
High-Performance Nested CEP Query Processing
over Event Streams

Mo Liu #, Elke Rundensteiner #, Dan Dougherty #, Chetan Gupta *, Song Wang *, Ismail Ari , Abhay Mehta *

Worcester Polytechnic Institute, USA
{liumo lrundenst ldd}@cs.wpi.edu

* Hewlett-Packard Labs, USA
{chetan. guptalsongwlabhay. mehta }@hp. com

Ozyegin University, Turkey
Ismail.Ari@ozyegin.edu.tr

Ahstract- Complex event processing (CEP) over event streams
has become increasingly important for real-time applications
ranging from health care, supply chain management to busi
ness intelligence. T hese monitoring applications submit complex
queries to track sequences of events that match a given pattern.
As these systems mature the need for increasingly complex
nested sequence query support arises, while the state-of-art
CEP systems mostly support the execution of flat sequence
queries only. To assure real-time responsiveness and scalability
for pattern detection even on huge volume high-speed streams,
efficient processing techniques must be designed. In this paper,
we first analyze the prevailing nested pattern query processing
strategy and identify several serious shortcomings. Not only
are substantial subsequences first constructed just to be subse
quently discarded, but also opportunities for shared execution
of nested subexpressions are overlooked. As foundation, we
introduce NEEL, a CEP query language for expressing nested
CEP pattern queries composed of sequence, negation, AND and
OR operators. To overcome deficiencies, we design rewriting rules
for pushing negation into inner subexpressions. Next, we devise a
normalization procedure that employs these rules for flattening a
nested complex event expression. To conserve CPU and memory
consumption, we propose several strategies for efficient shared
processing of groups of normalized NEEL subexpressions. These
strategies include prefix caching, suffix clustering and customized
"bit-marking" execution strategies. We design an optimizer to
partition the set of all CEP sub expressions in a NEEL normal
form into groups, each of which can then be mapped to one of our
shared execution operators. Lastly, we evaluate our technologies
by conducting a performance study to assess the CPU processing
time using real-world stock trades data. Our results confirm that
our NEEL execution in many cases performs 100 fold faster than
the traditional iterative nested execution strategy for real stock
market query workloads.

I. INTRODUCTION

Complex event processing (CEP) has become increasingly
important in modern applications, ranging from supply chain
management for RFID tracking to real-time intrusion detec
tion [1], [2], [3]. CEP must be able to support sophisticated
pattern matching on real time event streams including the
arbitrary nesting of sequence (SEQ), AND, OR and the flexible
use of negation in such nested patterns. For example, consider
reporting contaminated medical equipments in a hospital [4],
[5], [6]. Let us assume that the tools for medical operations

are RFID-tagged. The system monitors the histories of the
equipment (such as, records of surgical usage, of washing,
sharpening and disinfection). When a healthcare worker puts
a box of surgical tools into a surgical table equipped with
RFID readers, the computer would display warnings such
as "The tool with id = "5" must be disposed". Query Q 1
(Figure 1) expresses this critical condition that after being
recycled and washed, a surgery tool is being put back into use
without first being sharpened, disinfected and then checked
for quality assurance. Such complex sequence queries may
contain complex negation specifying the non-occurrence of
composite subpatterns, such as negating the composite event
of sharpened, disinfected and checked subsequences.

PATIERN SEQ(Recycie r, Washing w,

! SEQ(Sharpening s, Disinfection d, Checking c, s.id=d.id=c.id=o.id),

Operating 0, r.id=w.id=o.id and o,ins-type="surgery")

WITHIN 1 h our

Fig. I. Example Query Ql

One of the most interesting and flexible features of a query
language is the nesting of operators to an arbitrary depth [7],
[8]. Without this capability, users are severely restricted in
forming complex patterns in a convenient and succinct manner.
However, the state-of-art CEP systems including SASE [1] and
ZStream [3] do not support such nested queries. Even though
the Cayuga system [2] mentions composable queries, it only
allows sub-queries in the FROM clause and it also doesn't
support applying negation over composite event types. Our
objective however is to allow the specification of negation
within any level of the nested query as shown above in the
example. While CEDR [9] allows applying negation over
composite event types within their proposed language, the
execution strategy for such nested queries is not discussed. In
short, no processing nor optimization mechanisms for nested
CEP queries have been proposed in the literature to date.

Without the design of an optimized execution strategy

978-1-4244-8960-2/11/$26. 00 © 2011 IEEE 123 ICDE Conference 2011

for nested sequence queries, an iterative nested execution
strategy would typically be adopted by default [10], [11],
[12]. Namely, first all component events matching the outer
query are identified. In our example, we thus would compute
all matching composite events consisting of SEQ(Recycle,
Washing, Operating) subsequences. Thereafter, for each outer
SEQ(Recycle, Washing, Operating) match, the results for the
nested inner subsequences are iteratively computed, i. e. , in this
case, (Sharpening, Disinfection, Checking) subsequences. As
last step, each outer candidate sequence result will be filtered
by the non-existence of the inner subsequence match between
the Washing reading and Operating reading. This process of
first rigidly undertaking the construction of sequence results
for the outer operators and then constructing sequence results
for the inner operators is not efficient as it misses critical
opportunities for optimization as we will illustrate below.
Problem 1: Candidate sequence results generated may later
simply be discarded - thus wasting precious resources. For
example in the above query Q 1, the generation of the sequence
results for the outer subexpression SEQ(Recycle, Washing,
Operating) may all be wasted as during normal medical
procedures inner sequences of type (Sharpening, Disinfection,
Checking) would indeed exist between event pairs of Washing
and Operating. This unnecessary event generation of later
again discarded candidate sequence results wastes precious
memory and CPU processing resources.
Problem 2: Full results satisfying the nested negated subex
pression, such as instances that match the subsequence
SEQ (Sharpening s, Disinfection d, Checking c) in Q 1 will be
repeatedly constructed and processed for each outer candidate.
However, knowing the existence of only one (Sharpening
s, Disinfection d, Checking c) event between Washing and
Operating events would be sufficient for filtering a candidate.

Our goal is to design nested CEP processing and optimiza
tion strategies that overcome the above identified shortcomings
- thus significantly saving CPU processing resources. In this
paper, we make the following contributions:

• First we introduce the nested CEP language NEEL that
supports the flexible nesting of AND, OR, Negation and
SEQ operators at any level. We also describe the query
algebra of NEEL.

• Based on this foundation, we develop a set of equivalence
rules for rewriting NEEL expressions. Then, we propose
a normalization procedure that employs these rewriting
rules to transform a nested CEP query into an equivalent
non-nested query - thus opening the opportunity for
query optimization.

• The normalized expression exposes opportunities for
query optimization by shared expression processing. We
propose several strategies for implementing physical op
erators for the shared execution of a set of similar nor
malized subexpressions, including prefix caching, suffix
clustering and a customized "bit-marking" method.

• Due to the exponential search space, we propose an effec
tive cost-based search heuristic for establishing groupings
of subexpressions - each then mappable to one of our

above shared execution physical operators.
• We thoroughly evaluate our optimized NEEL execution

through experiments comparing it to the state-of-the-art
technique, namely iterative nested execution [11]. Our
results confirm that our NEEL execution in many cases
performs 100 fold faster than the traditional iterative
nested execution for real stock market query workloads.

II. NESTED CEP QUERY MODEL

A. Event Model

An event instance is an occurrence of interest in a system
which can be either primitive or composite as further intro
duced below. A primitive event instance denoted by a lower
case letter (e. g. , 'e') is the smallest, atomic occurrence of
interest in a system. ei. ts and ei. te denote the start and the
end timestamp of an event instance e, respectively, with ei. ts
:s; ei·te. For a primitive event instance ei, ei. ts = ei.te. For
simplicity, we use the subscript i attached to a primitive
instance e to denote the timestamp i. A composite event

instance is composed of constituent primitive event instances
e = < e1, e2, . . . , en >. A composite event instance e occurs
over an interval. The start and end timestamps of e are equal
to e. ts = min{ ei.ts I V ei E e } and e. te = max { ei. te I V ei
E e }, respectively.
An event type is denoted by a capital letter, say Ei. An event
type Ei describes a set of attributes that the event instances
of this type share. An event type can be either a primitive
or a composite event type [13]. Primitive event types are pre
defined in the application domain of interest. Composite event

types are aggregated event types created by combining other
primitive and/or composite event types to form an application
specific type. ei E Ej denotes that ei is an instance of the
event type Ej. We use ei.type to denote the type Ej of ei.
Suppose one of the attributes of type Ej is attrj and ei E Ej,
we use ei.attrj to denote e/s value for that attribute attrj.

B. NEEL: The Nested Complex Event Language

We now briefly introduce the NEELI query language [14]
for specifying nested complex event pattern queries. NEEL

is an extension of non-nested CEP languages from the liter
ature [9], [1], [2]. NEEL supports the nesting of AND, OR,
Negation and SEQ operators at any level. Q 1 in Figure 1 is
a sample query expressed by NEEL. For a more detailed dis
cussion as well as several case studies of the NEEL language,
the reader is referred to [14].

The PATTERN clause retrieves event instances specified in
the event expression from the input stream. The qualification
in the PATTERN clause further filters event instances by
evaluating predicates applied to potential matching events. The
WITHIN clause specifies a time period within which all the
events of interest must occur in order to be considered a match.
In our language, the time period is expressed as a sliding
window, though other window semantics could also be applied.

1 NEEL stands for Nested Complex Event Query Language.

124

<Query>::= PATIERN <event-expression>
WITHIN <window>
[RETURN <set of primitive events> 1

<event-expression> = <ex>
<ex> : :-
SEQ«<ex> I ! «ex>, [<q>]))*,<ex>, «ex> I

! «ex>, [<q>]))*, [<q>])
I AND«<ex>, «ex> I ! «ex>, [<q>]))*, [<q>])
I OR« <ex»+, [<q>])
I «primitive-event type>, [<var>])
<primitive-event type> : :- El I E2 I ...
<var> : := event variable ei

<q>::= «elemqual»*
<elemqual> : := <var>.attr <op> <var>.attr I

<var>.attr <op> constant
<op> ::= < I > I ::; I 2 I = I ! =
<window>::= time duration w I tuple count c

TABLE I

NEEL QUERY L ANGUAGE

"A set of histories" is returned as a result with each history
equal to one "set of instance matches".
Operators in the PATTERN clause. SEQ in the PATTERN
clause specifies the particular temporal order in which the
event instances of interest should occur. The components of the
sequence are the stipulated occurrences and non-occurrences
of events of certain event types [15].

Definition 1: [SEQ operator]. SEQ(E1 el '''. , Ei ei '''. , En
en) specifies a temporal order in which the event instances of
interest el , ,,. , ei, , ,,. , en must occur. The output is a composite
event e composed of el to en such that el. ts < ". < ei. ts < ".
< en. ts, and en. ts - el. ts ::::: window with the window specified
in the WITHIN clause.

Example 1: Given SEQ(Recycle r, Washing w) and the
partial input stream rl, W2, W3 all falling within the window.
Then SEQ(Recycle r, Washing w) generates 2 results {rl'
W2} and {rl' W3}.

Definition 2: [OR operator]. OR operator specifies disjunc
tion of occurrences of events. OR(EI el '''. , Ei ei '''. , En en)
means one or more event instances of types El '''. , Ei '''. , En
occur within a specified time window.

Definition 3: [AND operator]. AND(EI el '''. , Ei ei '''. ,
En en) means event instances of types El , ,,. , Ei '''. , En
occur within a specified time window, and their order does
not matter. AND operator computes the cross product of input
events of the specified types.

Example 2: Given AND(Recycle r, Washing w) and the
partial input stream WI, r2, W3 within the window. Then the
two results {r2' WI} and {r2' W3} are generated.

Definition 4: [Negation]. The symbol "!" before an event
expression Ei expresses the negation of Ei and indicates that
Ei is not allowed to appear in the specified position [1].

Any component of SEQ including at the start or the end can
be negated using "!". SEQ(E1 el, ! E2 e2, E3 e3) indicates
that e3 follows el within a specified window without any
interleaving instances of e2 between el and e3. AND(EI
el, ! E2 e2, E3 e3) indicates that both el and e3 occur
with no e2 within the specified window. If there is a !

(Negation) symbol before an event expression, we now say
that the event expression marked by ! is a negative event
expression. Otherwise it is a positive event expression. At least
one positive event expression must exist in SEQ and AND
operators.

Example 3: Given AND(Recycle r, Washing w, !
Checking c) and the partial input stream Cl, W2 and r3, no
results are generated due to the existence of the Checking
event c within the window.
Nested expression and variable scope. If E1, E2 '''. , En are
event expressions, an application of SEQ, AND and OR over
these event expressions is again an event expression [13]. An
event expression eXPi can be used as an inner component to
construct an outer expression expj. The event instances in an
outer expression are visible within the outer expression as well
as within the scope of its own nested inner expressions. Q l
in Figure 1 is an example of a nested expression. The outer
expression is SEQ(Recycle r, Washing w, Operating 0) and the
inner expression is SEQ(Sharpening, Disinfection, Checking).
The variables r, wand 0 in the outer expression are visible in
the inner expression.
Predicate specification. The optional qualification [< qual>]
in the PATTERN clause contains one or more predicates.
Predicates only referring to events in expression eXPi are
specified directly inside eXPi (simple predicates). Predicates
referring to both event instances from the outer and the inner
expressions are correlated predicates. They must be placed
with the innermost expression where a variable used in the
expression is declared.

C. NEEL System Overview

Figure 2 shows the NEEL system architecture including its
core components: Plan-Generator, NEEL Rewriter, Plan-Finder
and NEEL Executor. After a nested CEP query is submitted,
the query expressed by a NEEL specification is translated into
a default nested query plan by the Plan-Generator. We then
apply the rewriting procedure (see Section III) to flatten the
nested CEP query. Given the set of normalized expressions,
the Plan-Finder employs a search method (Section V) to find
an optimized shared execution plan considering multiple ways
of computation sharing (as will be presented in Section IV).
Lastly, the executor instantiates the physical algebra operators
according to the plan constructed by the Plan-Finder and then
starts continuous CEP execution.

D. Nested CEP Query Plan Generation

A query expressed by a NEEL specification is translated
into a default nested query plan composed of the following
algebraic operators: Window Sequence (WinSeq), Window Or
(WinOr) and Window And (WinAnd). The same window W is
pushed down and applied to all operator nodes. During query
transformation, each expression in the event pattern is mapped
to one operator node in the query plan. WinSeq first extracts
all matches to the positive components specified in the query,
and then filters out events based on negative components as
specified in the query. WinOr returns an event e if e matches

125

NEEL Rewriter
I Normalization Process

Rewriting Rules

NEEL Executor
I Nested Pattern Evaluation I

Shared Execution operators)
f

Plan-Finder

t

Fig. 2. System Overview

one of the event expressions specified in the WinOr operator.
WinAnd computes the cross product of its positive components.
For queries expressed by NEEL, predicates are placed into the
proper positions in the respective nested event expressions (see
Section II-B).

Recycle

:p Sharpening Disinfection Checking

Fig. 3. Basic Query Plan

Operating

Example 4: Figure 3 shows the query plan for Q l in
Figure 1. The two SEQ expressions in Q l are transformed
to two WinSeq operator nodes in the plan. The predicate s. id
= d. id = c. id = o. id is placed with the inner WinSeq operator
node containing the negative component. The other predicates
are attached to the topmost Win Seq operator node.

E. Nested CEP Query Execution

State-of-the-art Stack Based Query Evaluation. We briefly
review the implementation strategy of one of the operators,
namely, the SEQ operator, while the others are implemented
in a similar fashion [11]. We adopt the state-of-art stack
based strategy for execution [1], [16], [17]. An indexing
data structure named SeqState associates a stack with each
event type in the query. Each received event instance is
simply appended to the end of the corresponding stack. Event
instances are augmented with pointers ptri to adjacent events
to facilitate the quick locating of related events in other stacks
during result construction.

The arrival of an event instance em of the last event type Em
of a query qi triggers the compute function of qi2. The result
construction is done by a depth first search along instance
pointers ptri rooted at that last arrived instance em of the event

2if Em is a negative event type, postponed sequence evaluation is applied.
We omit the details here.

type Em. All paths composed of edges "reachable" by that root
em correspond to one matching event sequence returned for
qi. When negative event types are specified in WinSeq, then
during sequence construction any edges "reachable" from the
root em are skipped if an instance of the negative event type
is found in the corresponding stream position. Events that are
outdated based on the window constraints are purged.
Iterative Nested Execution Strategy. Following the princi
ple of top down iterative query execution for nested SQL
queries [18], the outer query is evaluated first and then used as
context when evaluating its inner sub-queries. For every outer
partial query result, a constrained window is passed down for
processing each of its children sub-queries. These sub-queries
compute results involving events within the constraint window.
Qualified result sequences of the inner operators are passed
up to the parent operator and the outer operator then joins
its own local results with that of its positive sub-queries. The
outer sequence result is filtered if the result set of any of
its negative sub-queries is not empty. We apply this iterative
execution iteratively until a final result sequence is produced
by the root operator or until the process terminates. Finally,
the process repeats when the outer query consumes the next
instance e. We omit the detailed discussion here for nested
queries with negation and predicates due to space constraints.
Please refer to [11].

Discussion of Limitation. Such nested query evaluation
methodology suffers from several inefficiencies. First, can
didate results of SEQ(Recycie r, Washing w, Operating 0)
initially generated may later need to be discarded. Another
potential pitfall is that full results for the negative com
ponent SEQ(Sharpening s, Disinfection d, Checking c) are
constructed. These cases have also been highlighted as prob
lems 1 and 2 in the introduction. The iterative execution
method does not solve these problems [11]. To overcome such
inefficiencies, we will explore query rewriting techniques to
flatten and optimize nested CEP expressions (Section III).

III. NEEL EVENT EXPRE S S ION REWRITING

Next, we will present our rewriting procedure for a nested
CEP query expressed by NEEL.

A. Event Expression Rewriting Rules

Our proposed rewriting rules fall into three categories:
flattening rules, distributive rules and negation push down
rules. For space reasons, we only briefly discuss some example
rules, namely, one for each of the three categories. A complete
discussion of the rewriting rules and their correctness based on
our NEEL semantics can be found in our technical report [19].

Flattening Rule. Table II lists the sample flattening rule
for nested CEP expressions. The inner SEQ subexpression is
merged into the outer SEQ expression.

Example 5: Given the NEEL expression Q 3 = SEQ(E1,
SEQ(E5, ! E6, E7)), after applying the flattening rule in
Table II, we get Q 3 = SEQ(E1, E5, ! E6, E7).

Distributive Rule. Table III lists the sample distributive rule
for nested CEP expressions.

126

SEQ(SEQ(EI q ,,,., ! (Ei ei), Ej ej), "., En en)
= SEQ(EI el ,,,., ! (Ei ei), E· e' ,,,., En en)

TABLE II

S AMPLE FLATTENING RULE.

SEQ(EI el, OR(E2 e2 '''., Ei ei), Ej ej '''., En en)
= SEQ(EI el, E2 e2, Ej ej ,,,., En en) OR ". OR
SEQ(EI el, Ei ei, E· e' '''., En en)

TABLE III

S AMPLE D ISTRIBUTIVE RULE.

Example 6: Given the NEEL expression Q4 = SEQ(E1, E2
OR SEQ(E5, ! E6, E7 », after applying the distributive rule in
Table III, we get Q4 = SEQ(E1, E2) OR SEQ(E1, SEQ(E5,
! E6, E7».

Negation Push Down Rule. Table 6 lists one sample negation
push down rule for nested CEP expressions. Negation (!) is
pushed into the inner SEQ subexpression. The default pattern
matching returns all results of a pattern. When Proj exists
before SEQ, full results involving these event types listed in
Proj are computed and we only check the existence of the
positive events not listed in Proj but do not return them.

SEQ(EI e1. ! SEQ(E2 e2 '''., Ei-1 ei-1. Ei ei), En en)
= ProjEl , En (SEQ(El el, ! (Ei' ei) OR
SEQ(! (Ei-l ei-l), Ei ei) OR ". OR
SEQ(! (E2 e2) '''., Ei-1 ei-1. Ei ei), En en»

TABLE IV

S AMPLE NEGATION PUSH D OWN RULE.

Example 7: Given the NEEL expression Q5 = SEQ(E1, !
SEQ(E2, E3, E4), E5), after applying the negation push down
rule in Table 6, we get Q5 = SEQ(E1, ! E4 OR SEQ(! E3,
E4) OR SEQ(! E2, E3, E4), E5).

B. Logical Plan: Normal Forms for CEP Expressions

We distinguish between three normal forms for NEEL ex
pressions: disjunctive normal form (DNF), conjunctive normal
form (CNF) and a nested AND/SEQ expression.

Definition 5: A NEEL event expression E is said to be in
the disjunctive normal form if it is a disjunction of conjuncts
say (El OR E2 OR ... OR En) with each query conjunct Ei
a sequential pattern specified with one SEQ formed by only
primitive event types.
The BNF is:

<event-expression> :: - <E> (OR <E» *
<E> :: = [Proj((Ei)+)] SEQ((Ei I ! Ei)*, Ei, (Ei I ! Ei)*)

Proj«(Ei)+) is syntactic sugar representing the positive
event types in the original event expression before rewriting.
We omit the formal definition here [19].

Definition 6: A NEEL event expression E is said to be
in the conjunctive normal form if it is a conjunction of
disjuncts say (El AND E2 AND ... AND En) with each
query disjunct Ei a sequential pattern specified with one SEQ
formed by only primitive event types.
The BNF is:

<event-expression> :: = <E> (AND <E» *
<E> :: = [Proj((Ei)+)] SEQ((Ei I ! Ei)*, Ei, (Ei I ! Ei)*)

When an event expression has nested SEQ and AND
operators, we can't completely flatten it into either of the two
normal forms in Definitions 5 and 6. As the AND operator
doesn't require the ordering among event occurrences while
the SEQ operator does, converting the AND operator into
the SEQ operator would incur an exponential number of
subexpressions. Thus we instead introduce Definition 7 below.

Definition 7: A NEEL event expression E is said to be a
nested AND/SEQ expression if the following properties hold:

Property 1: If an OR operator arises in the expression, then
it is the root operator of E.

Property 2: "!" is exclusively before primitive event types.
Property 3: No SEQ (AND) operator is directly nested

within another SEQ (AND) operator. However, SEQ can be
directly nested within an AND operator, and vice versa.

C. NEEL Expression Flattening Procedure

Our proposed CEP expression flattening procedure illus
trated below transforms an arbitrarily nested CEP expression
into a NEEL normal form as defined in Section III-B above.
Input: An event expression Ein.
Output: A normalized expression Eout of expression type as
in Definitions 5, 6 or 7 (Section III-B).

• Step 1: Push ! into expressions recursively until ! is
exclusively in front of primitive event expressions by
applying the Negation Push Down Rules (Table 6).

• Step 2: Apply the Distributive Rules until they are no
longer applicable (Table III).

• Step 3: Apply Flattening Rules (FR) until no longer
applicable (Table II).

Example 8: Given the NEEL expression Q6 = SEQ(E1, !
SEQ(E2, E3, E4), SEQ(E5, E6, E7»

• By step 1 applying the negation push down rules, we get
Q6 = Proj(El,E5,E6,E7)(SEQ(E1, ! E4 OR SEQ(! E3,
E4) OR SEQ(! E2, E3, E4), SEQ(E5, E6, E7»;

• By step 2 applying distributive rules, we get Q6 =

Proj(El,E5,E6,E7)(SEQ(E1, ! E4, SEQ(E5, E6, E7»
OR SEQ(E1, SEQ(! E3, E4), SEQ(E5, E6, E7» OR
SEQ(E1, SEQ(! E2, E3, E4), SEQ(E5, E6, E7 »);

• By step 3 applying flattening rules, we get Q6 =

Proj(El,E5,E6,E7)(SEQ(El, ! E4, E5, E6, E7) OR
SEQ(E1, ! E3, E4, E5, E6, E7) OR SEQ(E1, ! E2, E3,
E4, E5, E6, E7». Q6 is in the disjunctive normal form
as defined in Definition 5.

A number of interesting properties can be established about
our proposed rewriting procedure. Our rewriting system ap
plied to an event expression is guaranteed to find a normalized

127

form as defined by Definitions 5, 6 and 7 . We can show that
to apply rewriting rules in different orders in our rewriting
procedure doesn't affect the final rewriting result. No infinite
rewriting loops will arise, that is our rewriting procedure will
stop after finite rewriting steps. We omit precise formulations
of these properties as well as these proofs here [19].

IV. SHARED OPTIMIZED NEEL PATTERN EXECUTION

Once a normalized expression has been constructed by
our rewriting procedure described in Section III-C, multiple
sharing opportunities among subexpressions have been ex
posed. Below, we introduce the strategies we have designed for
subexpression sharing among query conjuncts, disjuncts and
leaf components3 in the normalized form as by Definitions 5,

6 and 7 .

A. Subexpression Sharing

Sharing with Prefix Caching. First, expressions with a
common prefix can share the same cached results. It is
wasteful for sequence construction to traverse the same set of
stacks repeatedly. Thus the prefix caching method is designed
to cache such results in the Pre Cache. This enables future
sequence construction involving the same set of stacks to reuse
these cached results. The common prefix is computed first
before computing each expression. The buffered result e can
be deleted savely after an event ei with ei. ts - e. ts > window
w is received.

prefiX{aChing

Recycle Washing

(aJ Shared Instance Stack

(Recycle, Washing, Sharpening, Disinfection)

l·······���·:·�·��··���··d·��;········l
! <r 2' W31 5101 d12> l
l <r l' W31 5101 d12> l
0J!. W31 SlQ! d12> .-J
1 <r 21 W31 571 dIS> l
1 <r 2' W31 5101 dIS> l
1 <r l' W31 5101 dIS> 1
L �.���.��: .. ��.�: .. �.��� j

Operating (bJ PreCache after Arrival of d15

Fig. 4. Prefix Caching Example

Example 9: Assume we get a disjunctive normal form with
two conjuncts El = SEQ(RecycIe, Washing, Sharpening,
Disinfection, Checking) and E2 = SEQ(RecycIe, Washing,
Sharpening, Disinfection, Operating). Their common prefix is
SEQ(RecycIe, Washing, Sharpening, Disinfection). To avoid
re-constructing results for the common prefix, such shared
results (ordered by end timestamps) are stored in Pre Cache as
shown in Figure 4. El and E2 results can then be computed
simply by joining the results in the PreCache with events in
Checking and Operating stacks respectively.
Sharing with Suffix Clustering. Since event traversals for
result construction typically start from events of the last event
type in a pattern [1], [20], shared suffices also eliminate redun
dant event traversals. Queries sharing the same suffices would
then be evaluated concurrently by processing their shared

3 In the query plan expressed by a nested AND/SEQ expression, we call
the bottommost event expressions leaf components.

suffices until the common part has been treated. Thereafter,
each query is finished up by joining the suffix results with
other events in the respective query to form final results.

Operating

Suffix Clustering
I

Fig. 5. Suffix Clustering Example

Example 10: Assume we get a conjunctive normal form
with two disjuncts El = SEQ(RecycIe, Washing, Sharpen
ing, Disinfection, Checking), E2 = SEQ(Operating, Wash
ing, Sharpening, Disinfection, Checking). Figure 5 shows the
stacks shared among El and E2. Once the event C16 or
C17 of type Checking arrives, the shared result construction
for the suffix sub-pattern (Washing, Sharpening, Disinfection,
Checking) is initiated.

Sharing among queries with shared middle sub

expressions can be similarly achieved. Again, such cached
results may need to be joined with other events that exist in
the respective query to form final results.

B. Advanced Sub-expression Sharing with Different Negative

Components

Beyond prior work [1], [2], [3], we now also tackle the
case of sharing event expressions when subpatterns contain
the same projected positive event types while their negative
event types may differ. Besides saving CPU resources, we
achieve the added benefit that one sequence result may satisfy
several such expressions. If we construct the results for such
normalized event expressions of a nested query separately, we
may inadvertently produce duplicate results namely one for
each of these different event expressions. This then would not
only waste CPU resources for re-computation but also incurs
the costs associated with duplication removal.

We observe that such event expressions with common
positive event types return the same results yet only apply
different negation filters. The main idea is that we record the
constraints of non-occurrence and non-projected occurrence
for each expression at compile time. At run time, as we
construct each sequence result, we keep track of which of the
given constraints are satisfied (or, rather violated). We stop the
evaluation early for unsatisfied event expressions.
Expression-vs-Negative Map (EMap). To facilitate the ad
vanced sequence result generation, we design a data structure
EMap that records the negative components and non-projected
positive components of an expression. Columns in the map
correspond to distinct negative components in the shared ex
pressions while rows list the expression identifiers. At compile

128

time, a cell entry indicated by its row and column Map[i, j]
is assigned a "1" if the negative event type as indicated by
column j is listed in an expression Ei and a "0" otherwise.
Possibly one negative component may exist in more than one
location in different queries.

SequenceCompute Algorithm: output sequence results

I: Boolean out f- true;

2: while (out 1\ stackIndex != 0) do

3: Sequence s = Connect(SConstruction(), s); II Recur

sively call sequence construction until the first stack

is reached.

4: RVI rvi = BitMarking(); II Mark jth cell "1" if RVI(j)

holds true.

5: out = SequenceValidation(rvi); II Check filled result

vector with EMap.

6: stacklndex -;

7: end while

Fig. 6. Sequence Compute with Run-Time Bit Marking

Result Vector Indicator (RVI). In addition, we introduce the
Result Vector Indicator (RV/) data structure. During query
execution, for each partial sequence result we maintain a
result vector indicator to check if the current partial result
is indeed a correct match. The columns are the same as the
ones in EMap. However, we mark the column corresponding
to a negative component as "1" if at run time the negative
component assigned with that column evaluates to true (not
found).

Lemma 1: We stop query evaluation early for one sub
expression Ei if logical AND-ing the bit vectors of the row
for Ei in EMap with the RVI for the partial result is "0".

Lemma 2: We will output a sequence result for a group of
shared expressions S if and only if :J Ei in S for which the
logical bit by logical AND-ing the bit vectors of the row for
the sub-expression Ei with the current result's RVI is "1". Each
sequence result is only outputted once for a group of shared
expressions. It implies that all the non-existence constraints in
at least one of the clustered expressions are satisfied.

Lemma 3: No duplicate results will be produced because
we conduct sequence construction only once for all expres
sions in a group.

The pseudo-code for the shared logic bit-marking based
sequence construction strategy is presented in Figure 6. Given
flattened event expressions (query disjuncts/conjuncts/leaf
components) with the same positive components and one or
more different negative components, EMap is first constructed.
Then, we conduct the sequence construction process for every
event instance ej of the accepting state in the rightmost stack,
traversing back along the event pointers. During sequence
construction, we also maintain a RVI to conduct the sequence
validation process. We compare the RVI of each partial result
with each row of EMap continuously. We stop or continue
the sequence construction for each partial result based on
Lemmas 1 and 2.

Example 11: The normalization procedure rewrites Ql
= SEQ(Recycle, Washing, ! SEQ(Sharpening, Disinfection,
Checking), Operating) into the expression in Figure 7 . Fig
ure 8 (a) shows the shared instance stacks for all three ex
pressions. Figures 8 (b) and 8 (c) show the EMap and RVI
structures respectively. The negative component for El is !
Checking, for E2 (! Disinfection, Checking) (Checking is not
a positive component as it is not listed in the projection list)
and for E3 (! Sharpening, Disinfection, Checking). When
event instance 020 of type Operating arrives, the sequence
construction is initiated. When evaluating the partial result
< W5, 020 >, we mark the cell "1" under (! S, D, C) in RV I
as < d6, C16 > exists between W5 and 020 and no Sharpening
events Si with 5 < i < 6 exist. Similarly, the (! D, C) AND (!
C) cells are marked with "0". The partial result < W5, 020 >
can continue the result construction for E3 because the AND
of the bits in the result vector RVI in Figure 8 (c) with the
row for E3 in the EM AP in Figure 8 (b) is "1". Result
computation for El and E2 stopped early by Lemma 1 because
the AND of such bits is "0".

SEQ(Recycle, Washing, ! Checking, Operating) OR

Proj., w. 0 SEQ(Recycle, Washing, ! Disinfection, Checking, Operating) OR

Proj., W, oSEQ(Recycle, Washing, ! Sharpening, Disinfection, Checking, Operating)

0 (W,
i=O El

i;: 1 E2

i;: 2 E]

Fig. 7. Normalized Expression for QI

Sharpening Disinfection Checking

(a) Shared Instance Stacks

j=D j=l j=2
IS 0 C ID,C

1

1

IC

1
Evaluate Partial Result: <WS' 020>

IS,O, C 10,C IC

1 I 0 I 0

(b) Expression-vs-Negative Map (EMap) (c) Result Vector Indicator (RVI)

Fig. 8. Bit-Marking Example

V. PLAN-FINDER

When a set of normalized CEP expressions S share the same
positive components, several options arise for grouping them
to obtain better shared execution plans. Consider for example
the normalized expression S = SEQ(A, B, D) OR SEQ(A,
B, ! C, D) OR ProjeA,B,D)SEQ(A, B, ! E, C, D) OR
SEQ(A, B, D, E, F) OR SEQ(A, B, D, E, G). The first
three conjuncts share the same positive pattern SEQ(A, B, D).
The bit-marking algorithm in Section IV-B could be applied
to them. Or, alternatively, the first and the last two conjuncts
also share the common prefix SEQ(A, B, D). Prefix caching
as in Section IV-A could be applied to them. We must make
a good choice among these options in the plan space.

129

A. Problem Definition of Finding Shared-Plans

Given a set of normalized CEP expressions S, we aim to find
an expression partition P = {gl, g2 , ... , gil with the minimum
execution cost among all possible partitions Pi satisfying the
following constraints:

• Full coverage: \f expression Ej in S, :3 gi that Ej E gi;
• Non-overlapping: \f gi, gj, gi n gj = 0;
• Pi maps to one execution plan. Each group gi is mapped

to a shared physical operator in Section IV.

Based on our cost analysis for nested and flattened execution
plans [19], the Plan-Finder constructs an optimized execution
strategy for the normalized form as by Definitions 5, 6 and
7 selected among possible alternatives for estimating the
computation sharing.

B. Plan-Finder Search Space

We now study how many possible partitions the Plan-Finder
would have to enumerate through to find the best one. To
find an optimal solution requires us to enumerate all possible
expression partitions. The Bell number [21], or the number of
different partitions Pi of a set S of n elements, describes the
size of such a search space, i. e. , the total number of all possible
partitions for a set of expressions. The problem is challenging,
as the complexity of the Plan-Finder is thus exponential.

C. Plan-Finder Search Algorithms

Due to the prohibitive exponential complexity of the search
space, we adopt a cost-based heuristic for finding a good
quality solution in reasonable time without enumerating the
entire search space. While many heuristics are possible, below
we sketch one using an iterative refinement methodology:
Selecting a Start Solution. We adopt the strategy to maxi
mally group all event subexpressions with the same positive
components into one group to achieve aggressive sharing;
though other start heuristics are possible.
Search Strategy: We adopt the iterative improvement method
due to its simplicity (see pseudocode in Figure 9). A single
basic transformation (e. g. , a split of a subset, or merge of two
subsets) would transition from a partition solution Pi to its
neighbor Pj, e. g. , "E1E2IE3E4" --+ "E1E2IE3IE4".

Selecting a Stop Condition: In general, the search may stop
when either k iterations have gone by, or the solution did
not improve in the last several rounds, i. e. , the search process
reaches a plateau. Alternatively, the search can be bounded by
resources such as time.

VI. PERFORMANCE EVALUATION

The primary objective of our experimental evaluation is to
study the accumulative CPU processing time of the traditional
iterative nested execution [11] and our proposed optimized
NEEL execution strategy with different workloads.

Plan-Finder Algorithm: output best plan

I: partition f- start solution; best-partition f- start solution;

2: while (not stop condition) do

3: while (not local..minimum(partition) do

4: partition' f- find random solution in NEIGH-

BORS(partition)

5: if (cost(partition ') < cost(partition» then

6: partition f- partition'

7: end if

8: end while

9: if (partition. cost < cost(best-partition» then

10: best-partition f- partition

11: end if

12: end while

13: return best-partition;

Fig. 9. Plan· Finder Algorithm

A. Experimental Setup

We have implemented all strategies within the HP stream
management system CHAOS [22] using Java. We ran the
experiments on Intel Pentium IV CPU 2. 8GHz with 4GB
RAM. We evaluated our techniques using the real stock trades
data from [23]. The data contained stock ticker, timestamp and
price information. The portion of the trace we used contained
10,000 unique event instances. We used sliding windows with
a size of 10ms. In our experiments, the y axis denotes the CPU
processing time. CPU processing time means the wall clock
time for processing an item ei in stock trades measured by
(Tend.ei - Tstart.ei) where Tstart.ei represents the system time
when our processing engine starts processing the data item
ei and Tend.ei represents the system time when the engine
finishes processing the data item ei. It is an atomic process,
i. e. , our processing engine won't stop processing that tuple
until it is fully processed.

B. Experimental Design Query Plans

We first evaluate queries by varying three parameter settings
including children numbers, query lengths and nesting levels.
In Figures 10, 11 and 12, the number of sub-queries is
increased from 1 to 3. In Figures 13, 14 and 15, we keep
the sub-query number as 1 and increase the sub-query length
from 2 to 4. In Figures 16, 17 and 18 we keep the number
and the length of sub-queries the same and instead we change
the sub-query nesting levels from 1 to 3. Lastly, we evaluate
our system with one complex mixed workload in Figure 19.

Fig. 10. Sample Query with 1 Child

130

Ii)
5.
CI)
E
i=
Cl
c:

'iii
<II
CI) CJ
e
Q.
::l
Q.
0

Ii)
5.
CI)
E
i=
Cl
c:

'iii
<II
CI)
CJ
e

Q.
::l
Q.
0

Ii)

5.
Q)
E
i=
Cl
c
'iii
<II
Q)
U
e
0..
:J
0..
U

25000
12000 18000 Ii) Nested Execution

Nested Execution --lIE- Ii) Nested Execution ___ ,S Flattened Execution ----.--
10000 Flattened Execution ----.-- 5. 16000 Flattened Execution --�- 20000 Q)

CI) 14000 E
8000 E 12000 i= i= 15000

Cl 10000 Cl
c: " 6000 'iii 8000 'iii
<II <II 10000 CI) Q)

4000 CJ 6000 u e e Q. 4000 0.. r-2000 ::l :J 5000
Q. 2000 0.. .--....." 0

0 u
a 10002000300040005000600070008000 0 500 1000 1500 2000 a 100 200 300 400 500 600

Result Number Result Number
Result Number

(a) I child as in Figure 10 query (b) 2 children as in Figure I I query
(c) 3 children as in Figure 12 query

12000

10000

8000

6000

4000

2000

Fig. 20. Varying the Number of Children Queries (as for queries in Figures 10, I I and 12)

18000
25000

Ii) Total Time --lIE- Ii)
16000

Total T ime --lIE-
,S Compute Children --&- 5. Compute Children ---<>-- 20000

CI) 14000 Q)

--'--- E E
i= 12000 i= 15000
Cl 10000

Cl
c: c:
'iii

8000
'iii

<II <II 10000 CI) Q)
CJ

6000
u

e e
Q. 4000

0.. 5000 ::l :J
Q. 2000 0..
() u

0
1000 2000 3000 4000 5000 6000 7000 8000 0 500 1000 1500 2000

Result Number Result Number

Total Time �
Compute Child -----E>---

_r
.-.. ,-

100 200 300 400 500 600
Result Number

(a) 1 child as in Figure 10 query (b) 2 children as in Figure 11 query (c) 3 children as in Figure 12 query

Fig. 21. Comparing Total Computation Time vs. Children Computation Time in the Nest Execution with Increased Children Number

20000

15000

10000

5000

Nested Execution
Flattened Execution -----.--

1000 2000 3000 4000 5000

Result Number

Ii) 1 .4e+06

5. 1 .2e+06 CI)
E

le+06 i=
Cl

800000 c
'iii
f/)

600000 CI)
CJ
e

400000 Q.
:J

200000 Q.
()

0
0

Nested Execution
Flattened Execution ---

1000 2000 3000 4000 5000 6000

Result Number

Ii)

5.
Q)
E
i=
Cl
c

'iii
<II
Q)
CJ
e
Q.
:J
Q.
0

1.4e+06

1.2e+06

le+06

800000

600000

400000

200000

0

Nested Execution
Flattened Execution --.

2 3 4 5 6 7
Result Number (x 1000)

(a) Length 2 as in Figure 13 query (b) Length 3 as in Figure 14 query (c) Length 4 as in Figure IS query

[SEQ(MSFT,
t

Fig. 24. Varying the Length of Children Queries (as for queries in Figures 13, 14 and 15)

,ORCl, , IPIX, INTC) [SEQ(MSFT, ,ORCL,

t i i
,IPIX, INTC)

i
! [SEQ(R IMM, AM AT)] ! [SEQ(YHOO, DEll)] ! I SEQ(RIMM, AMAT) I ! I SEQ(YHOO, DELLi] ! I SEQ(CSCO, QQQ) I

Fig. 11. Sample Query with 2 Children Fig. 12. Sample Query with 3 Children

C. Varying the Number of Children Queries
In Figure 20, we observe that our proposed optimized NEEL

execution (Flat) runs on average 5 fold faster than the iterative The first experiment studies queries with increasing num
bers of sub-queries as depicted in Figures 10, 11 and 12.

131

(SEQ(MSFT, , ORCl, I NTC)

t
! [SEQ(R I M M , AMAT) 1

Fig. 13. Sample Query with a Subquery of Length 2

(SEQ(MSFT, , O RCl, I NTe)

t
! [SEQ(R I M M , AMAT, Y H O O) 1

Fig. 14. Sample Query with a Subquery of Length 3

nested execution (Nest). In the Flat execution, we don't need
to compute results for SEQ(RIMM, AM AT), SEQ(Y HOO,
DELL) and SEQ(CSCO, QQQ). In Figure 21, we observe
that in the nested execution, most of the time is used for
computing children query results because for each outer partial
result, we need to compute children results.

Next, we compare the CPU processing times among the
queries in Figures 10, 11 and 12. In Figures 22 and 23, we
observe that the query with 3 children generates the least
number of results for both nested and flattened execution.
The reason for this is that it has more constraints and thus
more outer SEQ(MSFT, ORCL, IPIX, INTC) results can
be filtered. In addition, the query with 3 children uses the
most CPU processing time among the three queries because
of processing more sub-queries. This consumes more CPU
processing time. These results match our expectation as clearly
the computation time increases with the number of sub-queries
and also the probability of finding patterns decreases with an
increasing number of event types in the query, i. e. , stricter
query constraints.

D. Varying the Length of Children Queries

This second experiment processes the queries depicted in
Figures 13, 14 and 15 with sub-query lengths varying from
2 to 4. Results are shown in Figure 24. We observe that
our proposed optimized NEEL execution runs on average
several hundred times faster than the iterative nested execution
(Nest). In the flattened execution, we don't need to construct
all the children query results for SEQ(RI M M, AM AT),
SEQ(RIMM, AMAT, YHOO) and SEQ(RIMM, AMAT,
Y HOO, DELL).

Next, we compare the CPU processing time among queries
in Figures 13, 14 and 15 with results shown in Figures 26
and 25. The subquery with length 4 generates the most number
of results. As expected, it has less outer SEQ(MSFT, ORCL,
INTC) results filtered as the existence of a longer pattern
is less likely as compared to the other queries with shorter
patterns. In addition, it uses the most CPU processing time
among the three queries because it includes the sub-query

, ORCl, I NTC)

! [SEQ(R IMM, AMAT, YHOO, DEll) 1
Fig. 15. Sample Query with a Subquery of Length 4

SEQ(M S FT, , ORCl, , I NTC)

t
! [SEQ(I P IX, QQQ) 1

Fig. 16. Sample Query with 2 Nesting Levels

with the longest length which consumes more computational
processing resources.

E. Varying the Nesting Levels of Children Queries

The third experiment processes queries with varying sub
query nesting levels (Figures 16, 17 and 18). Due to space
constraints, we omit experimental charts and only report
our findings. Our proposed optimized NEEL execution again
consistently takes less time as compared to nested query
execution. It is because the flattened execution doesn't need
to construct all the children query results for SEQ(I PIX,
QQQ), SEQ(RIMM, AMAT) and SEQ(YHOO, DELL).
Advanced sub-expression sharing with different negative com
ponents is applied during query evaluation. Thus significant
CPU processing resources are saved. In addition, the query
with the largest nesting levels generates the most number of
results and uses the most CPU processing time among the
three queries for both nested and flattened execution. One, the
query includes the sub-query with the largest nesting levels
which consumes more time to be computed. Two, in the nested
execution, less outer SEQ(MSFT, ORCL, INTC) results
are filtered as it is relatively infrequent to have events of more
nesting levels occur in a sequence.

F. Mixed Workload

The last experiment processes the mixed complex
query in Figure 19. Our rewriter transforms it into the
normalized expression E = E1 (SEQ(MSFT, ! IPIX,
ORCL, INTC)) OR E2 (SEQ(MSFT, ! QQQ, ORCL,
INTC)) OR E3 (SEQ(MSFT, ! RIMM, ORCL, INTC))
OR E4 (SEQ(RIMM, DELL, AMAT, MSFT, ORCL))
OR E5 (SEQ(lPIX, DELL, AMAT, MSFT, ORCL)) OR
E6 (Projcsco,YHOo,QQQ SEQ(CSCO, ! RIMM, YHOO,
QQQ)) OR E7 (Projcsco,YHOo,QQQ SEQ(CSCO, ! IPIX,
RIMM, YHOO, QQQ)). The partition returned by the plan
Finder has three groups: HE1, E2, E3], [E4, E5], [E6,
E7l }. The group [E1, E2, E3] is mapped to the operator in
Section IV-B as these subexpressions share the same positive
event types (MSFT, ORCL, INTC) while the negative event

132

[SEQ(MSFT, , ORCl, INTC) 1

t
! [SEQ(IPIX, ,QQQ)]

t
(SEQ(RIMM, AMAT)]

Fig. 17. Sample Query with 3 Nesting Levels

Fig. 18. Sample Query with 4 Nesting Levels

types are different. Similarly, [E6, E7] is also mapped to the
operator in Section IV-B. [E4, E5] is mapped to the operator
in Section IV-A as they share the same suffix (DELL, AMAT,
MSFT, ORCL). As expected, our proposed NEEL execution
takes significantly less time as compared to the iterative nested
execution as shown in Figure 27.

VII. RELATED WORK

To the best of our knowledge, existing CEP systems [1], [2],
[3], [9], [24], [1 5] mostly support the execution of only flat
sequence queries. While CEDR [9] allows applying negation
over composite event types within their proposed language,
the execution strategy for such nested queries is not discussed.
In addition, no work has been reported on tackling the per
formance deficiency when applying negation over composite
event types. ZStream [3] considers the ordering of execution
for CEP queries using a tree-based query plan - similar to join
ordering in traditional relational databases. It only supports
negation over primitive event types. ZStream doesn't consider
optimization over multiple expressions nor of nested CEP
expressions. SASE [1], [1 7] considers flat queries and negation
is applied as a final filtration step. Cayuga [2] only allows
sub-queries in the FROM clause and it also doesn't support
applying negation over composite event types. In short, no
processing mechanism for CEP queries with nested complex
negation has been proposed in the literature to date.

Complex pattern queries often contain common or similar
sub-expressions within a single query or also among multiple
distinct queries. Multiple-query optimization in databases [25],
[26], [27] typically focussed on static relational databases,
identifies common subexpressions among queries such as
common joins or filters. Multiple expression sharing for stack
based pattern evaluation for CEP queries has not yet been
studied. In particular, our work is the first to share the

(j)
S
Ql
E
i=
Cl
c:
'iii
rn

�
E! c..
::J c..
U

SEQ(CSCO, , YHOO, QQQ)

Fig, 19. Mixed Workload

20000 ,----,--,------,----,
Nest (1 chi ldren) ----*
Nest (2 chi ldren) -----.---

1 5000 <;"
Nest (3 children)

/� f •

/ 1 0000

5000

!
I
f
f

o �----�--�----�-----"
2 4 6 8

Resu lt N u m ber (x1 000)

Fig. 22. Nested Execution with Increased Children Number as in Figures 10,
I I and 12 queries

1 0000
(j) Flat (1 children) ----*-

S
8000

Flat (2 chi ldren)

Ql Flat (3 child ren)
E
i=

6000 Cl
c:
'iii
rn

4000 Ql
0
E! r·
c.. /

::J 2000 l c..
u

0
2 4 6 8

Result N u m ber (x1 000)

Fig. 23. Flattened Execution with Increased Children Number as in
Figures 10, 11 and 12 queries

(i) 1 .4e+06

.s
C]) 1 .2e+06
E

1 e+06 i=
Cl

800000 c:
'iii
rn

600000 C])

Nest (length 2)
Nest (length 3)
Nest (length 4)

.0

-----.. ----

0 p.oo -e.o-o--dJ E! 400000 , ----..
c.. ..

/" ,
::J

200000
.---"

c.. / �'
,------.....

()
a //'

2 3 4 5 6

Resu lt Number (x 1 000)

7

Fig. 25. Varying the Length of Children Queries as in Figures 13, 14 and
15 queries

processing of CEP expressions with the same positive event
types interleaved with different negative event types.

1 33

Fig. 26. Varying the Length of Children Queries as in Figures 13, 14 and
15 queries

This paper describes the first work on comprehensively
supporting nested query specification and execution in the
CEP context. The CEP query language NEEL allows users
to specify fairly complex queries in a compact manner with
both temporal relationships and negation well-supported. A
query plan for the execution of nested CEP queries is designed.
This nested query plan model permits a direct implementation
of nested CEP queries following the principle of nested
query execution for SQL queries. However, such direct query
execution suffers from several performance deficiencies. We
thus design a normalization procedure converting a nested
event expression into a normal form. We propose prefix
caching, suffix clustering and a customized "bit-marking"
physical execution strategy that efficiently process a group of
similar subexpressions. An optimizer that employs iterative
improvement capturing the optimal shared execution method
is also designed. As demonstrated by our experiments, in many
cases our optimized NEEL execution performs 100 fold faster
than the traditional iterative nested execution.
Acknowledgements. This work is supported by HP Labs In
novation Research Program and National Science Foundation
under grants NSF 1 0 1 8443 and NSF lIS 09 l70l7, Turkish
National Science Foundation TUBITAK under career award
109E194.

REFERENCES

[I] E. Wu, Y. Diao, and S. Rizvi, "High-performance complex event
processing over streams." in SIGMOD Conference, 2006, pp. 407-418.

[2] A. 1. Demers, 1. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. M.
White, "Cayuga: A general purpose event monitoring system." in CIDR,
2007, pp. 412-422.

[3] Y. Mei and S. Madden, "Zstream: a cost-based query processor for
adaptively detecting composite events," in SIGMOD, 2009, pp. 193-
206.

[4] 1. M. Boyce and D. Pittet, "Guideline for hand hygiene in healthcare
settings," MMWR Recomm Rep. , vol. 51, pp. 1-45, 2002.

[5] V. Shnayder, B. rong Chen, K. Lorincz, T. R. F. F. lones, and M. Welsh,
"Sensor networks for medical care," in SenSys, 2005, p. 314.

[6] D. I. Tapia, 1. A. Fraile, S. Rodriguez, 1. F. de Paz, and 1. Bajo, "Wireless
sensor networks in home care," in IWANN (I), 2009, pp. 1106-1112.

[7] W. Kim, "On optimizing an sql-like nested query," ACM Trans. Database
Syst. , vol. 7, no. 3, pp. 443-469, 1982.

[8] N. May, S. Helmer, and G. Moerkotte, "Nested queries and quantifiers
in an ordered context," in ICDE, 2004, pp. 239-250.

[9] R. S. Barga, 1. Goldstein, M. H. Ali, and M. Hong, "Consistent streaming
through time: A vision for event stream processing." in CIDR, 2007, pp.
363-374.

[10] P. Seshadri, H. Pirahesh, and T. Y. C. Leung, "Complex query decorre
lation," in ICDE, 1996, pp. 450-458.

[I I] M. Liu, E. A. Rundensteiner, D. l. Dougherty, C. Gupta, S. Wang, I. Ari,
and A. Mehta, "Processing nested complex sequence pattern queries over
event streams," in DMSN, 2010, pp. 14-19.

[12] M. Brantner, c.-c. Kanne, G. Moerkotte, and S. Helmer, "Algebraic
optimization of nested xpath expressions," in ICDE, 2006, p. 128.

[13] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim, "Com
posite events for active databases: Semantics, contexts and detection."
in VLDB, 1994, pp. 606-617.

[14] M. Liu, E. A. Rundensteiner, D. l. Dougherty, C. Gupta, S. Wang, I. Ari,
and A. Mehta, "NEEL: The nested complex event language for real-time
event analytics," in BIRTE, 2010.

[15] M. Liu, M. Li, D. Golovnya, E. A. Rundensteiner, and K. T. Claypool,
"Sequence pattern query processing over out-of-order event streams," in
ICDE, 2009, pp. 784-795.

[16] 1. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, "Efficient pattern
matching over event streams," in SIGMOD Conference, 2008, pp. 147-
160.

[17] D. Gyllstrom, 1. Agrawal, Y. Diao, and N. Immerman, "On supporting
kleene closure over event streams," in ICDE, 2008, pp. 1391-1393.

[18] 1. M. Smith and P. Y. -T. Chang, "Optimizing the performance of a
relational algebra database interface," Commun. ACM, vol. 18, no. 10,
pp. 568-579, 1975.

[19] M. Liu, E. A. Rundensteiner, D. l. Dougherty, C. Gupta, S. Wang, I. Ari,
and A. Mehta, "Nested complex sequence pattern query processing
over event streams: Rewriting and compacting," Worcester Polytechnic
Institute, Technical Report WPI-CS-TR- I O-15, 2010.

[20] K. S. Candan, w.-P. Hsiung, S. Chen, 1. Tatemura, and D. Agrawal,
"AFilter: Adaptable XML filtering with prefix-caching and suffix
clustering," in VLDB, 2006, pp. 559-570.

[21] M. Klazar, "Bell numbers, their relatives, and algebraic differential
equations," J. Comb. Theory, Ser. A, pp. 63-87, 2003.

[22] C. Gupta, S. Wang, I. Ari, M. C. Hao, U. Dayal, A. Mehta, M. Marwah,
and R. K. Sharma, "Chaos: A data stream analysis architecture for
enterprise applications," in CEC, 2009, pp. 33-40.

[23] "I. inetats. stock trade traces. http://www.inetats.comi ...
[24] M. Liu, E. A. Rundensteiner, K. Greenfield, C. Gupta, S. Wang, I. Ari,

and A. Mehta, "E-cube: Multi-dimensional event sequence processing
using concept and pattern hierarchies," in ICDE, 2010, pp. 1097-1100.

[25] T. K. Sellis, "Multiple-query optimization," ACM Trans. Database Syst. ,
pp. 23-52, 1988.

[26] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe, "Efficient and exten
sible algorithms for multi query optimization," in SIGMOD, 2000, pp.
249-260.

[27] Finkelstein and Sheldon, "Common expression analysis in database
applications," in SIGMOD, 1982, pp. 235-245.

134

