
Optimizing Complex Sequence Pattern Extraction
Using Caching

Medhabi Ray #1, Mo Liu ∗#2, Elke Rundensteiner #3, Daniel J. Dougherty #4

Chetan Gupta ∗5, Song Wang ∗6, Abhay Mehta ∗7, Ismail Ari ∗∗8

#Computer Science Department, Worcester Polytechnic Institute, USA
1medhabi@cs.wpi.edu
2liumo@cs.wpi.edu

3rundenst@cs.wpi.edu
4dd@cs.wpi.edu

∗Hewlett Packard Innovation Research Laboratories, USA
5chetan.gupta@hp.com

6songw@hp.com
7abhay.mehta.gupta@hp.com

∗∗Ozyegin University, Turkey
8Ismail.Ari@ozyegin.edu.tr

Abstract— Complex Event Processing (CEP) has become in-
creasingly important for tracking and monitoring complex event
anomalies and trends in event streams emitted from business
processes such as supply chain management to online stores in
e-commerce. These monitoring applications submit complex event
queries to track sequences of events that match a given pattern.
The state-of-the-art CEP systems mostly focus on the execution of
flat sequence queries, we instead support the execution of nested
CEP queries specified by our NEsted Event Language NEEL.
However, the iterative execution of nested CEP expressions often
results in the repeated recomputation of the same or similar
results for nested subexpressions as the window slides over
the event stream. In this work we thus propose to optimize
NEEL execution performance by caching intermediate results. In
particular we design two methods of applying selective caching
of intermediate results namely Object Caching and the Interval-
Driven Semantic Caching. Techniques for incrementally loading,
purging and exploiting the cache content are described. Our
experimental study using real-world stock trades evaluates the
performance of our proposed caching strategies for different
query types.

I. INTRODUCTION

A. Motivation
Complex Event Processing (CEP) has become increasingly

important in many modern business applications, ranging from
supply chain management for RFID tracking, click stream
analysis for e-advertising to real-time intrusion detection [1],
[2], [3]. CEP must be able to support sophisticated pattern
matching on real time event streams including the arbitrary
nesting of sequence operators and the flexible use of negation
in such nested sequences. vspace-2mm vspace-2mm

Fig. 1. Example Query Q1

Business enterprizes today rely heavily on market analysis
strategies suggested by business analysts. Such analysis is

often done by mining unstructured or semi-structured data
like stocks and news articles. Consider an example where a
business analyst forms a hypothesis that the falling stock price
of Amazon results in the falling stock price of some laptop
brands. He might want to check his hypothesis against recent
stock streams. Consider the query Q1 shown in Figure 1 will
give him all the occasions when the falling price of Amazon
has been followed by falling prices of laptop brands. By
running similar queries and collecting the statistics, important
business patterns can be inferred.

Fig. 2. Example Query Q2

Healthcare is another growing industry requiring monitoring
services. Tracking the resources within a large hospital from
instruments to patient records is of utmost importance. For
example, consider reporting contaminated medical equipments
in a hospital [4]. Let us assume that the tools for medical
operations are RFID-tagged. The system monitors the histories
of the equipment (such as, records of surgical usage, of wash-
ing, sharpening and disinfection). When a healthcare worker
puts a box of surgical tools into a surgical table equipped
with RFID readers, the computer would display approximate
warnings such as “This tool must be disposed”. Query Q2

(Figure 2) expresses this critical condition that after being
recycled and washed, a surgery tool is being put back into use
without first being sharpened, disinfected and then checked
for quality assurance. Such complex sequence queries may
contain complex negation specifying the non-occurrence of
composite subpatterns, such as negating the composite event
of sharpened, disinfected and checked subsequences.

However, the state-of-art CEP systems including SASE [1]
and ZStream [3] do not support such nested queries. Even
though Cayuga system [2] mentions composable queries, they

978-1-4244-9196-4/11/$26.00 © 2011 IEEE ICDE Workshops 2011243

assume the negation filter is applied to a single primitive event
type within the SEQ pattern. In our recent work, we have
proposed the nested CEP language NEEL to support nesting
of Sequence, AND, OR and Negation queries, along with an
iterative nested execution strategy for processing of queries
expressed in NEEL [5]. Such iterative nested execution while
correct can be inefficient. As the query window slides contin-
uously over the event stream the query Window overlaps. Full
results satisfying the nested subexpression, such as instances
that match the subsequence AND(Sharpening s, Disinfection
d, Checking c) in Q2 will be repeatedly constructed and pro-
cessed. However, in real time monitoring systems relying on
CEP queries, performance with reference to time and memory
is often critical. Hence recomputation of results should be
avoided whenever possible to preserve resources. Thus we
study the optimization of nested CEP queries using caching of
intermediate results. The problem is challenging as the cache
content is under continuous flux. We study what to cache
and how to keep the cache up to date as the window slides.
We propose two ways of caching intermediate results namely
object cache and semantic cache, that both are equipped to
support negation and predicate correlation. Our contributions
include:

• Design a general approach for buffering the intermediate
results in an object cache including cache loading and
purging algorithms.

• Propose semantic caching based on installing and match-
ing semantic descriptors as an improvement over object
caching including the optimization to maintain member-
ship indicators instead of storing the actual results.

• We implement these alternate solutions in the E-Cube
CEP engine [6]

• We experimentally evaluate and compare nested CEP
query execution with and without caching on real data
streams.

We explain the Nested Event Language (NEEL) [7] and the
iterative processing technique for NEEL in Section II-A. We
introduce the object caching technique in Section III followed
by semantic caching in Section IV. Section V presents the
experimental evaluation and Section VI discusses related work.

II. NESTED CEP QUERY PROCESSING

A. The Nested Complex Pattern Query Language NEEL

B. Iterative NEEL Execution Strategy

Following the principle of nested query execution for SQL
queries [9], [10] an iterative execution strategy for nested CEP
queries expressed in the NEEL language (Section II-A) has
been designed [5]. The main process is to evaluate the outer
query first followed by its inner sub-queries when a query
triggering event arrives. The results of the inner queries are
passed up and joined with the results of the outer query.
For every outer partial query result, a constraint window is
passed down for processing each of its children sub-queries.
These sub-queries compute results involving events within the
substream constrained by the constraint window. The iterative
execution is continued until a final result sequence is produced
by the root operator.

<Query>::= PATTERN <event-expression>
WITHIN <window>
[RETURN <set of primitive events>]

<event-expression> = <ex>
<ex> ::=
SEQ((<ex> | ! (<ex>, [<q>]))∗,<ex>, (<ex> |

! (<ex>, [<q>]))∗, [<q>])
| AND((<ex>, (<ex> | ! (<ex>, [<q>]))∗, [<q>])
| OR((<ex>)+, [<q>])
| (<primitive-event type>, [<var>])
<primitive-event type> ::= E1 | E2 | ...
<var> ::= event variable ei
<q>::= (<elemqual>)∗
<elemqual> ::= <var>.attr <op> <var>.attr |

<var>.attr <op> constant
<op> ::= < | > | ≤ | ≥ | = | ! =
<window>::= time duration w | tuple count c

TABLE I
NEEL QUERY LANGUAGE

C. Processing Nested Queries with Negation
We now describe how to support negation in nested queries.

If a query has a negative A between positive B and C event
types, we first evaluate the query without the negation, i.e., we
compute all <b, c> results. Then for every result generated
we check if an A event occurred between the qualified B and
C events. If it occurs, such pairs are discarded. When two
negative event types are adjacent to each other, their order
does not matter. For example, SEQ(A, !B, !C, D) is equivalent
to SEQ(A, !C, !B, D). That is, all <a, d> results without any
B and C events in between them would be returned.

In the nested query model NEEL [7], a sub-query as a whole
could also be negated. For example, SEQ(A, ! AND(B, C), D).
For each outer result of SEQ(A, D), we search for AND(B,
C) results occurring between such A and D events. If none
exist, then the outer SEQ(A, D) result is returned, otherwise
it is filtered out.

SEQ(Recycle r, SEQ(Wash w, Dry dr, Sharpen s), Disinfect d, Operate o)

Fig. 3. Example Query Q2

D. Processing Nested Queries with Predicates
The approach of handling sub-queries with correlated predi-

cates is similar to the nested execution described above except
that the join is not only based on timestamps but also on other
predicates. Different cases for predicate handling include:

• Local predicates. Events are filtered based on predicate
values before being stored in their stack. Query process-
ing proceeds otherwise as explained above. For example,
for the query in Figure 3, Operating events where the
instrument type is not equal to “surgery” will be filtered.

• Correlated predicates between inner and outer queries.
Nested sub-queries may be correlated with their parent
queries by means of predicates. In order to evaluate these
queries with predicates, it is necessary to pass down
attribute values to the children queries. For example,
the query in Figure 3 requires events in the inner sub-
queries have the same tool id as the outer match. For
each outer SEQ(Recycle r, Disinfection d, Operating o)

244

match, the tool id information for the operating instance
is thus passed down to the children sub-queries. Inner
query results involving events having the same tool id
with the outer match are returned to the upper query.

III. OBJECT CACHING

The re-computation of the results for inner sub-queries every
time an outer triggering event arrives can be rather expensive.
We observe that CEP queries work on sliding window over
the stream. It is easy to see that many intermediate results
for inner subexpressions would continue to be valid from one
sliding window to the next. Thus we propose to cache and
incrementally maintain the inner query results to serve outer
queries from one window to the next.

Example 1: Consider the query Q3 in Figure 3 over the
stream S = {r1, a2, w3, c4, d5, c6, o7, o8 . . . }. When the
event o7 arrives, it forms the outer query result < r1, d5, o7>.
The sub-window [1,5] for the inner query is being computed.
Then when the event o8 arrives and the outer result <r1, d5,
o8> is formed, the sub-window for the inner query is again
[1,5]. The results during this interval would be unnecessarily
recomputed again. This is a waste considering all events arrive
in order. Results of the previous window could be cached and
reused in the new window.

Based on these observations we now propose to apply
caching to these intermediate results.

SEQ(E1 e1…Ei-1 ei-1 , Ej+1 ej+1, … En e n)

SEQ(Ei ei, … Ej ej)

Outer result

ei … ej

ei … ej

ei … ej

...

cache

Fig. 4. Cache Design for Object Caching

A. Object Cache Design

We propose to maintain a cache for each sub-query. A cache
is a list of result tuples conforming to the intermediate output
schema. We also associate a timestamp which we will call
the “rightBound” with the cache. For the query shown in
Figure 4 it is given by ej+1.ts such that ej+1 has the maximum
timestamp among all events of type Ej+1 which have arrived
so far and for which the cache has been computed. We will
henceforth assume that the cache has been loaded with all
possible results so far in the input stream up to rightBound.

B. Cache Usage

We calculate the constraint window for each sub-query
which we call queryInterval given an outer query result
triggered by an event en. It is given by the timestamps of
the events in the outer query bounding the sub query. For
the query in Figure 4, the queryInterval will be given by
[ei−1.ts,ej+1.ts] for an outer query result <e1 . . . ei−1,ej+1

. . . en>. We will then check the “rightBound” of the cache.
If the rightBound of the cache is greater than or equal to the
queryInterval.rightBound this means that the existing cache

contains all the required results. Hence a scan through the
cache will give us the required results. Clearly not all results
in the cache may be utilized by the current sub-query and they
are thus filtered during the scan. If however the queryInter-
val.rightBound is greater than the rightBound attached to the
cache we instead first update the cache as explained below.

C. Cache Maintenance

We extend the cache content when the queryInter-
val.rightBound is greater than the rightBound of the cache.
That is when a cache is not sufficient (misses results). For all
new “triggering” events ej of the sub-query SEQ(Ei . . .Ej)
in Figure 4 that have not been previously loaded into the
cache namely ej .ts > Cache.rightBound and ej .ts <= query-
Interval.rightBound, compute the sub-query results for all
ej between Cache.rightBound and queryInterval.rightBound.
Then the rightBound of the cache is updated to reflect
the present state of the cache namelyCache.rightBound =
queryInterval.rightBound. When a triggering event en arrives,
events with timestamp less than en.ts - window are purged
from their stacks. Similarly, caching results involving events
with timestamp less than en - window are also deleted from
the cache. The cache content is purged incrementally as the
timestamps of the events constituting the results expire out of
the sliding window.

Example 2: In Figure 5, we assume that we have stacks for
each event type mentioned in the query. As the events arrive
we insert them into their respective stacks. The rectangular
boxes represent the stacks labeled with the event type it repre-
sents. Subscripts denote their timestamp. When the triggering
event o14 arrives, it is inserted into the Operating stack and
triggers execution. [1, 8] is the extracted constraint window
for the subexpression SEQ(Washing, Drying, Sharpening).
SEQ(Washing, Drying, Sharpening) results are constructed
based on all events that occurred during [1,8] and stored in
the cache and the Cache.rightBound is set to 8. When the
new triggering event o26 arrives, we obtain 2 results for the
outer query namely < r1, d8, o26 > and < r1, d15, o26
>. For the first outer result, sub-query the queryInterval is
[1,8]. Hence the existing cache will have all the results while
for the next outer result the queryInterval is [1,15]. Since
the queryInterval.rightBound > Cache.rightBound, the cache
must be updated. Thereafter the Cache.rightBound is updated
to 15 to reflect its present state.

SharpeningWashing

w
5

s
7

s
12

Drying

dr
6

Recycle Disinfection

r
1 d

8

d
15

Operating

o
26

w
10 dr

11

o
30

w
2 dr

3

f

<w5, dr6, s7>

<w2, dr11, s12>

<w5, dr11, s12>

<w10, dr11, s12>

rightBound = 15

o
14

<w2, dr6, s7>

<w2, dr3, s7>

<w5, dr6, s12>

Fig. 5. Object Caching Example

245

D. Object Caching with Negation
When the inner sub-query is negated, the only difference

would be to search for results during the queryInterval and
return True or False based on whether any results are found or
not during the queryInterval. Consider the query in Figure 5
now with the sub-query SEQ(Washing, Drying, Sharpening)
negated. We could still reuse the cache. For example for the
outer query result <r1, d8, o30> the queryInterval is [1,8].
The rightBound at this time is 15. We then search for results
during the required interval within the cache. If the cache is
empty for the required interval, we output the outer query
result and vice versa.

Our object caching technique can be extended to support
equality predicate correlations by partitioning the cache by the
different values of the predicate seen so far and maintaining
a rightBound for each partition.

IV. SEMANTIC CACHING BASED ON INTERVAL

There are several disadvantages of the above object caching.
One, since the cache stores all results in one list we need
to search through the list to find the results within the
given queryInterval. Consider the example where the cache
rightBound has been extended to 100 while we are looking
for results between the queryInterval [5,10]. In this case a full
scan of the entire list of results. Hence reducing this search
space could result in cost savings. Furthermore space wasted
for storing the results of the negative sub-queries even though
they are not actually joined to form results. All we need is the
information whether a certain queryInterval is empty or not.
Hence storing all the results in the object cache is unnecessary.
Lastly, we compute and store cache results for the full range
of the stream up to rightBound even though some sub-ranges
may never get utilized.

Interval [10, 20] Interval [50, 80] Interval [90, 95]

results results results

SEQ(E1 e1…Ei-1 ei-1 , Ej+1 ej+1, … En e n)

SEQ(Ei ei, … Ej ej)

Fig. 6. Cache Design for Semantic Caching

A. Semantic Cache Design
To overcome the above shortcomings we introduce the

concept of semantic descriptors in the form of cacheInterval.
cacheInterval denotes the time interval for which a certain
cache is guaranteed to contain all the results for. A given sub-
query we maintain a list of cacheIntervals and the results as-
sociated with the respective interval. For overlapping intervals
the results common to both the intervals could be stored in a
common storage. In this case the caches store a reference to
the common sub-range.
B. Semantic Cache Usage

Instead of having to scan the raw object cache for matches,
we can now match the meta descriptors, the cacheIntervals
against the queryInterval, to facilitate efficient access. Once

Contained

Overlaps

Overlapped by
Query Interval

Cache Interval

a.

b.

c.

Fig. 7. Types of overlap between cacheInterval and queryInterval

the most appropriate cacheInterval has been identified, the
required results can be efficiently returned. Several types of
overlaps as depicted in Figure 7 can arise. Based on the type
of overlap we utilize the cache differently. We will consider
them in the following order:

• Exact Overlap or Contained. In the first type of overlap
in Figure 7(a). The queryInterval is completely contained
in one cacheInterval. Hence all possible results for that
queryInterval are guaranteed to be present in the cache.
Hence we simple access the results associated with this
cache region without any need of cache updating. Once
we find such an interval we stop the search.

• queryInterval overlaps cacheInterval. The second type
of overlap is shown in Figure 7(b). In such a scenario we
can reuse the results in this cache but will also have to
compute additional results for the non-overlapped region.
Hence in this case we will do partial computation. We will
form a new cacheInterval once we have collected all the
results for this new interval. If we find such an interval
we will still search the remainder of the meta-descriptors
to check if we can find an overlap of the first type because
we prefer an Exact or Contained type of match.

• queryInterval overlapped by cacheInterval. The third
type of overlap in Figure 7(c). For this type of overlap
we will compute the results for the required interval
even though some of the results might have already
been computed before. For example if we are looking
for SEQ(B, C) and the cacheInterval is [5,10] while the
queryInterval is [1,7]. This range can contain a result
< b2, c8 > If we compute the results for triggering
events occurring only from [1,5], we will not obtain
< b2, c8 > which is also a valid result for the given
queryInterval. Hence we will compute the sub-query for
the entire queryInterval, without any atempt for partial
recomputation.

• Non Overlap. In all other cases the new sub-query is
computed for the given Interval. The cacheInterval is then
added to the list.

C. Semantic Cache Maintenance
When the queryInterval does not overlap any cacheInterval,

the cache needs to be updated. We will have to partially or
completely recompute the sub-query depending on the portion
of the non-overlapping queryInterval. If a queryInterval has no
overlap with an existing cacheInterval, the sub-query needs
to be computed from scratch. If a part of the queryInterval
overlaps a cacheInterval as in the case in Figure 7(b) we
compute the sub-query for triggering events that occur only
in the non-overlapping part.

246

Instead of a linear scan of the results, we could in practice
sort the results on the leftBound of the cacheIntervals, or
maintain an index over the list of intervals to further expedite
the search.

Example 3: For the query in Figure 3, when the tuple e14
arrives, the query is triggered and the outer result <r1,d8,o14>
is formed. The results of the sub-query SEQ(Washing w,
Drying dr, Sharpening s) are computed and stored in the
cache with cacheInterval [1,8]. When the tuple e26 arrives,
the queryInterval extracted is [1,15]. The cacheInterval [1,8]
is reused. The sub-query is also computed for the triggering
events in the non-overlapping region of the queryInterval and
stored in the cacheInterval [1,15] which also maintains a
reference to the cache [1,8]. Now when e30 arrives and the
queryInterval [1,8] is extracted for the result <r1,d8,o30>, it
can easily look up the results only for the interval [1,8] instead
of scanning the results for the large interval of [1,15] as in the
previous method.

SharpeningWashing

w
5

s
7

s
12

Drying

dr
6

Recycle Disinfection

r
1 d

8

d
15

Operating

o
26

w
10 dr

11

o
30

w
2 dr

3

f
<w5, dr6, s7>

Cache-Interval [1, 8]

o
14

<w2, dr6, s7>

<w2, dr3, s7>
f

Cache-Interval [1, 15]

<w10, dr11, s12>

reference

<w2, dr3, s12>

<w2, dr6, s12>

<w5, dr6, s12>

<w5, dr11, s12>

Fig. 8. Semantic Caching showing multiple caches for a sub query for query
shown in Figure 3

D. Semantic Caching for Negative Sub-queries

Semantic Caching is particularly beneficial for negative sub-
queries not only in terms of CPU processing costs but also in
terms of memory consumption. Negative sub-queries need not
be joined with the positive outer query results of the query.
Rather they act as filters screening some of the intermediate
results of the outer query. Hence we now propose to not store
any actual tuples in the caches for the the negative sub-queries.
Instead simply storing an “isEmpty” flag for a given interval
is sufficient. Thus we check the isEmpty flag for a given
queryInterval and filter out the results if the isEmpty flag is
false.

SEQ(YHOO y, SEQ(QQQ q, AMAT a, DELL d), ORCL o, IPIX i)

Fig. 9. Example Query Q3

0

200000

400000

600000

800000

1000000

1200000

4

2
8

9
7

2
2
8

4
0
7

5
9
2

7
7
7

1
1
5
4

1
8
6
3

2
8
5
8

4
0
2
3

5
3
0
2

6
7
3
7

8
1
8
8

---- Iterative Process

Object Caching

Semantic Caching

C
P

U
 p

ro
ce

ss
in

g
 t

im
e

 (
m

s)

Results

Fig. 10. Comparing CPU costs of Iterative approach and Semantic and Object
Caching

V. PERFORMANCE EVALUATION

A. Experimental Setup

The following experiments use the query shown in Figure
9. The experiments compare the CPU processing time of the
various approaches described. CPU processing time means
the wall clock time for processing an item ei in stock trades
measured by (Tend.ei - Tstart.ei) where Tstart.ei represents the
system time when our processing engine starts processing of
the data item ei and Tend.ei represents the system time when
the engine finishes processing the data item ei. It is an atomic
process, i.e., our processing engine won’t stop processing that
tuple until it is fully processed.

We implemented our proposed caching strategies inside the
complex event processor called ECube [6] using Java and
ran the experiments on Intel Pentium IV CPU 2.8GHz with
1GB RAM with Microsoft Windows XP operating system.
Each query is processed based on a non-deterministic finite
automata based approach using stacks. In a nested query the
processing of each subexpression follows the same strategy.
The data contains stock ticker, timestamp and price informa-
tion [11]. The portion of the trace we used has 10,000 unique
event instances.

B. Evaluation Results

The chart in Figure 11(b) compares the CPU processing
time for the query shown in Figure 9 needed by the Iterative
Execution, Object Caching and Semantic Caching. The Object
and Semantic Caching perform many orders of magnitude
better than the Iterative approach. The chart in Figure 11(b)
has a Window Size of 50ms. The chart in Figure 11 (a) zooms
into the previous chart to highlight the performance difference
of Object vs Semantic Caching. Semantic caching performs
better than Object Caching.

The charts in Figure 11 (b) and (c) show the effect of vary-
ing Window Sizes on the performance of the three techniques.
As we would expect the average processing time increases
as the Window Size in increased. While the two caching
methodologies both win over the Iterative approach, the per-
formance benefits of Object vs Semantic Caching varies with
the Window Sizes. For small Window Sizes, Object Caching
seems to win, while for larger ones the Semantic Caching
does better. This is intuitive, because when the Window Size

247

C
P

U
 p

ro
ce

ss
in

g
 t

im
e

 (
m

s)

0

1000

2000

3000

4000

5000

6000

7000

4

2
8

9
7

2
2
8

4
0
7

5
9
2

7
7
7

1
1
5
4

1
8
6
3

2
8
5
8

4
0
2
3

5
3
0
2

6
7
3
7

8
1
8
8

Results

Object Caching

Semantic Caching

(a) Comparing CPU cost of Semantic
and Object Caching

8

150

234

421

560

830

6 7 8 10 15 18
6 9 10 11 12 14

0

100

200

300

400

500

600

700

800

900

10 20 30 45 50 60

Iterative Approach

Object Caching

Semantic Caching

C
P

U
 p

ro
ce

ss
in

g
 t

im
e

/r
e

su
lt

 (
m

s/
re

su
lt

)

Varying Window Size (ms)

(b) Comparing average CPU cost per re-
sult of three techniques varying Window
Size

6

7

8

10

15

18

6

9

10

11

12

14

0

2

4

6

8

10

12

14

16

18

20

10 20 30 45 50 60

Object Caching

Semantic Caching

C
P

U
 p

ro
ce

ss
in

g
 t

im
e

/r
e

su
lt

 (
m

s/
re

su
lt

)

Varying Window Size (ms)

(c) Comparing average CPU cost per
result of Semantic and Object Caching
varying Window Size

Fig. 11. Experimental Results

is very small, the cost for searching results in a list is almost
similar to the cost of searching through the cacheIntervals. But
as the Window Size increases, the number of results increase
much more compared to the number of cacheIntervals formed.
Hence searching for the right Cache Interval takes a shorter
time.

VI. RELATED WORK

The existing CEP systems [1], [2], [3], [8] do not typically
focus on the execution of nested sequence queries as tackled
in this paper. The query language of the CEDR [8] system
supports nested sequence queries. However, the execution
strategy for such nested queries is not discussed. [5] has shown
a correct but naive strategy to evaluate nested complex event
queries.

It is usually inefficient to directly execute a nested query;
consequently, algorithms such as magic decorrelation [12] and
complex query decorrelation [9], [13] have been proposed to
decorrelate the query. However, these existing decorrelation
algorithms deal with static relational queries and are neither
described nor tested in the streaming context.

For SQL queries, [14] discusses whether a query result
should be admitted to the cache and which results are to be
purged in the static data context. In semantic caching [15],
a semantic description of the data in a cache is maintained
which allows for a compact specification. We study caching
inner queries in the streaming context and apply interval driven
caching by using validity intervals as semantic descriptors.
Semantic descriptors have also be shown to be of importance
for query caching in the XML context [16], [17]. However,
sophisticated cache matching algorithms had to be designed
to deal with query containment, namely, with extracting re-
lated yet not identical subexpressions possibly with alternate
hierarchical XML structures yet the same content [16].

VII. CONCLUSION

In this paper, we propose to optimize NEEL execution
by caching intermediate results. In particular, we design two
methods of applying selective caching, namely Object Caching
and Interval-Driven Semantic Caching. We described tech-
niques for incrementally loading, purging and exploiting the
cache content. Lastly, an optimization technique for negated

sub-queries is introduced. Our preliminary experimental re-
sults clearly demonstrate the performance benefits of the
caching techniques.

VIII. ACKNOWLEDGEMENTS

This work is supported by HP Labs Innovation Research
Program and National Science Foundation under grants NSF
1018443 and NSF IIS 0917017, Turkish foundation under
TUBITAK career award 109E194. We also thank Database
System Research Group members at WPI for their valuable
comments.

REFERENCES

[1] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event
processing over streams.” in SIGMOD Conference, 2006, pp. 407–418.

[2] Alan J. Demers et al., “Cayuga: A general purpose event monitoring
system.” in CIDR, 2007, pp. 412–422.

[3] Y. Mei and S. Madden, “Zstream: a cost-based query processor for
adaptively detecting composite events,” in SIGMOD Conference, 2009,
pp. 193–206.

[4] J. M. Boyce and D. Pittet, “Guideline for hand hygiene in healthcare
settings,” MMWR Recomm Rep., vol. 51, pp. 1–45, 2002.

[5] Mo Liu and Medhabi Ray and Elke Rundensteiner and Chetan Gupta
and Song Wang and Ismail Ari and Daniel J. Dougherty, “Processing
nested complex sequence pattern queries over event streams,” in DMSN,
VLDB Workshop, September, 2010.

[6] Mo Liu et al., “E-Cube: Multi-dimensional event sequence analysis using
hierarchical pattern query sharing,” Worcester Polytechnic Institute,
Technical Report WPI-CS-TR-09-08, 2009.

[7] M. Liu, E. Rundensteiner, and D. J. Dougherty, “Nested complex event
processing for real-time event analytics,” in BIRTE, 2010, pp. 358–369.

[8] R. S. Barga, J. Goldstein, M. Ali, and M. Hong, “Consistent streaming
through time: A vision for event stream processing.” in CIDR, 2007, pp.
363–374.

[9] Praveen Seshadri et al., “Complex query decorrelation,” in ICDE, 1996,
pp. 450–458.

[10] E. Wong and K. Youssefi, “Decomposition - a strategy for query
processing,” ACM Trans. Database Syst., vol. 1, no. 3, pp. 223–241,
1976.

[11] “I. inetats. stock trade traces. http://www.inetats.com/.”
[12] C. Beeri and R. Ramakrishnan, “On the power of magic,” J. Log.

Program., vol. 10, no. 1/2/3&4, pp. 255–299, 1991.
[13] W. Kim, “On optimizing an sql-like nested query,” TODS, vol. 7, no. 3,

pp. 443–469, 1982.
[14] Junho Shim et al., “Dynamic caching of query results for decision

support systems,” in SSDBM, 1999, pp. 254–263.
[15] Shaul Dar et al., “Semantic data caching and replacement,” in VLDB,

1996, pp. 330–341.
[16] Li Chen et al., “Xquery containment in presence of variable binding

dependencies,” in WWW, 2005, pp. 288–297.
[17] Li Chen Elke Rundensteiner and Song Wang, “Xcache: a semantic

caching system for xml queries,” in SIGMOD Conference, 2002, p. 618.

248

