other in the context of the
rest of the theory. This little example makes it clear that any implementation of the Chase that explores
disjuncts without doing global checks for the relationships among the models being constructed can
end up creating models that are not minimal, essentially because the theory the user presented is not as
“tight” as it might be.

This is an interesting phenomenon, since it is still the case that, even in a non-minimal model,
no element or fact is created except when it is required: any model constructed by Razor will have
complete provenance information. But since homomorphisms are defined with respect to the original
(user’s) input language, homomorphisms need not respect provenance information. This opens the door
to failures of minimality such as shown above.

It is also clear that such non-minimality could be avoided at the cost of post-processing the output.
We do not do this, simply because achieving such absolute minimality does not seem to be worth the
computational overhead.

2.3 Extended Example: A File System
We use a translation to geometric logic of the filesystem specification from Alloy’s distribution (at
http://alloy.mit.edu/download.html) as a running example throughout this paper (Figure 1).

Capturing Type Information: The first six sequents in Figure 1 can be viewed as capturing type
information. For instance, files and directories are disjoint subtypes of filesystem objects (Sequents 1,
2, 3 and 4); Live is a relation between a filesystem and a filesystem object (Sequent 5); and, root is a
function that takes a filesystem as input and returns a directory as output (Sequent 6). Sequent 14 forbids
recursive contents in a filesystem.

8

http://alloy.mit.edu/download.html

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

FSOb ject(o) ` Dir(o)∨File(o) (1)
File(f) ` FSOb ject(f) (2)
Dir(d) ` FSOb ject(d) (3)

File(o)∧Dir(o) ` ⊥ (4)
Live(f s,o) ` FileSystem(f s)∧FSOb ject(o) (5)

root(f s) = r ` FileSystem(f s)∧Dir(r) (6)
. . .

parent(f s,o) = p ` Live(f s,o)∧Live(f s, p)∧Dir(p) (7)

Live(f s,o) ` (∃hasParentp. parent(f s,o) = p) (8)
∨ (root(f s) = o) (9)

(root(f s) = r)∧ (parent(f s,r) = p) ` ⊥ (10)
parent(f s,o) = p ` Contents(f s, p,o) (11)
Contents(f s,d,o) ` Contents∗(f s,d,o) (12)

Contents(f s,d1,d2)∧Contents∗(f s,d2,o) ` Contents∗(f s,d1,o) (13)
Contents∗(f s,o1,o2)∧Contents∗(f s,o2,o1) ` ⊥ (14)

> ` ∃someFileSys f s. ∃someObjecto. (15)
FileSystem(f s)∧Live(f s,o)

. . .

Figure 1: Filesystem Example 2

Some Axioms: According to Sequent 7, every object and its parent in a filesystem must live in the
filesystem, and the parent must be a directory. Sequent 8 expresses that every object in a filesystem
must have a parent unless it is the root. The Skolem function hasParent has been assigned to the
existential quantifier in the head of this sequent, which is used for constructing provenance information.
Sequent 10 does not allow the root of a filesystem to have a parent in the filesystem. Sequent 11 states
that every object in a filesystem is a content of its parent. Finally, because of Sequent 15, every model
of the theory has to contain at least a filesystem and an object that lives in that filesystem. The Skolem
functions someFileSys and someObject have been assigned to the existential quantifiers in the head of
this sequent.

Transitive Closure: The axioms corresponding to the transitive closure of Contents are captured by
Sequents 12 and 13, serving as an inductive definition for Contents∗. Notice that because the Chase
only adds Contents∗ facts when required by the theory, the relation Contents∗ is guaranteed to be the
least transitive relation over Contents.

2By the convention established in Notation 1: the existential quantifiers of the theory are tagged with Skolem functions, namely
hasParent, someFileSys and someObject

9

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

3 Running Razor

Razor’s mode of interaction is a read-eval-print loop. Typical user commands include

• load a geometric theory, implicitly generating a stream of models

• navigate through the stream of models, via next and back commands

• augment the current model by adding elements or facts, generating a new stream of models
witnessing the augmentation plus anything entailed in the context of the current theory.

• asking for the provenance, or justification, of an element or a fact.

3.1 Constructing Models

The fundamental operation of Razor is the use of the Chase to construct models. The Chase was
described in the previous section, and some of the implementation design choices are described in
Section 4.

3.1.1 Filesystem Example: Constructing Models

Note that the empty structure is a model of any sequent that has a non-trivial body. So any Razor
computation starts with treating those sequents with empty bodies, such as sequent 15, in the filesystem
example.

Because of Sequent 15, every run of the Chase for the theory adds two fresh elements e1 and e2 to
the initial empty model and makes FileSystem(e1) and Live(e1,e2) true in it.

Next, because the body of Sequent 8 is true but its head is false in the environment { f s 7→ e1,o 7→ e2},
the Chase will make a chase-step on Sequent 8. This may be done by making either of the two disjuncts
in the head true:

• Corresponding to the second disjunct of the head, the fact root(e1) = e2 may be added to the
model.

After this, the body of 6 will be true but its head will be false for { f s 7→ e1,r 7→ e2}; thus, Dir(e2)
will be added to the model. Eventually, after another chase-step on Sequent 3 in environment
{d 7→ e2}, the resulting model will satisfy the theory:

F1 = {FileSystem(e1),Live(e1,e2),root(e1) = e2,Dir(e2),FSOb ject(e2)}

• Alternatively, corresponding to the first disjunct of the head, a fresh element e3 and the fact
parent(e1,e2) = e3 may be added to the model. Consequently, after processing Sequent 7 and
Sequent 11 for { f s 7→ e1,o 7→ e2, p 7→ e3}, Sequent 12 for { f s 7→ e1,o 7→ e2,d 7→ e3}, and adding
the corresponding facts to the model, once again, the body of Sequent 8 will become true for
{ f s 7→ e1,o 7→ e3} while its head is false. Again, the Chase can make the head of Sequent 8 true
by choosing either of the two disjuncts in the head.

10

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

If the Chase chooses to make root(f s) = e3, the next two models will be returned:

F2 = {FileSystem(e1),Live(e1,e2), parent(e1,e2) = e3,Contents(e1,e3,e2),

Contents∗(e1,e3,e2),Live(e1,e3),root(e1) = e3,

Dir(e3),FSOb ject(e3),File(e2),FSOb ject(e2)}
F3 = {FileSystem(e1),Live(e1,e2), parent(e1,e2) = e3,Contents(e1,e3,e2),

Contents∗(e1,e3,e2),Live(e1,e3),root(e1) = e3,

Dir(e3),FSOb ject(e3),Dir(e2),FSOb ject(e2)}

Alternatively, if the Chase chooses the first disjunct of Sequent 8 and allows a fresh element
e4 to be the parent of e3, the sequent will again have the opportunity to be processed under
{ f s 7→ e1,o 7→ e4}. This situation arises for every new element that is created to be the parent of
an existing one: it is easy to see that a run of the Chase that always chooses the first disjunct of
Sequent 8 corresponds to an infinite model and will not terminate. In addition, the theory has an
infinite number of models as there is no bound on the depth of filesystem trees.

3.2 Model Augmentation

Let T be a geometric theory and M be a model of T . Razor allows the user to augment M with an
additional “observation” α resulting in an extension model N of T such that α ∈ N. The observation
α can in principle be an arbitrary positive-existential formula, though clearly there is no benefit to the
user in allowing disjunction. So in practice we accept any possibly-existentially quantified conjunction
of atomic sentences referring to elements of the model.

Due to the monotonicity of our model-building process, N may simply be computed by a run of the
Chase starting with a model M′ ≡M∪{α}. Such a run of the Chase starting from M′ will fail if M
is inconsistent with α according to T . Similarly, if α entails other observations given T and the facts
already in M, those observations will be added to the resulting model.

3.2.1 Filesystem Example: Augmentation

Consider model F1 from the filesystem example. Assume the user is conjecturing that it is possible
for the root of the filesystem in this model to be the parent of another object. The user can test her
conjecture by augmenting F1 with the fact parent(e1,e3) = e2 where e3 is a fresh element that currently
does not live in F1.

Razor verifies the conjecture by a run of the Chase starting from F′1 ≡ F1 ∪{parent(e1,e3) = e2}.
This run will add Live(e1,e3) to F′1 due to a chase-step on Sequent 7 and environment { f s 7→ e1,o 7→
e3, p 7→ e2}. Consequently, after a few more steps on Sequents 5, 11, 12 and 1, the Chase will terminate
with either of the two following models:

F′1∪{Live(e1,e3),FSOb ject(e3),File(e3),Contents(e1,e2,e3),Contents∗(e1,e2,e3)}
or F′1∪{Live(e1,e3),FSOb ject(e3),Dir(e3),Contents(e1,e2,e3),Contents∗(e1,e2,e3)}

The result of this operation shows that the user’s conjecture is true: the specification allows for the
root of the filesystem to be the parent of a file or a directory, nevertheless, in presence of additional
information implied by the new fact.

11

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

Alternatively, if the user attempts to augment a model with inconsistent facts, Razor will not return
any models. This behavior often comes in handy when verifying invariants that must hold in the models
of the theory. For example, if the user chooses to augment F2 from the running example with a new fact
root(e1) = e2, no models will be returned: since element e3 is the parent of e2 in filesystem e1, because
of Sequent 10 (see Figure 1), e2 cannot be the root of the filesystem.

3.3 Provenance Computation
Here we make precise the sense in which Razor computes provenance information. We first define the
notions of name and justification for the elements and facts of models.

Definition 9. Consider a chase-step M (σ,η)−−−→N for sequent σ≡ ϕ `{x1,...,xm} ψ. Let ∃ f1
1 y1 . . .∃

fp
p yp.E be

the disjunct in ψ selected by the algorithm (Operation 1), and let e1, . . . ,ep be the set of fresh elements to
be added to M (Operation 2). For each i, let fi be the Skolem function associated with the ith existential
quantifier. Then the name of element ei in the new model N, written as NN(ei), is a closed term defined
by the following:

NN(ei) = fi(NM(η(x1)), . . . ,NM(η(xm)))

Note that this term depends on the sequent in question, the model M, and the environment η.

Definition 10. Let M (σ,η)−−−→N be a chase-step. Let F be the set of facts to be added to N (Operation 3).
Then we say the pair (σ,η) is the justification of a F ∈ F in N, denoted by ΓN(F).

Names and justifications connect the elements and the facts of a model, which is constructed by some
run of the Chase, to fragments of the theory that necessitate the existence of those elements and facts.
Razor constructs the name and the justification data in separate computational contexts in parallel with a
run of the Chase and presents the results of those computations as explanatory provenance information
for models. The user can use this information to understand why a particular element exists in a model,
why a fact is true, or why two elements are equal, bridging the gap between the model and the theory.

Theorem 11. Let M be a model over the domain |M|, which is constructed by Razor for a theory T .
Then

• every element e∈ |M| is named by a term t ≡NM(e) over the Skolem functions that are associated
to the existential quantifiers of T .

• every fact F ∈M is justified by a pair (σ,η)≡ ΓM(F) for σ ∈ T and η :~x→ |M|, where~x is the
set of free variables in σ.

Theorem 11 is trivially true because every element and fact in a model that Razor constructs is added
as the result of some chase-step. This automatically assigns a name to every element and a justification
to every fact.

Informally speaking, every piece of information, whether an element or a fact, in a model constructed
by Razor is necessary, that is, it is the product of some chase-step, necessary for repairing a sequent of
the input theory in the model.

Razor, however, allows for controlled confusion in order to bound the search for models:

Definition 12. Fix a natural number d. We say that two ground terms s and t are d-equivalent, written
s≈d t, if they agree, as trees, up to depth d.

Razor constructs the provenance and justification information as byproducts of a run of the Chase,
in parallel computational contexts.

12

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

Figure 2: Bounding by Skolem Depth

3.3.1 Filesystem Example: Provenance

Recall model F2 for the filesystem example. Suppose that the user is interested in an explanation for
element e3 in F2. The provenance of e3 in F2 is computed as follows:

1. Notice that Sequent 15 in Figure 1 contains no free variables, thus, Skolem functions someFileSys
and someObject are nullary. Therefore, when applying a chase-step on Sequent 15, the names
of the freshly generated elements e1 and e2 are respectively computed as NF2(e1) = someFileSys
and NF2(e2) = someObject.

2. When making a chase-step on Sequent 8 in environment { f s 7→ e1,o 7→ e2}, yielding element e3,
the name NF2(e3) = hasParent(someFileSys,someObject) is computed.

Intuitively, the term hasParent(someFileSys,someObject) provides the user with the following
explanation for e3: the (constant) terms someFileSys and someObject imply the existence of two
elements (i.e., e1 and e2) in F2. Besides, the theory necessitates that the object named by the latter
must have a parent in the filesystem named by the former: element e3 is the parent.

The user may also ask “why e3 is a directory in F2?”. It is easy to see that the justification
information for Dir(e3), ΓF2(Dir(e3)), is the pair (Sequent 7,{ f s 7→ e1,o 7→ e2, p 7→ e3}): intuitively,
because e3 is the parent of e2 in filesystem e1, Sequent 7 requires it to be a directory.

3.4 Bounded Model-Finding
There is a natural way to view the set of closed terms as a metric space, defining the distance between
distinct terms s and t is 2−d where d is the least depth such that s 6≈d t. If we fix a constant symbol a
then every closed term has a canonical representative for its ≈d-equivalence class: we simply truncate
the term at depth d if necessary by replacing the level-d subterm by a.

When we apply the above ideas to the closed terms that serve as names for elements of a model
built by the Chase, terms that are “close” in the metric above are those that share much of their name,
and intuitively behave similarly in the model. Razor uses this device to offer the user the opportunity to
bound the Chase. The user can specify a Skolem depth d, and when the chase is about to create a new
element with name t whose name-depth is greater than d, we instead re-use the element named by the
depth-d term that is ≈d-equivalent to t. Note that the two terms thus equated have distance less than
2−d between them.

Example 13. Consider the following theory, where—in accordance with the convention in Notation 1
Skolem functions a, b and h are assigned to the existential quantifiers.

` ∃a∃b . x y . R(x,y)

R(x,y) ` ∃hz . R(y,z)

13

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

Figure 2 displays three models for the previous theory, where elements are denoted by circles and
tuple of relation R by edges between the elements. An unbounded run of the Chase creates the infinite
model (a). Bounded runs of the Chase up to Skolem depth 1 and 2 respectively lead to models (b) and
(c).

During a run of the Chase for this theory, the elements in order of creation will be named by the
terms a, b, s = h(a,b), t = h(b,s), u = h(s, t), v = h(t,u), etc. When the search is bounded by Skolem
depth 1, because s≈1 t, Razor reuses the third element to instantiate the existentially quantified variable
z instead of creating a fresh element. Similarly, when the search is bounded by Skolem depth 2, because
u≈2 v, the fifth element is reused

The net result is that we construct a model in which terms have been identified that may not have
been equal in our chase-model. But in a precise sense, we only identify elements that are close in
the sense of the metric above. This technique can also be used in an iterative-deepening approach to
unbounded model-finding.

Theorem 14. Let M be a model on domain |M| constructed by a bounded search up to depth d. Let d1
and d2 be the depth of NM(e1) and NM(e2) for two elements e1 and e2 in M, given d1 < d and d2 < d.
Then e1 = e2 is true in M if and only if it is justified by a pair (σ,η) ≡ ΓM(e1 = e2) for σ ∈ T and
η :~x→ |M|, where~x is the set of free variables in σ.

We sketch a proof of Theorem 14: by Theorem 11, every fact in M that is constructed by an
unbounded run of the Chase is justified. This includes the equational facts over the elements of M.
However, when the search is bounded by depth d, Razor reuses a canonical depth-d element, ed , instead
of creating a new element e when NM(e) has a depth greater than d. This forces an unjustified equality
between e and ed in M.

When running Razor with a bound on the depth of Skolem terms, then the goal of “no confusion” is
of course compromised. But since the unjustified equalities in those models are restricted to elements
with names of the maximum depth we may say that we have “controlled confusion.” Specifically, if two
terms t1 and t2 are unjustifiably equated by a bounded run, with bound d, then we know that the distance
between t1 and t2 is less that 2−d .

3.4.1 Filesystem Example: Bounded Model-Finding

The idea of bounding the search by the depth of element names guarantees that any run of the Chase for
the Filesystem theory will terminate. Let us assume that the search is bounded by depth 2: as described
above, a run of the Chase that always chooses the first disjunct of Sequent 8 creates e3 to be the parent
of e2 in the filesystem e1. The term NM(e3) = hasParent(someFileSys,someObject) is the name of the
new element in the current model. In the next iteration, this run of the Chase will create a new element
e4 to serve as the parent of e3, where NM(e4) = hasParent(someFileSys,NM(e3)). Next, when the
Chase is about to introduce a parent e5 for e4 with name NM(e5) = hasParent(someFileSys,NM(e4)),
because NM(e5) ≈2 NM(e4), the Chase will reuse the existing element e4 instead of creating e5. This
will break the infinite cycle of creating new elements. In this example, however, Parent(e1,e4) = e4
implies Contents(e1,e4,e4), which causes the current run of the Chase to fail on Sequent 14.

4 Implementation
Scheduling We maintain a run of the Chase for a theory T as a pair (Q ,M), called a problem,
consisting of a model M and a queue Q of sequents. The model M is the collection of all facts inferred
by the current run of the Chase and Q is used to schedule the sequents of T in a fair manner. In

14

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

every execution of Razor, the overall state of computation is a pool of problems, initialized with a
single problem with an empty model. In every cycle, Razor selects a problem (Q ,M) from the pool,
selects a sequent σ from the head of Q , computes a model M′ by applying a chase-step on σ for M and
some environment η in which M does not satisfy σ, reschedules σ at the end of the queue yielding Q ′,
and, restores (Q ′,M′) into the pool. A problem (Q ,M) will be removed from the pool and M will be
presented to the user once M is a model of T ; the problem will also be removed if the Chase fails on M.

Performing a chase-step for a problem (Q ,M) with σ≡ ϕ `
∨n

i=1 ψi at the head of Q yields a set of
problems Pi = (Q ′,Mi) for 1 ≤ i ≤ n. Each model Mi is the result of making a disjunct ψi true in M,
enabling us to follow the consequences of every choice of disjunct as a separate problem in the pool.

In practice, we use a priority queue to schedule the sequents of theory T in a problem: this allows
the scheduler to prioritize sequents with⊥ in their heads over the the other sequents that may extend the
current model with new facts and elements. As a consequence, Razor terminates a failing branch before
wasting unnecessary chase-steps on the other sequents of the theory.

Sequents as Relational Algebra Queries Computationally, a major cost of applying a chase-step on
a sequent σ ≡ ϕ ~̀x ψ and a model M is due to computation of an environment η in which M does not
satisfy σ. The cost of a naive computation of η grows significantly with the size of M as it requires
testing σ in M for every map from~x to |M|. For an efficient solution to this problem, we implement the
Chase from a relational algebra perspective as follows:

Via the well-known correspondence between first-order formulas and relational algebra expressions,
a positive-existential formula ϕ can be regarded as a database view with a relational expression Vϕ.
Consequently, a geometric sequent ϕ ~̀x ψ will correspond to a pair of union-compatible views, Vϕ and
Vψ, with~x as their attributes.

Let Vϕ(M) denote the set of tuples returned by evaluating Vϕ in a model M as database. Then M
satisfies the sequent ϕ ~̀x ψ if and only if Vϕ(M) ⊆ Vψ(M) holds. Therefore, a chase-step on sequent
ϕ ~̀x ψ in model M can be seen as a procedure that inserts the tuples in Vϕ(M)−Vψ(M) into the view
Vψ(M) as a view update problem. By adopting the relational algebra perspective, an environment η is
implicitly constructed as a mapping from~x, to some tuple t in Vϕ(M)−Vψ(M).

The current implementation of Razor starts with translating the sequents of input theory to pairs
of relational expressions in a preprocessing step. Accordingly, the Chase is implemented as described
above. We have also been inspired by various ideas in the database literature to improve the efficiency
of Razor. In particular we have developed a mechanism for incremental view maintenance that allows
Razor to evaluate the views efficiently as the model grows.

Equational Reasoning The current version of Razor performs a naive algorithm for equational
reasoning: every time a chase-step adds a new fact e1 = e2 to a model, Razor simply collapses the two
elements by rewriting all of the occurrences of e2 in the current model with e1. Due to monotonicity,
the current algorithm is sound: adding more facts to the current model will not violate the equality of e1
and e2.

Developing an efficient algorithm for handling equality reasoning in our context remains as a future
work.

5 Case Studies
The current version of Razor is a proof of concept, developed to explore the idea of model-finding
for theories in geometric form. In particular, the purpose of the current implementation is to study
the characteristics of the models constructed by a chase-based algorithm, to evaluate the termination

15

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

Spec. Alloy Aluminum Razor
models bound # models size range bound # models size Skolem depth

Bday(2) 27 8 1 4-4 8 1 3-3 no bound
Bday(3) 11 7 1 4-4 7 1 4-4 no bound
Gene 64 6 64 6-6 6 162 6-12 2
Gpa 2 4 2 4-4 4 2 4-4 no bound
Java 1566 9 3 4-4 9 15 5-6 1
File(1) 0 10 0 - 10 0 - no bound
Grade(1) 10837 9 3 4-5 9 2 4-5 no bound
Grade(2) 49 6 3 4-5 6 2 4-5 no bound
Grade(3) 3964 9 1 2-2 9 1 2-2 no bound

Figure 3: Models returned by Alloy, Aluminum and Razor.

results of such a model-finding solution, to study the practical implications of constructing provenance
information, and to realize the idea of exploring the space of models through minimality.

We executed our model-finding tool for the sample specifications that we had previously used for
evaluating Aluminum [18], after we manually converted them to the geometric form (available at
https://github.com/salmans/RazorExamples). Although the current version has not been
designed and implemented with performance considerations, the execution times of Razor in our
experiments are comparable to those of Alloy and Aluminum.

Table 3 compares the number and the size of models produced by Alloy, Aluminum and Razor. The
first column represents the specifications birthday (Bday), genealogy (Gene), grandpa (Gpa), javatypes
(Java), filesystem (File) and gradebook (Grade). All of the sample specifications except Grade are
taken from the Alloy distribution. In this column, the numbers in parentheses distinguish variations
of a root specification. The second and the third columns respectively contains the number of models
returned by Alloy and the bound size for those models. The next three columns respectively display
the number of models, the range of number of elements in those models, and the total bound size for
the models produced by Aluminum. (Since the number of models produced by Alloy is large in some
cases, we did not compute a size range for these sets.) The same bound sizes have also been used for our
experiments with Alloy. Similarly, the last three columns demonstrate the number of models, the range
of number of elements in those models, and the Skolem depth used to bound the models constructed by
Razor.

Weakly-Acyclic Theories When the theory is weakly acyclic (Bday, Gpa, File(1), Grade),
unbounded search is possible. For these specifications, Razor returns a finite set of universal models,
assuring the user that every model of the theory reduces to one of the universal models: all three model-
finders, Alloy, Aluminum and Razor, return exactly two models for the specification of the well-known
“I’m my own Grandpa” example (Gpa). However, because Alloy and Aluminum perform a bounded
search (for models with up to 4 persons), it is not clear that if the given bound is sufficient to contain
all scenarios where a person is his own grandpa. The unbounded search by Razor, on the other hand,
reveals that in every model of the theory, a person may be his own grandpa because of two specific
combinations of relations between exactly 4 persons. Put differently, the two models returned by Razor
form the support of all the models of the theory.

Unsatisfiable Theories Unbounded search is reassuring when the theory is unsatisfiable: File(1)
specifies a filesystem and tries to build a counterexample that shows moving a file in the filesystem is

16

https://github.com/salmans/RazorExamples

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

“unsafe.” Razor guarantees that File(1) is unsatisfiable, thus, moving files in the specified filesystem is
in fact “safe.” However, Alloy and Aluminum can show that the specification does not have any models
only up to some given bound.

Homomorphic Minimality A crucial point to keep in mind is that Aluminum computes models that
are minimal with respect to the property of being a submodel, as opposed to the homomorphism order.
For Grade(1) and Grade(2), Alloy and Aluminum execute the same command but with different bounds
on the size of models. In every execution, Aluminum starts with some arbitrary model, as constructed
by Alloy, removes the unnecessary facts from the model until every fact in the model is inevitable
for satisfying the theory. This process, however, does not guarantee a model that is homomorphically
minimal as the model may contain confused elements. As for unbounded runs of Razor, however, the
resulting models for these two specifications are homomorphically minimal. The extra models that
are returned by Aluminum for Grade(1) and Grade(2), as well as the extra element in the model for
Bday(2) is caused by this discrepancy.

It is important to keep in mind that a run of Razor that is bounded by some Skolem depth may also
produce models that contain confused elements hence not minimal. However, confusion among the
elements of models that Razor builds is controlled as discussed in Section 3.3.

Bounded Model-Finding Because Java and Gene are not weakly-acyclic, Razor’s search for models
has to be bounded to avoid nontermination. However, because Aluminum puts a bound on the size of
models but Razor’s search is bounded by Skolem depth, the number of models returned by Aluminum
and Razor are not comparable. Moreover, Aluminum and Razor return different sets of models for Java
and Gene since confusion is arbitrary in models that Aluminum builds but controlled in those of Razor.

Conclusion
We presented Razor, a model-finder for theories in geometric form, which allows the user to explore
the models of a first-order specification. The core functionality of Razor is to facilitate the two
aspects of exploration, (i) exploring the space of all models of a theory through augmentation, and (ii)
apprehending individual models via provenance information based on Skolemization. Razor implements
a novel approach to bound the search for models, which allows for “controlled confusion” among
the elements of models. We also reported on the results of our experiments with our preliminary
implementation of Razor.

Acknowledgments. We are grateful to Kathi Fisler, Joshua Guttman, Shriram Krishnamurthi, Tim
Nelson, and John Ramsdell for their insights and encouragement.

References
[1] Samson Abramsky. Domain theory in logical form. Ann. Pure Appl. Logic, 51(1-2):1–77, 1991. Second

Annual IEEE Symposium on Logic in Computer Science (Ithaca, NY, 1987).
[2] Catriel Beeri and Moshe Y Vardi. A proof procedure for data dependencies. Journal of the ACM (JACM),

31(4):718–741, 1984.
[3] Marc Bezem and Thierry Coquand. Automating coherent logic. In LPAR, Logic for Programming, Artificial

Intelligence, and Reasoning, volume 3835 of Lecture Notes in Computer Science, pages 246–260, 2005.
[4] F. Bry and A. Yahya. Positive unit hyperresolution tableaux and their application to minimal model generation.

Journal of Automated Reasoning, 2000.

17

Razor: Provenance and Exploration in Model-Finding Saghafi, Dougherty

[5] Hans de Nivelle and Jia Meng. Geometric resolution: A proof procedure based on finite model search. In
Ulrich Furbach and Natarajan Shankar, editors, IJCAR, volume 4130 of Lecture Notes in Computer Science,
pages 303–317. Springer, 2006.

[6] Alin Deutsch, Alan Nash, and Jeff Remmel. The chase revisited. In Proceedings of the twenty-seventh ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 149–158. ACM, 2008.

[7] Alin Deutsch and Val Tannen. Xml queries and constraints, containment and reformulation. Theoretical
Computer Science, 336(1):57–87, 2005.

[8] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Searching for shapes in cryptographic protocols.
In Tools and Algorithms for the Construction and Analysis of Systems, 2007.

[9] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data exchange: Semantics and query answering. Database
Theory ICDT 2003, pages 207–224, 2002.

[10] R. Fagin, J.D. Ullman, and M.Y. Vardi. On the semantics of updates in databases. In Symposium on Principles
of Database Systems, 1983.

[11] Kathi Fisler, Shriram Krishnamurthi, Leo Meyerovich, and Michael Tschantz. Verification and change impact
analysis of access-control policies. In International Conference on Software Engineering, 2005.

[12] Joshua D. Guttman. Security theorems via model theory. EXPRESS: Expressiveness in Concurrency (EPTCS),
8:51, 2009. doi:10.4204/EPTCS.8.5.

[13] Daniel Jackson. Software Abstractions. MIT Press, 2 edition, 2012.
[14] Bernard Linsky. Logical constructions. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy.

Winter 2012 edition, 2012.
[15] J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Programming. The MIT Press, 1992.
[16] David Maier, Alberto O Mendelzon, and Yehoshua Sagiv. Testing implications of data dependencies. ACM

Transactions on Database Systems (TODS), 4(4):455–469, 1979.
[17] William McCune. MACE 2.0 reference manual and guide. CoRR, 2001. cs.LO/0106042.
[18] Tim Nelson, Salman Saghafi, Daniel J Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Aluminum:

principled scenario exploration through minimality. In Proceedings of the 2013 International Conference on
Software Engineering, pages 232–241. IEEE Press, 2013.

[19] Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. The
Margrave Tool for Firewall Analysis. In USENIX Large Installation System Administration Conference, 2010.

[20] Ilkka Niemelä. A tableau calculus for minimal model reasoning. In Workshop on Theorem Proving with
Analytic Tableaux and Related Methods, 1996.

[21] A. Robinson. Handbook of Automated Reasoning, volume 2. Elsevier, 2001.
[22] Benjamin Rossman. Existential positive types and preservation under homomorphisms. In Logic in Computer

Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE Symposium on, pages 467–476. IEEE, 2005.
[23] Bertrand 1924 Russell. Logical atomism. In D. F. Pears, editor, The Philosophy of Logical Atomism, pages

157–181. Open Court, 1985.
[24] Steven Vickers. Geometric logic as a specification language. In Chris Hankin, Ian Mackie, Rajagopal Nagara-

janChris Hankin, Ian Mackie, and Rajagopal Nagarajan, editors, Proceedings for the Second Imperial College
Department of Computing Workshop on Theory and Formal Methods, pages 321–340, 1995.

[25] J. Zhang and H. Zhang. SEM: a system for enumerating models. In International Joint Conference On
Artificial Intelligence, 1995.

18

	Introduction
	Geometric Logic and The Chase
	Geometric Logic
	The Chase
	Fairness
	Termination
	Chase Examples

	Extended Example: A File System

	Running Razor
	Constructing Models
	Filesystem Example: Constructing Models

	Model Augmentation
	Filesystem Example: Augmentation

	Provenance Computation
	Filesystem Example: Provenance

	Bounded Model-Finding
	Filesystem Example: Bounded Model-Finding

	Implementation
	Case Studies

