
A Hybrid Analysis for
Security Protocols with State

John D. Ramsdell Daniel J. Dougherty Joshua D. Guttman Paul D. Rowe

Abstract—

Cryptographic protocols rely on message-passing to coordi-
nate activity among principals. Each principal maintains local
state in individual local sessions only as needed to complete that
session. However, in some protocols a principal also uses state to
coordinate its different local sessions. Sometimes the non-local,
mutable state is used as a means, for example with smart cards
or Trusted Platform Modules. Sometimes it is the purpose of
running the protocol, for example in commercial transactions.

Many richly developed tools and techniques, based on well-
understood foundations, are available for design and analysis of
pure message-passing protocols. But the presence of cross-session
state poses difficulties for these techniques.

In this paper we provide a framework for modeling stateful
protocols. We define a hybrid analysis method. It leverages
theorem-proving—in this instance, the PVS prover—for reason-
ing about computations over state. It combines that with an
“enrich-by-need” approach—embodied by CPSA—that focuses
on the message-passing part. As a case study we give a full
analysis of the Envelope Protocol, due to Mark Ryan.

I. INTRODUCTION

Protocol analysis is largely about message-passing in a
model in which every message transmitted is made available
to the adversary. The adversary can deliver the messages
transmitted by the regular (i.e. compliant) principals, if desired,
or not. The adversary can also retain them indefinitely, so that
in the future he can deliver them, or messages built from them,
repeatedly.

However, some protocols also interact with long-term state.
For instance, the Automated Teller Machine network executes
protocols that interact with the long-term state stored in banks’
account databases. Protocol actions are constrained by that
long-term state; for instance, an ATM machine may be told not
to dispense cash to a customer, because his account has insuf-
ficient funds. Protocol actions also cause updates to long-term
state; for instance, when a successful withdrawal occurs, the
bank reduces the funds still available in the customer’s account.
In addition to electronic finance and commerce, protocols that
are controlled by long-term state, and can update the state
in controlled ways, are also important in trusted computing,
i.e. in systems using Trusted Platform Modules for attestation
and secrecy. Indeed, in a world where software interacts
with real-world resources in interoperable ways, cryptographic
protocols that manipulate long-term, extra-protocol state will
be increasingly central.

This work partially supported by the US National Security Agency, and
partially supported by the National Science Foundation under grant CNS-
1116557. Authors’ email addresses: {guttman,prowe,ramsdell}@mitre.org,
{dd,guttman}@wpi.edu.

Long-term state is fundamentally different from message
passing. The adversary can always choose to redeliver an old
message. But he cannot choose to redeliver an old state; for
instance, the adversary in an ATM network cannot choose to
replay a withdrawal, applying it to a state in which he has
sufficient funds, in case he no longer does. Regular principals
maintain long-term state across protocol executions in order to
constrain subsequent executions, and ensure that future runs
will behave differently from past runs.

The Cryptographic Protocol Shapes Analyzer [23] (CPSA)
is our program for automatically characterizing the possible
executions of a protocol compatible with a specified partial
execution. It is grounded in strand space theory. There exists
a mathematically rigorous theory [18] that backs up the im-
plementation of CPSA in Haskell, and proves the algorithm
produces characterizations that are complete, and that the
algorithm enumerates these characterizations.

It is natural to encode state manipulation in terms of
message-passing. Reading from the state corresponds to re-
ceiving a message bearing the state, and writing the state
corresponds to sending an appropriate message. Under these
conventions CPSA can be used to analyze protocols with state:
by adding state-bearing receive/transmit event pairs to the roles
of a protocol that interact with the state, CPSA attempts to find
paths through state space as part of the executions it generates.

Unfortunately, CPSA may construct some executions which
are in fact not possible, specifically, executions in which a
state-bearing message is transmitted from one node and then
received by two different state-receiving nodes. Thus CPSA can
only provide an approximate analysis; a more refined approach
is called for.

Our contribution in this paper is a semantically sound
method for applying CPSA to systems that include a state
component. In this method, CPSA is coupled with the Prototype
Verification System [20] (PVS) proof assistant.

In PVS, a version of strand space theory is specified. On top
of this theory, the results of a CPSA analysis can be encoded
as a PVS axiom, an axiom justified by the CPSA completeness
result [22]. Subsequent PVS derivations might imply the ex-
istence of additional message transmission/receptions, leading
to an enriched CPSA analysis. In this way the theorem-proving
and execution-finding analysis activities cooperate, over the
common semantic foundation of strand space theory.

Outline of the Analysis. The core paradigm remains CPSA’s
enrich-by-need approach [16]. That is, we consider the ques-
tion, what kinds of executions are possible, assuming that a
particular pattern of events has occurred? Authentication prop-
erties may be verified by observing that all executions contain
certain events as required. Confidentiality properties may be

Tbnd //

$$H
HH

HH
HH

HH
Tbnd(Π)

''OO
OOO

OOO
OOO

Tannot // Tannot(Π,)

Tstate //

::vvvvvvvvv
Tstate()

77ooooooooooo

Fig. 1. Theory Inclusions

verified by considering patterns that include a disclosure, and
observing that no kinds of executions are possible.

Our method involves a conversation (so to speak) between
CPSA and PVS. The main steps are:

1. Within PVS we define (i) an encompassing theory
Tbnd of strand spaces and protocol executions (“bun-
dles”) and (ii) a theory Tstate of transition relations
and the state histories they permit. We combined
these into a theory Tannot of protocol executions
where some steps in a protocol role are annotated
with a state transition. Furthermore, Tbnd can be aug-
mented with information about a particular protocol
Π, producing Tbnd(Π), and Tstate may be augmented
with information about a particular transition relation
 , producing Tstate(). We arrive at an enrichment
of Tannot , the theory Tannot(Π,).

2. CPSA carries out enrich-by-need protocol analysis
on the protocols, with state-manipulation modeled as
message-passing, but without any special knowledge
about state transition histories. Its results may be
summarized in a sentence, called a shape analysis
sentence [21], [16], in the language of Tbnd(Π). The
shape analysis sentence may be used as an axiom in
proofs within PVS.

3. Within the state transition theory Tstate() in
PVS, we prove useful lemmas. Using these, we in-
fer consequences in the annotated protocol theory
Tannot(Π,). Some of these consequences are in the
more limited vocabulary of Tbnd(Π). We call them
bridge lemmas, because they bridge between the state
world and the protocol world.

4. We use the bridge lemmas in combination with the
state analysis sentences to prove conclusions about
protocol runs in Tbnd(Π). If we prove a contradiction,
that implies that the situation given to CPSA cannot in
fact occur. Otherwise, we may prove that additional
message transmissions and receptions occurred.

5. We incorporate these additional nodes into a new
CPSA starting point, and allow CPSA to draw con-
clusions. Additional round trips are possible.

Structure. The body of this paper describes an application
of our method to the Envelope Protocol, a protocol that
interacts with a Trusted Platform Module (TPM) to achieve an
important security goal. Section III describes the protocol Π.
Section IV describes our TPM model, Tstate(). Section V
presents the theory of bundles Tbnd encoded within PVS, and
specializes this to Tbnd(Π), demonstrating our main trick of in-

cluding state-bearing receive-transmit pairs to encode the state
transitions. Section VI describes CPSA, our protocol analysis
tool and what results CPSA infers in Tbnd(Π). Section VII
links the state world and the protocol world Tannot(Π,).
The relevant bridge lemma is stated and applied to prove the
Envelope Protocol security goal.

II. RELATED WORK

The problem of reasoning about protocols and state has
been an increasing focus over the past several years. Protocols
using TPMs and other hardware security modules (HSMs) have
provided one of the main motivations for this line of work.

A line of work was motivated by HSMs used in the
banking industry [17], [25]. This work identified the effects of
persistent storage as complicating the security analysis of the
devices. Much work explored the significance of this problem
in the case of PKCS #11 style devices for key management [6],
[7], [12]. These papers, while very informative, exploited
specific characteristics of the HSM problem; in particular,
the most important mutable state concerns the attributes that
determine the usage permitted for keys. These attributes should
usually be handled in a monotonic way, so that once an
attribute has been set, it will not be removed. This justifies
using abstractions that are much more typical of standard
protocol analysis.

In the TPM-oriented line of work, an early example using
an automata-based model was by Gürgens et al. [14]. It
identified some protocol failures due to the weak binding
between a TPM-resident key and an individual person. Datta
et al.’s “A Logic of Secure Systems” [9] presents a dynamic
logic in the style of PCL [8] that can be used to reason about
programs that both manipulate memory and also transmit and
receive cryptographically constructed messages. Because it has
a very detailed model of execution, it appears to require a level
of effort similar to (multithreaded) program verification, unlike
the less demanding forms of protocol analysis.

Mödersheim’s set-membership abstraction [19] works by
identifying all data values (e.g. keys) that have the same
properties; a change in properties for a given key K is
represented by translating all facts true for K’s old abstraction
into new facts true of K’s new abstraction. The reasoning
is still based on monotonic methods (namely Horn clauses).
Apparently this abstraction will not allow us to prove that one
event will never happen, after a change in properties. Thus, it
seems not to be a strategy for reasoning about TPM usage, for
instance in the envelope protocol.

The paper [15] by one of us developed a theory for
protocols (within strand spaces) as constrained by state tran-
sitions, and applied that theory to a fair exchange protocol. It
introduced the key notion of compatibility between a protocol
execution (“bundle”) and a state history. In the current paper
we will also rely on the same notion of compatibility, which
was somewhat hidden in [15]. However, the current paper does
not separate the protocol behavior from state history as sharply
as did [15].

A group of papers by Ryan with Delaune, Kremer, and
Steel [10], [11], and with Arapinis and Ritter [3] aim broadly to
adapt ProVerif for protocols that interact with long-term state.

2

ProVerif [4], [1] is a Horn-clause based protocol analyzer with
a monotonic method: in its normal mode of usage, it tracks
the messages that the adversary can obtain, and assumes that
these will always remain available. Ryan et al. modify the
form of the facts with which ProVerif works. Instead of a one-
place predicate att(m) meaning that the attacker may possess
message m, they use a two-place predicate att(u,m) meaning
that the adversary may possess m at some time when the long-
term state is u. In [3], the authors provide a compiler from a
process algebra with state-manipulating operators to sets of
Horn clauses using this primitive. Care is needed, however,
to ensure that the resulting Horn clauses lead to terminating
runs of the ProVerif resolution engine. In [11], the authors
analyze protocols with specific syntactic properties that help
ensure termination. In particular, they bound the state values
that may be stored in the TPMs. In this way, the authors verify
two protocols using the TPM, including the envelope protocol
that we also study below.

Our current approach has strengths and weaknesses relative
to the ProVerif approach. An advantage is that it works within a
single comprehensive framework, namely that of strand spaces.
Proofs about state within PVS succeeded only when definitions
and lemmas were properly refined, and all essential details
represented. As a result, our confidence is high that our proofs
about protocols have their intended meaning.

Weaknesses of our approach are twofold. PVS is labor
intensive. In the current form, it is justified only for very high
assurance applications. While the theory of strand spaces is
reusable unchanged, there were numerous specific proofs for
the Envelope Protocol that would be hard to reuse directly.
Some of these proofs could serve as a high-level template
that can be followed when analyzing other protocols. This
weakness will be addressed in future work.

A second problem concerns termination. CPSA, like
ProVerif, does not terminate in some cases. One must be very
careful when adding state-bearing messages to a protocol for
analysis by CPSA. CPSA was updated during this work to allow
us to control termination for the Envelope Protocol; however,
there are some simple protocols, which others can analyze,
that we currently cannot, such as the Wrap-Decrypt attack on
PKCS#11 HSMs [5].

III. THE ENVELOPE PROTOCOL

The proof of an important security goal of the Envelope
Protocol [2] was the focus of most of our effort. The protocol
allows someone to package a secret such that another party
can either reveal the secret or prove the secret never was and
never will be revealed.

a) Protocol motivation.: The plight of a teenager moti-
vates the protocol. The teenager is going out for the night, and
her parents want to know her destination in case of emergency.
Chafing at the loss of privacy, she agrees to the following pro-
tocol. Before leaving for the night, she writes her destination
on a piece of paper and seals the note in an envelope. Upon
her return, the parents can prove the secret was never revealed
by returning the envelope unopened. Alternatively, they can
open the envelope to learn her destination.

The parents would like to learn their daughter’s destination
while still pretending that they have respected her privacy. The

parents are thus the adversary. The goal of the protocol is to
prevent this deception.

b) Necessity of long-term state.: The long-term state is
the envelope. Once the envelope is torn open, the adversary no
longer has access to a state in which the envelope is intact. A
protocol based only on message passing is insufficient, because
the ability of the adversary monotonically increases. At the
beginning of the protocol the adversary can either return the
envelope or tear it. In a purely message-based protocol the
adversary will never lose these abilities.

c) Cryptographic version.: The cryptographic version
of this protocol uses a TPM to achieve the security goal. For
this protocol, we restrict our attention to a subset of the TPM’s
functionality. In particular we model the TPM as having a
state consisting of a single Platform Configuration Register
(PCR) and only responding to five commands. With a boot
command, the PCR is set to a known value. The extend
command takes a piece of data, d, and replaces the current
value val of the PCR with the hash of d and val , i.e. #(d, val).
In fact, the form of extend that we model, which is an
extend within an encrypted session, also protects against
replay. These are the only commands that alter the value in
a PCR.

The TPM provides other services that do not alter the
PCR. The quote command reports the value contained in
the PCR and is signed in a way as to ensure its authenticity.
The create key command causes the TPM can create an
asymmetric key pair where the private part remains shielded
within the TPM. However, it can only be used for decryption
when the PCR has a specific value. The decrypt command
causes the TPM to decrypt a message using this shielded
private key, but only if the value in the PCR matches the
constraint of the decryption key.

In what follows, Alice plays the role of the teenaged daugh-
ter packaging the secret. Alice calls the extend command
with a fresh nonce n in an encrypted session. She uses the
create key command constraining that new key to be used
only when a specific value is present in the PCR. In particular,
the constraining value cv she chooses is the following:

cv = #(“obtain”,#(n, val))

where val was the PCR value prior the extend command. She
then encrypts her secret v with this newly created key.

Using typical message passing notation, Alice’s part of the
protocol might be represented as follows (where k′ denotes
the key created in the second line, and where we still ignore
the replay protection):

A → TPM : {|“extend”, n|}k
A → TPM : “create key”,#(“obtain”,#(n, val))

TPM→ A : k′

A → Parent : {|v|}k′

The parent acts as the adversary in this protocol. We assume
he can perform all the normal Dolev-Yao operations such as
encrypting and decrypting messages when he has the relevant
key, and interacting with honest protocol participants. Most
importantly, the parent can use the TPM commands available
in any order with any inputs he likes. Thus he can extend

3

the PCR with the string obtain and use the key to decrypt
the secret. Alternatively, he can extend the PCR with the string
refuse and then generate a TPM quote as evidence the secret
will never be exposed. The goal of the Envelope Protocol is to
ensure that once Alice has prepared the TPM and encrypted
her secret, the parent should not be able to both decrypt the
secret and also generate a refusal quote.

A crucial fact about the PCR role in this protocol is the
injective nature of the hashing, ensuring that for every x

#(“obtain”,#(n, val)) 6= #(“refuse”, x) (1)

IV. THE TPM MODEL

In this section we introduce our TPM state theory
Tstate() focusing on representing the value of the PCR and
how the TPM commands may change it over time.

Messages and states form an order-sorted algebra [13].
Order-sorted algebras generalize many-sorted algebra, allow-
ing a sort to be partially ordered below another. Any carrier
set interpreting the former is then a subset of the carrier set
interpreting the latter.

Figure 2 shows the signature of the algebra used in this
paper. Sort M is the sort of TPM machine states and sort >
is the top sort of messages. Messages of sort A (asymmetric
keys), sort S (symmetric keys), sort D (data), and sort E
(text) are called atoms. Messages are atoms, tag constants,
or constructed using encryption {| · |}(·), hashing #(·), and
pairing (·, ·), where the comma operation is right associative
and parentheses are omitted when the context permits. It is
easy to show that each term t of the algebra is equal to a
unique term t′ with a minimal number of occurrences of the
inverse operation (·)−1; we choose this t′ to be the canonical
representative of t.

We use the function pcr to coerce TPM states, which are
of sort M, to messages, specifically to symmetric keys of sort
S:

pcr : M→ S
pcr(bt) = s0

pcr(ex(t,m)) = #(t, pcr(m))

where constant s0 is known to all. Modeling the injectivity
of the hash function (cf. Equation 1) we postulate that the
function pcr is injective.

The definition of the TPM transition relation is

m0 m1 iff m1 = bt (boot)
or ∃t :>.m1 = ex(t,m0) (extend)
or m0 = m1 (quote, decrypt)

The create key command does not interact with the state.

In this framework we prove a crucial property of all
executions which we express in terms of the notion of a state
having a message. A state has a message if an extend operation
with it is part of the state.

bt has t = false
ex(t0, s) has t1 = (t0 = t1) or s has t1

For example, ex(“obtain”, ex(v, bt)) has “obtain” and v, but
it does not have “refuse”.

An infinite sequence of states π is a path if π(0) = bt and
∀i ∈ N. (π(i), π(i + 1)) ∈ . Paths in this TPM model have
several useful properties. For example, if a previous state is
not a subterm of a state, there must have been a intervening
boot. Also, if a state has a message, and a previous state is
a boot state, there must have been an intervening transition
that extends with the message. These two properties can be
combined into the property used by the proof of the Envelope
Protocol security goal: if a previous state is not a subterm of a
state that has a message, there must have been an intervening
transition that extends with the message. Lemma 1 formalizes
this property in our state theory Tstate(), and we proved it
using PVS.

Lemma 1 (Prefix Boot Extend).

∀π ∈ path, t :>, i, k ∈ N.
i ≤ k ∧ π(k) has t
⊃ π(i) is a subterm of π(k)
∨ ∃j ∈ N. i ≤ j < k ∧ π(j + 1) = ex(t, π(j))

V. STRAND SPACES

This section introduces our strand space theory of the
envelope protocol, Tbnd(Π). In strand space theory [24], the
trace of a strand is a linearly ordered sequence of events
e0 ⇒ · · · ⇒ en−1, and an event is either a message
transmission +t or a reception −t, where t has sort >. A
strand space Θ is a map from a set of strands to a set of
traces. In the PVS theory of strand spaces, the set of strands
is a prefix of the natural numbers, so a strand space is a finite
sequence of traces.

In a strand space, a node identifies an event. The nodes of
strand space Θ are {(s, i) | s ∈ Dom(Θ), 0 ≤ i < |Θ(s)|},
and the event at a node is evtΘ(s, i) = Θ(s)(i).

A message t0 is carried by t1, written t0 v t1 if t0 can
be extracted from a reception of t1, assuming the necessary
keys are available. In other words, v is the smallest reflexive,
transitive relation such that t0 v t0, t0 v (t0, t1), t1 v (t0, t1),
and t0 v {|t0|}t1 .

A message originates in trace c at index i if it is carried by
c(i), c(i) is a transmission, and it is not carried by any event
earlier in the trace. A message t is non-originating in a strand
space Θ, written non(Θ, t), if it originates on no strand. A
message t uniquely originates in a strand space Θ at node n,
written uniq(Θ, t, n), if it originates in the trace of exactly one
strand s at index i, and n = (s, i).

The model of execution is a bundle. The pair Υ = (Θ,→)
is a bundle if it defines a finite directed acyclic graph, where the
vertices are the nodes of Θ, and an edge represents communi-
cation (→) or strand succession (⇒) in Θ. For communication,
if n0 → n1, then there is a message t such that evtΘ(n0) = +t
and evtΘ(n1) = −t. For each reception node n1, there is a
unique transmission node n0 with n0 → n1. For a bundle
Υ, its associated strand space will be denoted ΘΥ unless the
association is clear from the context.

Each acyclic graph has a transitive irreflexive relation ≺
on its vertices. The relation specifies the causal ordering of
nodes in a bundle. A transitive irreflexive binary relation is
also called a strict order.

4

Sorts: M, >, A, S, D, E
Subsorts: A < >, S < >, D < >, E < >
Operations: bt : M TPM boot

ex :>×M→ M TPM extend
(·, ·) :>×> → > Pairing
{| · |}(·) :>× A→ > Asymmetric encryption
{| · |}(·) :>× S→ > Symmetric encryption
(·)−1

: A→ A Asymmetric key inverse
(·)−1

: S→ S Symmetric key inverse
:> → S Hashing
ai, bi : A Asymmetric key constants
si : S Symmetric key constants
di : D Data constants
ei : E Text constants
gi :> Tag constants

Equations: ai
−1 = bi bi

−1 = ai (i ∈ N)

∀k : A. (k−1)
−1

= k ∀k : S. k−1 = k

Fig. 2. Crypto Algebra with State Signature

create(t : A|S|D|E) = +t tag i = + gi
pair(t0 :>, t1 :>) = −t0 ⇒ −t1 ⇒ +(t0, t1)
sep(t0 :>, t1 :>) = −(t0, t1)⇒ +t0 ⇒ +t1
enc(t :>, k : A|S) = −t⇒ −k ⇒ +{|t|}k
dec(t :>, k : A|S) = −{|t|}k ⇒ −k−1 ⇒ +t

hash(t :>) = −t⇒ +#t

Fig. 3. Adversary Traces

The section so far has described the theory Tbnd . We now
describe how this specializes to Tbnd(Π). This description has
been simplified somewhat from what is used in PVS. In the full
theory, origination assumptions can be inherited from roles.
See [22] for all the gory details.

When a bundle is a run of a protocol, the behavior of
each strand is constrained by a role. Adversarial strands are
constrained by roles as are non-adversarial strands. A protocol
is a set of roles, and a role is a set of traces. A trace c is an
instance of role r if c is a prefix of some member of r. More
precisely, for protocol P , we say that bundle Υ = (Θ,→) is
a run of protocol P if there exists a role assignment ra ∈
Dom(Θ) → P such that for all s ∈ Dom(Θ), Θ(s) is an
instance of ra(s). In what follows, we fix the protocol P and
only consider bundles that are runs of P .

The roles that constrain adversarial behavior are defined by
the functions in Figure 3. The role defined by the function is all
the traces that it generates. For example, the role associated
with the function pair is {pair(t0, t1) | t0, t1 : M}. For the
encryption related roles, k : A|S asserts that k is either a
symmetric or asymmetric key. For the create role, t : A|S|D|E
asserts that t is an atom. The defining characteristic of an
atom is it is that which the adversary can create out of thin
air modulo origination assumptions.

As mentioned in the introduction, strand space theory is
not equipped to handle protocols with state. Our approach is to
use an under constrained notion of state within the unmodified
strand space theory to show many bundles are not runs of
the protocol, and then add missing constraints using PVS to

eliminate remaining bundles that are incompatible with the
true notion of state.

Each TPM operation is encoded by a role. The transition
associated with an instance of a TPM operation is encoded by
a receive-transmit pair of state-bearing events. For transition
m0 m1, the role contains

· · · ⇒ −{| g0, pcr(m0)|}#k ⇒ +{| g0, pcr(m1)|}#k ⇒ · · · ,

where k is a symmetric key that is uncompromised and known
only to all TPM operations, and the key is hashed and tag g0
is included to ensure that a state-bearing message is never
confused with any other protocol message. This encoding
of state transitions is less restrictive than the true notion of
state because more than one TPM operation can consume and
transform one state-bearing message.

Using these receive-transmit pairs of state-bearing mes-
sages the TPM roles are represented in Figure 4, where tag g1
is obtain and tag g2 is refuse. In the extend role, we now show
the two initial messages that provide replay prevention; the
TPM supplies a fresh nonce as a session ID that must appear
with the value to be extended into the PCR. The createkey
role does not interact with the state. It simply creates a key
that will be constrained by the state in the boot role.

In this notation the Alice role is the following. We also
show Alice’s messages which implement replay-prevention.

alice(sid , v : D, esk : S, k, tpmk , aik : A, n : E, p :>) =
+(g4, tpmk , {|esk |}tpmk)⇒ −(g4, sid)
⇒ +{| g5, n, sid |}esk ⇒ +(g9,#(g1,#(n, p)))
⇒ −{| g8,#(g1,#(n, p))|}aik ⇒ +{|v|}k

VI. CPSA

This section discusses how we use our analysis tool CPSA
to infer results in the theory Tbnd(Π). CPSA carries out
enrich-by-need analysis, and characterizes the set of bundles
consistent with a partial description of a bundle. These partial
descriptions are called skeletons. CPSA takes as input an
initial skeleton, and when it terminates it outputs a set of

5

boot(k : S, p :>) = (g3 is boot)
− g3 ⇒ −{| g0, p|}#k ⇒ +{| g0, s0 |}#k

extend(sid : D, tpmk : A, esk , k : S, p, t :>) = (g4 is session, g5 is extend)
−(g4, tpmk , {|esk |}tpmk)⇒ +(g4, sid)⇒ −{| g5, t, sid |}esk
⇒ −{| g0, p|}#k ⇒ +{| g0,#(t, p)|}#k

quote(k : S, aik : A, p, n :>) = (g6 is quote)
−(g6, n)⇒ −{| g0, p|}#k ⇒ +{| g0, p|}#k ⇒ +{| g6, p, n|}aik

decrypt(m, t :>, k′, aik : A, k : S) = (g7 is decrypt, g8 is created)
−(g7, {|m|}k′)⇒ −{| g8, k

′, p|}aik ⇒ −{| g0, p|}#k ⇒ +{| g0, p|}#k ⇒ +m

createkey(k, aik : A, t :>) = (g9 is create key)
−(g9, t)⇒ +{| g8, k, t|}aik

Fig. 4. State-Bearing Traces

•

•

•

•

•

alice
g4, tpmk , {|esk |}tpmk

g4, sid

{| g5, n, sid |}esk

g9,#(g1,#(n, p))

{| g8,#(g1,#(n, p))|}aik

{|v|}k

• v

•
{| g0, pcr(ex(g2, ex(n, p)))|}aik

Fig. 5. Alice Point-Of-View

more descriptive skeletons with the property that any bundle
containing the structure in the initial skeleton also contains all
the structure in one of the output skeletons. In particular, it
infers all of the non-adversarial behavior that must be present
in any bundle satisfying the initial description. Of course
for some initial skeletons there may be no bundles that are
consistent with them. In this case, CPSA outputs the empty
set.

Consider the security goal for the Envelope Protocol. It
should be the case that there are no bundles in which an
instance of the Alice role runs to completion and in which
both the secret is leaked and a refusal token is generated. We
can feed CPSA an input skeleton representing this undesirable
situation. The input is vizualized in Figure 5.

We would hope CPSA could determine that no bundles are
consistent with this input and return the empty set. However,
our technique of using state-bearing messages to represent the
TPM state transitions underconstrains the set of possible state
paths. For this reason, CPSA actually produces one skeleton
in its output. This skeleton represents some activity that must
have occured within the TPM in any bundle conforming to the
initial skeleton. It contains an instance of the decrypt role (to

explain the secret leaking), an instance of the quote role (to
explain the creation of the refusal token), and several instances
of the extend role (to explain how the TPM state evolved in
order to allow the other two operations).

Figure 6 displays the relevant portion of CPSA’s output
displaying only the state-bearing nodes of the extend strands
inferred by CPSA. Notice that two of the extend strands branch
off from the third strand. This is a state split in which a single
state evolves in two distinct ways. The technique of using state-
bearing messages is not sufficient to preclude this possibility.

CPSA’s enrich-by-need approach is closer to model finding
than to theorem proving. In order to use CPSA’s results to our
advantage we need to express its conclusions in the logical
theory Tbnd(Π). For that purpose we transform our skeletons
into formulas in order-sorted logic and define what it means for
a bundle to satisfy these formulas. The sorts are the message
algebra sorts augmented with a sort Z for strands and sort N for
nodes. The atomic formula htin(z, h, c) asserts that strand z
has a length of at least h, and its trace is a prefix of trace c.
The formula n0 � n1 asserts node n0 precedes node n1.
The formula non(t) asserts that message t is non-originating,
and uniq(t, n) asserts that message t uniquely originates at
node n. Finally, the formula sends(n, t) asserts that the event
at node n is a transmission of message t. The roles of the
protocol serve as function symbols. A skeleton is represented
by the conjunction of all facts true in the skeleton.

We encode an entire CPSA analysis by first encoding the
input skeleton and the output skeletons. The analysis is then
encoded as an implication with the formula for the input on
the left, and the disjunction of the formulas for the outputs
on the right. When CPSA discovers that there are no bundles
compatible with the initial skeleton, the conclusion is encoded
as the empty disjunction, ⊥.

The satisfaction relation is defined using the clauses in
Figure 7. It relates a bundle, a variable assignment, and a
formula: Υ, α |= Φ. A bundle Υ is described by a skeleton iff
the skeleton’s sentence Φ is modeled by Υ, written Υ |= Φ.

The formula ∃X.Φ that specifies the initial skeleton rele-

6

•

extend •

extend

•

extend

{| g0, pcr(p)|}#k

{| g0, pcr(ex(n, p))|}#k {| g0, pcr(ex(n, p))|}#k

{| g0, pcr(ex(g1, ex(n, p))|}#k

{| g0, pcr(ex(g2, ex(n, p))|}#k

g1 is obtain
g2 is refuse

g0 is state

Fig. 6. State Splitting

Υ, α |= x = y iff α(x) = α(y);
Υ, α |= htin(z, h, c) iff |ΘΥ(α(z))| ≥ α(h) and

ΘΥ(α(z)) is a prefix of α(c);
Υ, α |= n0 � n1 iff α(n0) ≺Υ α(n1);
Υ, α |= non(t) iff non(ΘΥ, α(t));
Υ, α |= uniq(t, n) iff uniq(ΘΥ, α(t), α(n));
Υ, α |= sends(n, t) iff evtΘΥ(α(n)) = +α(t).

Fig. 7. Satisfaction

vant to the Envelope Protocol security goal (Figure 5) is

∃v : D, esk : S, k, aik : A, n : E, p :>, z : Z, n1, n2 : N.
htin(z, 4, alice(v, esk , k, aik , n, p)) ∧ sends(n1, v)
∧ sends(n2, {| g0, pcr(ex(g2, ex(n, p)))|}aik)
∧ non(aik) ∧ non(esk)
∧ uniq(n, (z, 1)) ∧ uniq(v, (z, 4))

The output skeleton is much larger and its formula ∃X.Ψ
is correspondingly large. The relevant part of this formula
representing the fragment in Figure 6 is

∃n : E, esk , k : S, p :>, z1, z2, z3 : Z.
htin(z1, 3, extend(esk , k, pcr(p), n))
∧ htin(z2, 3, extend(esk , k, pcr(ex(n, p)), g1))
∧ htin(z3, 3, extend(esk , k, pcr(ex(n, p)), g2))

The full formula for Ψ has many more conjuncts.

The results of CPSA’s analysis for the Envelope Protocol
can thus be represented in Tbnd(Π) as the following.

Lemma 2. ∀X.(Φ ⊃ ∃Y.Ψ)

Unlike Lemma 1, this lemma is not derived within PVS.
Rather, it is established by CPSA in the course of its analysis
and imported into PVS as an axiom.

VII. REASONING ABOUT MESSAGES AND STATE

This section presents some details of the theory
Tannot(Π,). We then show how the previous lemmas com-
bine allowing us to conclude that the security goal of the
Envelope Protcol is achieved.

In Tannot(Π,), the state transitions associated with a
protocol are specified by annotating some events in a role of
Π with a subset of the transition relation . The reason for
annotating events with a subset of the transition relation, rather
than an element, will be explained at the end of this section.

We use ⊥ for an event that is not annotated, and ↑a for an
event that is annotated with a. The events that are annotated
are the transmissions associated with receive-transmit pairs of
state-bearing messages.

· · · ⇒ −{| g0, pcr(m0)|}#k ⇒ +{| g0, pcr(m1)|}#k ⇒ · · ·
⊥ ⊥ ↑{(m0,m1)} ∩ ⊥

A node in a bundle is annotated if the event in the role from
which it was instantiated is annotated. The set of nodes in Υ
that are annotated is anode(Υ), and anno(Υ, n, a) asserts that
node n in Υ is annotated with some a ⊆ . In the Envelope
Protocol, a node annotated by a TPM extend role cannot be
an instance of any other role.

Our goal is to reason only with bundles that respect state
semantics. A bundle Υ with a transition annotating role assign-
ment is compatible [15, Def. 11] with transition relation if
there exists ` ∈ N, f ∈ anode(Υ) → {0, 1, . . . , ` − 1}, and
π ∈ path such that

1. f is bijective;
2. ∀n0, n1 ∈ anode(Υ). n0 ≺ n1 ⇐⇒ f(n0) < f(n1);
3. ∀n ∈ anode(Υ), a ⊆ .

anno(Υ, n, a) ⊃ (π(f(n)), π(f(n) + 1)) ∈ a.

A bundle that satisfies Tannot(Π,) is a compatible bundle.

Because the function f is bijective, all annotated nodes
in a compatible bundle are totally ordered. Looking back at
Figure 6, either the nodes in the leftmost strand precede the
nodes in the rightmost strand or succeed them.

The compatible bundle assumption allows one to infer the
existence of nodes that are not revealed by CPSA. In the case
of the Envelope Protocol this is done by importing the Prefix
Boot Extend Lemma (Lemma 1) from Tstate() into the
strand space world by proving the following lemma within
Tannot(Π,) using PVS.

7

•

extend •

extend

•

extend

•

extend≺

≺

{| g0, pcr(m)|}#k′

{| g0, pcr(ex(n,m))|}#k′

Fig. 8. Inferred Extend Strand

Lemma 3 (Bridge).

∀Υ. compatible(Υ) ⊃
∀n0, n1 ∈ anode(Υ), t :>, a0, a1 ⊆ ,m0,m1 : M.
anno(Υ, n0, a0) ∧ anno(Υ, n1, a1)
∧ n0 ≺ n1 ∧m1 has t
∧ a0 ⊆ {(m2,m3) | m3 = m0}
∧ a1 ⊆ {(m2,m3) | m2 = m1}
⊃ m0 is a subterm of m1

∨ ∃n ∈ anode(Υ),m : M.
anno(Υ, n, {(m2,m3) | m2 = m

∧m3 = ex(t,m2)})
∨ n0 ≺ n ∧ n ≺ n1

The proof of the Bridge Lemma makes use of every part
of the definition of compatibility.

The implication in the Prefix Boot Extend Lemma cor-
responds to the second implication in the Bridge Lemma.
The correspondence of the conclusions of each implication is
straightforward, however, the hypothesis of the Bridge Lemma
is much more complicated than the one in the Prefix Boot
Extend Lemma. Yet all it is saying is that the beginning and
ending states over the range of the path are m0 and m1, where
as in the Prefix Boot Extend Lemma, those states are simply
referred to by π(i) and π(k).

This Bridge Lemma allows us to infer the existence of
another extend strand between the two strands that represent
the state split. This theorem is also proved with PVS in
Tannot(Π,); however, syntactically it is a sentence of the
language of Tbnd(Π). That is, Tannot(Π,) is not conserva-
tive over Tbnd(Π), because Tannot(Π,)’s models are only
the compatible bundles. The theorem is the following.

Theorem 4 (Inferred Extend Strand).

∀z0, z1 : Z, t, t0, t1 :>,m0,m1 : M, esk0, esk1, k0, k1 : A.
htin(z0, 2, extend(esk0, k0, pcr(m0), t0))
∧ htin(z1, 2, extend(esk1, k1, pcr(m1), t1))
∧ (z0, 1)� (z1, 0) ∧m1 has t
⊃ ex(t0,m0) is a subterm of m1

∨ ∃z : Z,m : M, esk , k : A.
htin(z, 2, extend(esk , k, pcr(m), t))
∧ (z0, 1)� (z, 0) ∧ (z, 1)� (z1, 0)

The consequence of Theorem 4 can be visualized as in
Figure 8.

Putting all the pieces together, the proof of the Envelope
Protocol security goal can be summarized as follows. We
derive Lemma 1 within Tstate(). Lemma 3 is the counterpart

within Tannot(Π,), which is the key result used to prove
Theorem 4, which sits at the intersection of Tannot(Π,) and
Tbnd(Π). All of this is done within PVS. Meanwhile, CPSA is
used to derive Lemma 2 in the theory Tbnd(Π). This combines
with Theorem 4 (under both possible orderings of the extend
strands) to provide two more starting points to feed back into
CPSA which, in turn, discovers that these partial executions
cannot in fact occur. This cooperation between CPSA and
PVS ultimately shows that the security goal for the Envelope
Protocol is achieved. That is, if Alice runs to completion, then
there can be no execution in which her parent both learns her
encrypted secret and also generates a refusal quote.

But why annotate events with subsets of the transition
relation rather than elements of it? The extend role does
not guarantee its received state bearing message is of the
form {| g0, pcr(m0)|}#k. All it says is that it has the form
{| g0, t0|}#k. Bundles in which t0 is not in the range of the
pcr function must be eliminated from consideration.

The formalism has been set up so that in a bundle, a node’s
annotation is either a singleton or the empty set. The actual
trace and annotations are

· · · ⇒ −{| g0, t0|}#k ⇒ +{| g0, t1|}#k ⇒ · · ·
⊥ ⊥ ↑A ⊥

where A = {(m0,m1 | t0 = pcr(m0)∧ t1 = pcr(m1))} ∩ .

A bundle in which a received state encoding message
is not in the range of the pcr function will have a node
annotated with the empty set. This bundle does not respect
state semantics and is eliminated from consideration by the
definition of compatibility.

VIII. CONCLUSION

The proof of the Envelope Protocol security goal presented
here shows a detailed example of our method for applying
CPSA to systems that include a state component. CPSA was
coupled with about 2400 lines of PVS specifications to produce
a proof of a difficult security goal. The method is sound due
to the use of the common foundation of strand space theory
for all reasoning.

The approach could be improved in two main ways. First,
the proofs within PVS are strenuous. We would like to develop
a method in which—apart perhaps from a few key reusable
lemmas in the state theory Tstate()—the remainder of the
reasoning concerning both state and protocol behavior occurs
automatically in CPSA’s automated, enrich-by-need manner.
Second, there is some artificiality in the state-threading rep-
resentation that we have used here. It requires the protocol

8

description to make explicit the details of the full state, and to
express each state change in a syntactic, template-based form.
Moreover, the state information is also redundantly encoded
in the annotations that appear in Tannot(Π,). Our earlier
work [15] instead encapsulated all of the state information in
a labeled transition relation. The protocol definitions contain
only a type of “neutral node” which are neither transmissions
nor receptions. These nodes are associated with the same
labels as appear in labeled transitions. This allows us to define
“compatibility,” and to work with protocol and state definitions
as independent modules. We intend also to explore this style
of definition.

REFERENCES

[1] Martı́n Abadi and Bruno Blanchet. Analyzing security protocols with
secrecy types and logic programs. Journal of the ACM, 52(1):102–146,
January 2005.

[2] K. Ables and M. Ryan. Escrowed data and the digital envelope. Trust
and Trustworthy Computing, pages 246–256, 2010.

[3] Myrto Arapinis, Eike Ritter, and Mark Dermot Ryan. Statverif:
Verification of stateful processes. In Computer Security Foundations
Symposium (CSF), pages 33–47. IEEE, 2011.

[4] Bruno Blanchet. An efficient protocol verifier based on Prolog rules.
In 14th Computer Security Foundations Workshop, pages 82–96. IEEE
CS Press, June 2001.

[5] Jolyon Clulow. On the security of PKCS#11. In Cryptographic
Hardware and Embedded Systems - CHES 2003, volume 2779 of
Lecture Notes in Computer Science, pages 411–425. Springer, 2003.

[6] Véronique Cortier, Gavin Keighren, and Graham Steel. Automatic
analysis of the security of xor-based key management schemes. In
Tools and Algorithms for the Construction and Analysis of Systems,
pages 538–552. Springer, 2007.

[7] Véronique Cortier and Graham Steel. A generic security api for
symmetric key management on cryptographic devices. In Computer
Security–ESORICS 2009, pages 605–620. Springer, 2009.

[8] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic.
A derivation system and compositional logic for security protocols.
Journal of Computer Security, 13(3):423–482, 2005.

[9] Anupam Datta, Jason Franklin, Deepak Garg, and Dilsun Kaynar. A
logic of secure systems and its application to trusted computing. In
Security and Privacy, 2009 30th IEEE Symposium on, pages 221–236.
IEEE, 2009.

[10] Stéphanie Delaune, Steve Kremer, Mark D Ryan, and Graham Steel.
A formal analysis of authentication in the tpm. In Formal Aspects of
Security and Trust, pages 111–125. Springer, 2011.

[11] Stéphanie Delaune, Steve Kremer, Mark D. Ryan, and Graham Steel.
Formal analysis of protocols based on TPM state registers. In IEEE
Symposium on Computer Security Foundations. IEEE CS Press, June
2011.

[12] Sibylle Fröschle and Nils Sommer. Reasoning with past to prove pkcs#
11 keys secure. In Formal Aspects of Security and Trust, pages 96–110.
Springer, 2011.

[13] Joseph A. Goguen and José Meseguer. Order-sorted algebra I: equa-
tional deduction for multiple inheritance, overloading, exceptions and
partial operations. Theoretical Computer Science, 105(2):217–273,
1992.

[14] Sigrid Gürgens, Carsten Rudolph, Dirk Scheuermann, Marion Atts, and
Rainer Plaga. Security evaluation of scenarios based on the tcg’s tpm
specification. In Computer Security–ESORICS 2007, pages 438–453.
Springer, 2007.

[15] Joshua D. Guttman. State and progress in strand spaces: Proving fair
exchange. Journal of Automated Reasoning, 48(2):159–195, 2012.

[16] Joshua D. Guttman. Establishing and preserving protocol security goals.
Journal of Computer Security, 2014.

[17] Jonathan Herzog. Applying protocol analysis to security device inter-
faces. IEEE Security & Privacy, 4(4):84–87, 2006.

[18] Moses D. Liskov, Paul D. Rowe, and F. Javier Thayer. Completeness
of CPSA. Technical Report MTR110479, The MITRE Corpora-
tion, March 2011. http://www.mitre.org/publications/technical-papers/
completeness-of-cpsa.

[19] Sebastian Mödersheim. Abstraction by set-membership: verifying
security protocols and web services with databases. ACM Conference
on Computer and Communications Security, pages 351–360, 2010.

[20] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, 11th International Conference on Au-
tomated Deduction (CADE), volume 607 of Lecture Notes in Artificial
Intelligence, pages 748–752, Saratoga, NY, jun 1992. Springer-Verlag.
http://pvs.csl.sri.com.

[21] John D. Ramsdell. Deducing security goals from shape analysis
sentences. The MITRE Corporation, April 2012. http://arxiv.org/abs/
1204.0480.

[22] John D. Ramsdell. Proving security goals with shape analysis sentences.
Technical Report MTR130488, The MITRE Corporation, September
2013. http://arxiv.org/abs/1403.3563.

[23] John D. Ramsdell and Joshua D. Guttman. CPSA: A cryptographic pro-
tocol shapes analyzer, 2009. http://hackage.haskell.org/package/cpsa.

[24] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand
spaces: Proving security protocols correct. Journal of Computer
Security, 7(2/3):191–230, 1999.

[25] Paul Youn, Ben Adida, Mike Bond, Jolyon Clulow, Jonathan Herzog,
Amerson Lin, Ronald Rivest, and Ross Anderson. Robbing the bank
with a theorem prover. In Security Protocols Workshop, 2007. Available
at http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-644.pdf.

9

http://www.mitre.org/publications/technical-papers/completeness-of-cpsa
http://www.mitre.org/publications/technical-papers/completeness-of-cpsa
http://pvs.csl.sri.com
http://arxiv.org/abs/1204.0480
http://arxiv.org/abs/1204.0480
http://arxiv.org/abs/1403.3563
http://hackage.haskell.org/package/cpsa
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-644.pdf

	Introduction
	Related Work
	The Envelope Protocol
	The TPM Model
	Strand Spaces
	CPSA
	Reasoning About Messages and State
	Conclusion
	References

