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bFigure 1. Sharing and Cyles Using Addressesonrete representations in memory, and term-graph rewriting provides a for-mal operational semantis of funtional programming sensitive to sharing.There is a wealth of researh on the theory and appliations of term graphs;see for example [BvEG+87,SPv93,Plu99,Blo01℄ for general treatments, and[Wad71,Tur79,AK94,AFM+95,AA95℄ for appliations to �-alulus and im-plementations.In this paper we annotate terms, as trees, with global addresses in thespirit of [FF89,Ros96,BRL96℄. L�evy [L�ev80℄ and Maranget [Mar92℄ previouslyintrodued loal addresses; from the point of view of the operational semantis,global addresses desribe better what is going in a omputer or an abstratmahine.The formalisms of term-graph rewriting and addressed-term rewriting arefundamentally similar but we feel that the addressed-term setting has severaladvantages. Our intention is to de�ne a alulus that is as lose to atualimplementations as possible, and the addresses in our terms really do orre-spond to memory referenes. To the extent that we are trying to build a bridgebetween theory and implementation we prefer this diretness to the impliitoding inherent in a term-graph treatment.With expliit global addresses we an keep trak of the sharing that anbe used in the implementation of a alulus. Sub-terms that share a ommonaddress represent the same sub-graphs, as suggested in Figure 1 (left), wherea and b denote addresses. In [DLL+02℄, addressed terms were studied in theontext of addressed term rewriting, as an extension of lassial �rst-orderterm rewriting. In addressed term rewriting we may rewrite simultaneouslyall sub-terms sharing a same address, mimiking what would happen in animplementation.We also enrih the sharing with a speial bak-pointer to handle yligraphs [Ros96℄. Cyles are used in the funtional language setting to representin�nite data-strutures and (in some implementations) to represent reursiveode; they are also interesting in the ontext of imperative objet-orientedlanguages where loops in the store may be reated by imperative updatesthrough the use of self (or this). The idea of the representation of ylesvia addressed terms is rather natural: a yli path in a �nite graph is fullydetermined by a pre�x path ended by a \jump" to some node of the pre�xpath (represented with a bak-pointer), as suggested in Figure 1 (right).The inlusion of expliit indiretion nodes is a ruial innovation here.Indiretion nodes allow us to give a more realisti treatment of the so-alledollapsing rules of term graph rewriting (rules that rewrite a term to one of2



its proper sub-terms). More detailed disussion will be found in Setions 2.1.2 Suitability of Addressed TRS for desribing an Objet-based FrameworkReent years have seen a great deal of researh aimed at providing a rigorousfoundation for objet-oriented programming languages. In many ases, thiswork has taken the form of \objet-aluli" [FHM94,AC96,GH00,IPW01℄.Suh aluli an be understood in two ways. On the one hand, the formalsystem is a spei�ation of the semantis of the language, and an be used asa framework for lassifying language design hoies, to provide a setting forinvestigating type systems, or to support a denotational semantis. Alterna-tively, we may treat an objet-alulus as an intermediate language into whihuser ode (in a high-level objet-oriented language) may be translated, andfrom whih an implementation (in mahine language) may be derived.Several treatments of funtional operational semantis exist in the lit-erature [Lan64,Aug84,Kah87,MTH90℄. Addressed Term Rewriting Systems(originally motivated by implementations of lazy funtional programming lan-guages [PJ87,PvE93℄) are the foundation of the �Ob|a framework [LLL99℄ formodeling objet-oriented languages. The results in [LLL99℄ showed how tomodel �Ob|a using Addressed Term Rewriting Systems, but with no formalpresentation of those systems. Here we exposes the graph-based mahineryunderneath the rewriting semantis of �Ob|a. To our knowledge, term graph-rewriting has been little explored in the ontext of the analysis of objet-basedprogramming.The novelty of �Ob|a is that it provides a homogeneous approah to bothfuntional and objet-oriented aspets of programming languages, in the sensethe two semantis are treated in the same way using addressed terms, withonly a minimal sari�e in the permitted algebrai strutures. Indeed, theaddressed terms used were originally introdued to desribe sharing behav-ior for funtional programming languages [Ros96,BRL96℄. A useful way tounderstand the �Ob|a framework is by analogy with graph-redution as animplementation-alulus for funtional programming. Comparing �Ob|a withthe implementation tehniques of funtional programming (FP) and objetoriented programming (OOP) gives the following orrespondene. The �Ob|a\modules" L, C, and F are de�ned in setion 3.Paradigm �Ob|a fragment Powered byPure FP �Ob|a (L) ATRSPure FP+OOP �Ob|a (L+C+F) ATRS1.3 Outline of the PaperThe paper is organized as follows: Setion 2 details the framework of addressedterm rewriting systems and establishes a general relation between addressed3



term rewriting systems and �rst-order term rewriting systems. Setion 3 putsaddressed term rewriting system to work by presenting the three modules ofrewriting rules that form the ore of �Ob|a. For pedagogial sake, we proeedin two steps: �rst we present the alulus �Ob|�, intermediate between thealulus �Ob| of Fisher, Honsell and Mithell [FHM94℄, and then we sale upto our �Ob|a. Setion 4 presents a running objet-based example in the �Ob|aframework. Setion 6 onludes. Setion 5 show some theorems there addressthe relationship between �Ob| and �Ob|a.For lak of spae not all proof are presented here. A longer version of thispaper ontaining full proofs and a large olletion of funtional and objet-based and imperative examples onerning the objet framework an be foundin the tehnial reports and manusript [LDLR99,DLL+02℄.2 Addressed Term Rewriting SystemsIn this setion we introdue addressed term rewriting systems or ATRS inshort. Classial term rewriting [DJ90,Klo90,BN98℄ annot easily express issuesof sharing and mutation. Caluli that give an aount of memory managementoften introdue some ad-ho data-struture to model the memory, alled heap,or store, together with aess and update operations. However, the use ofthese strutures neessitates restriting the alulus to a partiular strategy.The aim of addressed term rewriting (and that of term graph rewriting) isto provide a mathematial model of omputation that reets memory usageand is robust enough to be independent of the rewriting strategy.Sharing of omputation.Consider the redution square(x) ! times(x; x): In order to share sub-terms, addresses are inserted in terms making them addressed terms. Forinstane if we are to ompute square(square(2)), we attah addresses a; b;  tothe individual subterms. This yields squarea(squareb(2)) whih an then beredued as follows: squarea(squareb(2)); timesa(squareb(2); squareb(2))timesa(timesb(2; 2); timesb(2; 2)); timesa(4b; 4b); 16a;where \;" designates a one step redution with sharing. The key point of ashared omputation is that all terms that share a ommon address are reduedsimultaneously.Sharing of Objet Strutures.It is important not only to share omputations, but also to share strutures.Indeed, objets are typially strutures that reeive multiple pointers. As anexample, if we \zoom" on Figure 6, we an observe that the objet p and q4



share a ommon struture addressed by b. This an be very easily formalizedin the framework, sine addresses are �rst-lass itizens. See Setion 4.Cyles.Cyles are essential in funtional programming when one deals with in�nitedata-strutures, as in lazy funtional programming languages. Cyles are alsoused to save spae in the ode of reursive funtions. Moreover in the ontextof objet programming languages, yles an be used to express loops whihan introdued in memory via lazy evaluation of reursive ode.2.1 Addressed TermsAddressed terms are �rst order terms labeled by operator symbols and deo-rated with addresses. They satisfy well-formedness onstraints ensuring thatevery addressed term represents a onneted piee of a store. Moreover, thelabel of eah node sets the number of its suessors. Abstratly, addressedterms denote term graphs, as the largest tree unfolding of the graph withoutrepetition of addresses in any path. Addresses intuitively denote node loationsin memory. Idential subtrees ourring at di�erent paths an thus have thesame address orresponding to the fat that the two ourrenes are shared.The de�nition is in two stages: the �rst stage de�nes the basi indutiveterm struture, alled preterms, while the seond stage just restrits pretermsto well-formed preterms, or addressed terms.De�nition 2.1 [Preterms℄(i) Let � be a term signature, and � a speial symbol of arity zero (a on-stant). LetA be an enumerable set of addresses denoted by a; b; ; : : :, andX an enumerable set of variables, denoted by X; Y; Z; : : : An addressedpreterm t over � is either a variable X, or �a where a is an address, or anexpression of the form F a(t1; : : : ; tn) where F 2 � (the label) has arityn � 0, a is an address, and eah ti is an addressed preterm (indutively).(ii) The loation of an addressed preterm t, denoted by lo(t), is de�ned bylo�F a(t1; : : : ; tn)� 4= lo(�a) 4= a;and it is not de�ned on variables.(iii) The set of variables and addresses ourring within a preterm t is denotedby var(t) and addr(t), respetively, and de�ned in the obvious way.The de�nition of a preterm makes use of a speial symbol � alled a bak-pointer and used to denote yles [Ros96℄. A bak-pointer �a in an addressedterm must be suh that a is an address ourring on the path from the rootof the addressed term to the bak-pointer node. It simply indiates at whihaddress one has to branh (or point bak) to go on along an in�nite path.5



An essential operation that we must have on addressed (pre)terms is theunfolding that allows seeing, on demand, what is beyond a bak-pointer. Un-folding an therefore be seen as a lazy operator that traverses one step deeperin a yli graph. It is aompanied with its dual, alled folding, that al-lows giving a minimal representation of yles. Note however that folding andunfolding operations have no operational meaning in an atual implementa-tion (hene no operational ost) but they are essential in order to representorretly transformations between addressed terms.De�nition 2.2 [Folding and Unfolding℄Folding. Let t be a preterm, and a be an address. We de�ne fold(a)(t) asthe folding of preterms loated at a in t as follows:fold(a)(X) 4= Xfold(a)(�b) 4= �bfold(a)�F a(t1; : : : ; tn)� 4= �afold(a)�F b(t1; : : : ; tn)� 4= F b�fold(a)(t1); : : : ; fold(a)(tn)� if a 6� bUnfolding. Let s and t be preterms, suh that lo(s) � a (therefore de�ned),and a does not our in t exept as the address of �a. We de�ne unfold(s)(t)as the unfolding of �a by s in t as follows:unfold(s)(X) 4= Xunfold(s)(�b) 4= 8<: s if a � b�b otherwiseunfold(s)�F b(t1; : : : ; tm)� 4= F b�t01; : : : ; t0m�where s0 4= fold(b)(s)t01 4= unfold(s0)(t1): : :t0m 4= unfold(s0)(tm)We now proeed with the formal de�nition of addressed terms also alledadmissible preterms, or simply terms, for short, when there is no ambiguity.As already mentioned, addressed terms are preterms that denote term graphs.The notion of in-term helps to de�ne addressed terms. The de�nition ofaddressed terms takes two steps: the �rst step is the de�nition of danglingterms, that are the sub-terms, in the usual sense, of atual addressed terms.Simultaneously, we de�ne the notion of a dangling term, say s, at a givenaddress, say a, in a dangling term, say t. When the dangling term t (i.e. the\out"-term) is known, we just all s an in-term. For a dangling term t, itsin-terms are denoted by the funtion t� , read \t at address ", whih returnsa minimal and onsistent representation of terms at eah address, using the6



unfolding.Therefore, there are two notions to be distinguished: on the one hand theusual well-founded notion of \sub-term", and on the other hand the (no longerwell-founded) notion of \term in another term", or \in-term". In other words,although it is not the ase that a term is a proper sub-term of itself, it may bethe ase that a term is a proper in-term of itself or that a term is an in-term ofone of its in-terms, due to yles. The funtions ti� are also used during theonstrution to hek that all parts of the same term are onsistent, mainlythat all in-terms that share a same address are all the same dangling terms.Dangling terms may have bak-pointers that do not point anywhere be-ause there is no node with the same address \above" in the term. The latterare alled dangling bak-pointers. For instane, (�x:y)[�b=y℄ has a danglingbak-pointer, while (�x:y)[�=y℄ has none. The seond step of the de�nitionrestrits the addressed terms to the dangling terms that do not have danglingbak-pointers. The following de�nition provides simultaneously two onepts:� The dangling terms.� The funtion t� from addr(t) to dangling in-terms. t� a returns the in-term of t at address a.De�nition 2.3 [Dangling Addressed Terms℄ The set DT (�) of dangling ad-dressed terms is the smallest set that satis�es the following properties.Variables. X � DT (�) and X � is nowhere de�ned.Bak-pointers. �a 2 DT (�) and �a� a � �a.Expressions. For t1 2 DT (�); : : : ; tn 2 DT (�) suh that: b 2 addr(ti) \addr(tj) ) ti� b � tj � b, for a an address suh that: a 2 addr(ti) )ti� a � �a and for F 2 � of arity n,� t � F a(t1; : : : ; tn) 2 DT (�).� t� a � t.� b 2 addr(ti) n fag ) t� b � unfold(t)(ti� b).Admissible addressed terms are those where all �a do point bak to somethingin t suh that a omplete (possibly in�nite) unfolding of the term exists. Theonly way we an observe this with the t� funtion is through heking that no�a an \esape" beause this annot happen when it points bak to something.De�nition 2.4 [Addressed Term℄ A dangling addressed term t is admissibleif a 2 addr(t) ) t� a 6� �a. An admissible dangling addressed term will besimply denoted an addressed term.Proposition 2.5 (In-terms Admissibility) If t is an admissible term, anda 2 addr(t), then(i) t� a is admissible, and(ii) 8b 2 addr(t� a), we have (t� a)� b � t� b.7



2.2 Addressed Term RewritingThe redution of an addressed term must return an addressed term (not just apreterm). In other words, the omputation model (here addressed term rewrit-ing) must take into aount the sharing information given by the addresses,and must be de�ned as the smallest rewriting relation preserving admissibilitybetween addressed terms. Hene, a omputation has to take plae simultane-ously at several plaes in the addressed term, namely at the plaes loatedat the same address. This simultaneous update of terms orresponds to theupdate of a loation in the memory in a real implementation.In an ATRS, a rewriting rule is a pair of open addressed terms (i.e., on-taining variables) at the same loation. The way addressed term rewritingproeeds on an addressed term t is not so di�erent from the way usual termrewriting does; oneptually there are four steps.(i) Find a redex in t, i.e. an in-term mathing the left-hand side of a rule.Intuitively, an addressed term mathing is the same as a lassial termmathing, exept there is a new kind of variables, alled addresses, whihan only be substituted by addresses.(ii) Create fresh addresses, i.e. addresses not used in the urrent addressedterm t, whih will orrespond to the loations ourring in the right-handside, but not in the left-hand side (i.e. the new loations).(iii) Substitute the variables and addresses of the right-hand side of the ruleby their new values, as assigned by the mathing of the left-hand side orreated as fresh addresses. Let us all this new addressed term u.(iv) For all a that our both in t and u, the result of the rewriting step, sayt0, will have t0 � a � u� a, otherwise t0 will be equal to t.We give the formal de�nition of mathing and replaement, and then we de�nerewriting preisely.De�nition 2.6 [Substitution, Mathing, Uni�ation℄(i) Mappings from addresses to addresses are alled address substitutions.Mappings from variables to addressed terms are alled variable substitu-tions. A pair of an address substitution � and a variable substitution �is alled a substitution, and it is denoted by h�; �i.(ii) Let h�; �i be a substitution and p a term suh that addr(p) � dom(�) andvar(p) � dom(�). The appliation of h�; �i to p, denoted by h�; �i(p),is de�ned indutively as follows:h�; �i(�a) 4= ��(a)h�; �i(X) 4= �(X)h�; �i�F a(p1; : : : ; pm)� 4= F �(a)(q1; : : : ; qm) and qi 4= fold(�(a))�h�; �i(pi)�(iii) We say that a term t mathes a term p if there exists a substitution h�; �i8



suh that h�; �i(p) � t.(iv) We say that two terms t and u unify if there exists a substitution h�; �iand an addressed term v suh that v � h�; �i(t) � h�; �i(u).We now de�ne replaement. The replaement funtion operates on terms.Given a term, it hanges some of its in-terms at given loations by other termswith the same address. Unlike lassial term rewriting (see for instane [DJ90℄pp. 252) the plaes where replaement is performed are simply given by ad-dresses instead of paths in the term.De�nition 2.7 [Replaement℄ Let t; u be addressed terms. The replaementgenerated by u in t, denoted by repl(u)(t) is de�ned as follows:repl(u)(X) 4= Xrepl(u)(�a) 4= 8><>:u�a if a 2 addr(u)�a otherwise,repl(u)�F a(t1; : : : ; tm)� 4= 8><>:u�a if a 2 addr(u)F a�repl(u)(t1); : : : ; repl(u)(tm)� otherwiseProposition 2.8 (Replaement Admissibility) If t and u are addressedterms, then repl(u)(t) is an addressed term.We now de�ne the notions of redex and rewriting.De�nition 2.9 [Addressed Rewriting Rule℄ An addressed rewriting rule over �is a pair of addressed terms (l; r) over �, written l ; r, suh that lo(l) �lo(r) and var(r) � var(l). Moreover, if there are addresses a; b in addr(l) \addr(r) suh that l� a and l� b are uni�able, then r� a and r� b must beuni�able with the same uni�er.The ondition lo(l) � lo(r) says that l and r have the same top address,therefore l and r are not variables; the ondition var(r) � var(l) ensures thatthere is no reation of variables.De�nition 2.10 [Redex℄ A term t is a redex for a rule l; r, if t mathes l.A term t has a redex, if there exists an address a 2 addr(t) suh that t� a isa redex.Note that, in general, we do not impose restritions as linearity in addresses(i.e. the same address may our twie), or ayliity of l and r. However,�Ob|a is linear in addresses (addresses our only one) and patterns are neveryli. Beside redireting pointers, ATRS reate new nodes. Fresh renaminginsures that these new node addresses are not already used.De�nition 2.11 [Fresh Renaming℄ 9



(i) We denote by dom(') and rng(') the usual domain and range of a fun-tion '.(ii) A renaming is an injetive address substitution.(iii) Let t be a term having a redex for the addressed rewriting rule l ; r.A renaming �fresh is fresh for l ; r with respet to t if dom(�fresh) =addr(r)naddr(l) i.e. the renaming renames eah newly introdued addressto avoid apture, and rng(�fresh) \ addr(t) = ;, i.e. the hosen addressesare not present in t.Proposition 2.12 (Substitution Admissibility) Given an admissible termt that has a redex for the addressed rewriting rule l; r. Then(i) A fresh renaming �fresh exists for l; r with respet to t.(ii) h� [ �fresh; �i(r) is admissible.At this point, we have given all the de�nitions needed to speify rewriting.De�nition 2.13 [Rewriting℄ Let t be a term that we want to redue at ad-dress a by rule l; r. Proeed as follows:(i) Ensure t� a is a redex. Let h�; �i(l) 4= t� a.(ii) Compute �fresh, a fresh renaming for l; r with respet to t.(iii) Compute u � h� [ �fresh; �i(r).(iv) The result s of rewriting t by rule l ; r at address a is repl(u)(t).We write the redution t ; s, de�ning \;" as the relation of all suhrewritings.Theorem 2.14 (Closure under Rewriting) Let R be an addressed termrewriting system and t be an addressed term. If t; u in R then u is also anaddressed term.2.3 Ayli Mutation-free ATRSIn this subsetion, we onsider a partiular sub-lass of ATRS, namely theATRS involving no yles and no mutation. We show that this partiularlass of ATRS is sound to simulate Term Rewriting Systems.De�nition 2.15 [Ayliity and Mutation-freeness℄� An addressed term is alled ayli if it ontains no ourrene of �.� An ATRS rule l; r is alled ayli if l and r are ayli.� An ATRS is alled ayli if all its rules are ayli.� An ATRS rule l; r is alled mutation-free ifa 2 (addr(l) \ addr(r)) n flo(l)g ) l� a � r� a:� An ATRS is alled mutation-free if all its rules are mutation-free.10



The following de�nition aims at making a relation between an ATRS andTerm Rewriting System. We de�ne mappings from addressed terms to alge-brai terms, and from addressed terms to algebrai ontexts.De�nition 2.16 [Mappings℄� An ATRS to TRS mapping is a homomorphism � from ayli addressedpreterms to �nite terms suh that, for some funtion set fF� j F 2 �gwhere eah F� is either a projetion or a onstrutor:�(X) 4= X�(F a(t1; : : : ; tn)) 4= F�(�(t1); : : : ; �(tn))� Given an ATRS to TRS mapping �, and an address a, we de�ne �a asa mapping from addressed preterms to multi-hole ontexts, suh that allsub-terms at address a (if any) are replaed with holes, written 3. Moreformally, �a(X) 4= X�a(F b(t1; : : : ; tn)) 4= 8<:3 if a � bF�(�a(t1); : : : ; �a(tn)) otherwise� Given a ontext C ontaining zero or more holes, we write C[t℄ the termobtained by �lling all holes in C with t.� Given an ATRS to TRS mapping �, we de�ne the mapping �s from ad-dressed terms substitutions to term substitutions as follows:�s(�)(X) 4= 8<:�(�(X)) if X 2 dom(�)X otherwiseTheorem 2.17 (TRS Simulation) Let S = fli ; ri j i = 1::ng be anayli mutation-free ATRS, and t an ayli term. If t ; u in S, then�(t);+ �(u) in the system �(S) = f�(li); �(ri) j i = 1::ng3 Modeling an Objet-based Framework via ATRS: �Ob|aThe purpose of this setion is to desribe the top level rules of the framework�Ob|a as a framework strongly based on ATRS introdued in the previoussetion. The framework is desribed by a set of rules arranged in modules.The three modules are alled respetively L, C, and F.L is the funtional module, and is essentially the alulus ��aw of [BRL96℄.This module alone de�nes the ore of a purely funtional programminglanguage based on �-alulus and weak redution.11
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M;N ::= �x:M jMN j x j  j h i j hM  m = Ni jM ( m CodeU; V ::= M [s℄a j (UV )a j Eval. Contexts(U ( m)a j hU  m = V ia j ddOeea j Sela�O;m;U� j dUea j �aO ::= h ia j hO m = V ia j �a Objet Struturess ::= U=x ; s j id SubstitutionsFigure 4. The Syntax of �Ob|aC is the ommon objet module, and ontains all the rules ommon to allinstanes of objet aluli de�ned from �Ob|a. It ontains rules for instan-tiation of objets and invoation of methods.F is the module of funtional update, ontaining the rules needed to implementobjet update that also hanges objet identity.The set of rules L + C + F is the instane of �Ob|a for funtional objet aluli.We do this in two steps:(i) �rst we present the funtional alulus �Ob|�, intermediate between thealulus �Ob| of Fisher, Honsell and Mithell [FHM94℄ and our �Ob|a.(ii) Then we sale up over the full �Ob|a as a onservative extension of �Ob|�in the sense that for an ayli mutation-free term, omputations in �Ob|aand omputations in �Ob|� return the same normal form. Sine a �Ob|a-term yields a �Ob|�-term by erasing addresses and indiretions, one orol-lary of this onservativeness is address-irrelevane, i.e. the observationthat the program layout in memory annot a�et the eventual result ofthe omputation. This is an example of how an informal reasoning aboutimplementations an be translated in �Ob|a and formally justi�ed.3.1 Syntax of �Ob|��Ob|� does not use addresses (see the syntax in Figure 2). The syntax of�Ob|� is presented in Figure 3; the reader will note that terms of this alulusare terms of �Ob|a without the addresses, indiretions, and objet identities,and the rules are properly ontained in those of modules L + C + F of �Ob|a.The �rst ategory of expressions is the ode of programs. Terms that de�nethe ode have no addresses, beause ode ontains no environment and is notsubjet to any hange during the omputation (remember that addresses aremeant to tell the omputing engine whih parts of the omputation struturean or have to hange simultaneously). The seond and third ategories de�nedynami entities, or inner strutures: the evaluation ontexts, and the internal13



The Module L(MN)[s℄a ; (M [s℄bN [s℄)a (App)�(�x:M)[s℄b U�a ; M [U=x ; s℄a (Bw)x[U=x ; s℄a ; dUea (FVar)x[U=y ; s℄a ; x[s℄a x 6� y (RVar)(dUeb V )a ; (U V )a (AppRed)d(�x:M)[s℄bea ; (�x:M)[s℄a (LCop)The Module Ch i[s℄a ; ddh ibeea (NO)(M ( m)[s℄a ; (M [s℄b ( m)a (SP)(ddOeeb ( m)a ; Sela(O;m; ddOeeb) (SA)(dUeb ( m)a ; (U ( m)a (SRed)Sela(hO m = Uib; m; V ) ; (U V )a (SU)Sela(hO n = Uib; m; V ) ; Sela(O;m; V ) m 6� n (NE)The Module FhM  m = Ni[s℄a ; hM [s℄b  m = N [s℄ia (FP)hddOeeb  m = V ia ; ddhO  m = V ieea (FC)hdUeb  m = V ia ; hU  m = V ia (FRed)Figure 5. The Modules L and C and Fstruture of objets (or simply objet strutures). The last ategory de�nessubstitutions also alled environments, i.e., lists of terms bound to variables,that are to be distributed and augmented over the ode.3.2 Syntax of �Ob|aThe syntax of �Ob|a is summarized in Figure 4. As for �Ob|� terms thatde�ne the ode have no addresses (the same for substitutions). In ontrast,terms in evaluation ontexts and objet strutures have expliit addresses.14



Notation.The \ ; " operator ats as a \ons" onstrutor for lists, with the envi-ronment id ating as the empty, or identity, environment. By analogy withtraditional notation for lists we adopt the following aliases:M [ ℄a 4= M [id℄aM [U1=x1; : : : ;Un=xn℄a 4= M [U1=x1 ; : : : ; Un=xn ; id℄aIn what follows, we review all the four syntati ategories of �Ob|a.The Code Category.Code terms, written M and N , provide the following onstruts:� Pure �-terms, onstruted from abstrations, appliations, variables, andonstants. This allows the de�nition of higher-order funtions.� Objets, onstruted from the empty objet h i and a funtional updateoperator h  i. An informal semantis of the update operator is givenin Setion 4. In a funtional setting, this operator an be understood asextension as well as override operator, sine an override is handled as apartiular ase of extension.� Method invoation ( ( ).Evaluation Contexts.These terms, written U and V , model states of abstrat mahines. Eval-uation ontexts ontain an abstration of the temporary struture needed toompute the result of an operation. They are given addresses as they denotedynamially instantiated data strutures; they always denote a term losedunder the distribution of an environment. There are the following evaluationontexts:� Closures, of the formM [s℄a, are pairs of a ode and an environment. Roughlyspeaking, s is a list of bindings for the free variables in the ode M .� The terms (UV )a, (U ( m)a, and hU  m = V ia, are the evaluation on-texts assoiated with the orresponding ode onstrutors. Diret sub-termsof these evaluation ontexts are themselves evaluation ontexts instead ofode.� Objets, of the form ddOeea, represent evaluated objets whose internal objetstruture is O and whose objet identity is a. In other words, the address aplays the role of an entry point or handle to the objet struture O, asillustrated by Figure 6.� The term Sela(O;m;U) is the evaluation ontext assoiated to a method-lookup, i.e., the sanning of the objet struture O to �nd the method m,and apply it to the objet U . It is an auxiliary operator invoked when onesends a message to an objet. 15



� The term dUea denotes an indiretion from the address a to the root of theaddressed term U . The operator d ea has no denotational meaning. It isintrodued to make the right-hand side stay at the same address as the left-hand side. Indeed in some ases this has to be enfored. e.g. rule (FVAR).This gives aount of phenomena well-known by implementors. Rules like(AppRed), (LCop) and (FRed) remove those indiretions.� Bak-referenes, of the form �a represents a bak-pointer intended to denoteyles as explained in Setion 2.Internal Objets.The ruial hoie of �Ob|a is the use of internal objets, written O, tomodel objet strutures in memory. They are persistent strutures that mayonly be aessed through the address of an objet, denoted by a in ddOeea, andare never destroyed nor modi�ed (but eventually removed by a garbage olle-tor in implementations, of ourse). Sine our alulus is inherently delegation-based, objets are implemented as linked lists (of �elds/methods), but a moreeÆient array struture an be envisaged. Again, the potential presene of y-les means that objet strutures an ontain ourrenes of bak-pointers �a.The evaluation of a program, i.e., a ode term M , always starts in an emptyenvironment, i.e., as a losure M [ ℄a.Remark 3.1 [ATRS-based preterms of �Ob|a℄ The onrete syntax of �Ob|aof Figure 4 is onsistent with the preterm de�nition in two ways:(i) Symbols in the signature may also be in�x (like e.g., ( ( )), braketing(like e.g., dd ee), mix�x (like [ ℄), or even \invisible" (as is traditional forappliation, represented by juxtaposition). In these ases, we have hosento write the address outside brakets and parentheses.(ii) We shall use �Ob|a sort-spei� variable names.For example we write (UV )a instead of applya(X; Y ) and M [s℄a instead oflosurea(X; Y ) (substituting U for X, et.). Indeed, we shall leave the namesof �Ob|a funtion symbols, suh as apply and losure alluded to above, unspe-i�ed.It is lear that not all preterms denote term graphs, sine this may lead toinonsisteny in the sharing. For instane, the preterm �(ddh iaeeb ( m)a ddh iaeeb�is inonsistent, beause loation a is both labeled by h i and � ( �. Thepreterm �(ddh iaeeb ( m) ddh ieeeb�d is inonsistent as well, beause the node atloation b has its suessor at both loations a and e, whih is impossible fora term graph. On the ontrary, the preterm �(ddh iaeeb ( m) ddh iaeeb�d denotesa legal term graph with four nodes, respetively, at addresses a, b, , and d 1 .1 Observe that omputation with this term leads to a method-not-found error sine theinvoked method m does not belong to the objet ddh iaeeb, and hene will be rejeted by asuitable sound type system or by a run-time exeption.16



Moreover, the nodes at addresses a and b, respetively labeled by h i and dd ee,are shared in the orresponding graph sine they have several ourrenesin the term. These are the distintion aptured by the well-formedness on-straints de�ned in setion 2.1. The rules of �Ob|a as a omputational-engineare de�ned in Figure 5.Remark 3.2 [On fresh addresses℄ We assume that all addresses ourring inright-hand sides but not in left-hand sides are fresh. This is a sound assump-tion relying on the formal de�nition of fresh addresses and addressed termrewriting (see Setion 2), whih ensures that lashes of addresses annot o-ur. The informal meaning of the redution rules are de�ned in [LLL99℄, whilea more formal explanation is given in the more omplete [DLL+01℄.4 ATRS at Work: an Example in �Ob|aHere we propose examples to help understanding the framework. We �rstgive an example showing a funtional objet that extends itself [GHL98℄ witha �eld n upon reeption of message m.Example 4.1 [An Objet whih \self-inits" an Extension℄ Letself ext 4= h h i  add n = �self:hself n = �s:1i| {z }N i:The redution of M 4= (self ext ( add n) in �Ob|a starting from an emptysubstitution is as follows:M [ ℄a ;� (hh i[ ℄d  add n = N [ ℄ib ( add n)a (1); (hddh ieeed  add n = N [ ℄ib ( add n)a (2); (ddhh ie  add n = N [ ℄if| {z }O eeb ( add n)a (3); Sela(O; add n; ddOeeb) (4); ((�self:hself n = �s:1i)[ ℄ ddOeeb)a (5); hself n = �s:1i[ddOeeb=self℄a (6); hself[ddOeeb=self℄h  n = (�s:1)[ddOeeb=self℄gia (7); hdddOeebeh  n = (�s:1)[ddOeeb=self℄gia (8); hddOeeb  n = (�s:1)[ddOeeb=self℄gia (9); ddhO n = (�self:1)[ddOeeb=self℄giheea (10)In (1), two steps are performed to distribute the environment inside the ex-tension, using rules (SP), and (FP). In (2), the empty objet is given anobjet-struture and an objet identity (NO). In (3), this new objet is fun-tionally extended (FC), hene it shares the struture of the former objet but17



has a new objet-identity. In (4), and (5), two steps (SA) (SU) perform thelook up of method add n. In (6) we apply (Bw). In (7), the environment isdistributed inside the funtional extension (FP). In (8), (FVar) replaes selfby the objet it refers to, setting an indiretion from h to b. In (9) the indi-retion is eliminated (FRed). Step (10) is another funtional extension (FC).There is no redex in the last term of the redution, i.e. it is in normal form.Sharing of strutures appears in the above example, sine e.g. ddOeeb turnsout to have several ourrenes in some of the terms of the derivation.4.1 Objet Representations in Figures 6The examples in this setion embody ertain hoies about language designand implementation (suh as \deep" vs. \shallow" opying, management ofrun-time storage, and so forth). It is important to stress that these hoies arenot tied to the formal alulus �Ob|a itself; �Ob|a provides a foundation for awide variety of language paradigms and language implementations. We hopethat the examples are suggestive enough that it will be intuitively lear howto aommodate other design hoies. These shemati examples will be alsouseful to understand how objets are represented and how inheritane an beimplemented in �Ob|a.Reeting implementation pratie, in �Ob|a we distinguish two distintaspets of an objet:� The objet struture: the atual list of methods/�elds.� The objet identity: a pointer to the objet struture.We shall use the word \pointer" where others use \handle" or \referene".Objets an be bound to identi�ers as \niknames" (e.g., pixel), but theonly proper name of an objet is its objet identity: an objet may haveseveral niknames but only one identity.Consider the following de�nition of a \pixel" prototype with three �eldsand one method. With a slight abuse of notation, we use \:=" for bothassignment of an expression to a variable or the extension of an objet with anew �eld or method and for overriding an existing �eld or method inside anobjet with a new value or body, respetively.pixel = objet {x := 0;y := 0;onoff := true;set := (u,v,w){x := u; y := v; onoff := w;};}After instantiation, the objet pixel is loated at an address, say a, and itsobjet struture starts at address b, see Figure 6 (top). In what follows, wewill derive three other objets from pixel and disuss the variations of howthis may be done below. 18
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Figure 6. An Objet Pixel (top), two Clones p and q (left), the Memory after (1,2)(right) and (3) (bottom).4.2 CloningThe �rst two derived objets, nik-named p and q, are lones of pixel (Herelet x = A in B is syntati sugar for the funtional appliation (�x.B)A.)let p = pixel in let q = p in qObjet p shares the same objet-struture as pixel but it has its own objet-identity. Objet q shares also the same objet-struture as pixel, even if it isa lone of p. The e�et is pitured in Figure 6 (left). We might stress here thatp and q should not be thought of as aliases of pixel as Figure might suggest;this point will be learer after the disussion of objet overriding below. Then,we show what we want to model in our framework when we override the setmethod of the lone q of pixel, and we extend a lone r of (the modi�ed) qwith a new method swith.let p = pixel inlet q = p.set :=(u,v,w){((self.x := self.x*u).y := self.y*v).onoff := w} inlet r = (q.swith := (){self.onoff := not(self.onoff);}) in rwhih obviously redues to: (pixel.set:=(u,v,w){..}).swith:=(){..}.Figure 6 (middle) shows the state of the memory after the exeution of theinstrutions (1,2). Note that after (1) the objet q refers to a new objet-struture, obtained by haining the new body for set with the old objet-struture. As suh, when the overridden set method is invoked, thanks todynami binding, the newer body will be exeuted sine it will hide the olderone. This dynami binding is embodied in the treatment of the method-lookuprules (SU) and (NE) from Module C as desribed in Setion 3.19



Observe that the override of the set method does not produe any side-e�et on p and pixel; in fat, the ode for set used by pixel and p will bejust as before. Therefore, (1) only hanges the objet-struture of q withouthanging its objet-identity. This is the sense in whih our lone operatorreally does implement shallow opying rather than aliasing, even though thereis no dupliation of objet-struture at the time that lone is evaluated.This implementation model performs side e�ets in a very restrited andontrolled way. Figure 6 (right), �nally, shows the �nal state of memoryafter the exeution of the instrution (3). Again, the addition of the swithmethod hanges only the objet-struture of r.In general, hanging the nature of an objet dynamially by adding amethod or a �eld an be implemented by moving the objet identity toward thenew method/�eld (represented by a piee of ode or a memory loation) and tohain it to the original struture. This mehanism is used systematially alsofor method/�eld overriding but in pratie (for optimization purposes) an berelaxed for �eld overriding, where a more eÆient �eld look up and replaementtehnique an be adopted. See for example the ase of the Objet Calulus inChapter 6-7 of [AC96℄, or observe that Java uses stati �eld lookup to makethe position of eah �eld onstant in the objet.4.3 ImplementingRepresenting objet strutures with the onstrutors h i (the empty objet),and h  i (the funtional ons of an objet with a method/�eld), andobjet identities by the braketing symbol dd ee, the objet p and q, presentedin Figure 6, will be represented by the following addressed terms.p 4= dd hhhhh if  y = 0ie  x = 0id  onoff = truei  set = : : : ibeeaq 4= ddhhhhhh if  y = 0ie  x = 0id  onoff = truei  set = : : : ib set = : : : igeehThe use of the same addresses b; ; d; e; f in p as in q denotes the sharingbetween both objet strutures while g; h; are unshared and new loations.5 Relation between �Ob|� and �Ob|aIn this setion we just list (for obvious lak of spae) some fundamental resultsabout the relationship between �Ob|� and �Ob|a.As a �rst step we note that the results presented in Setion 2.3 are appli-able to �Ob|�.Lemma 5.1 (Mapping �Ob|a to �Ob|�) Let � be the mapping from ayli�Ob|a-terms that erases addresses, indiretion nodes (d ea), and objet identi-ties (dd eea), and leaves all the other symbols unhanged. Eah term �(U) is aterm of �Ob|�. 20



Then we show a simulation result.Theorem 5.2 (�Ob|� Simulates �Ob|a) Let U be an ayli �Ob|a-term. IfU ; V in L + C + F, then �(U);� �(V ) in �Ob|�.Another issue, takled by the following theorem, is to prove that all normalforms of �Ob|� an also be obtained in L + C + F of �Ob|a.Theorem 5.3 (Completeness of �Ob|a w.r.t. �Ob|�) IfM ;� N in �Ob|�,suh that N is a normal form, then there is some U suh that �(U) � N andM [ ℄a ;� U in L + C + F of �Ob|a.The last issue is to show that L + C + F of �Ob|a does not introduenon-termination w.r.t. �Ob|�.Theorem 5.4 (Preservation of Strong Normalization) IfM is a stronglynormalizing �Ob|�-term, then all �Ob|a-term U suh that �(U) � M is alsostrongly normalizing.6 ConlusionsWe have presented the theory of addressed term rewriting systems and de-tailed its use as a foundation for �Ob|a, a framework to desribe objet-basedaluli. This ase study of �Ob|a shows how ATRSs an support the analysisof implementations at the level of resoure usage, modeling sharing of ompu-tations and sharing of storage, where eah omputation-step in the alulusorresponds to a onstant-ost omputation in pratie.The ATRS setting is a ongenial one to analyze strategies in rewriting-based implementations. For example the approah for funtional languagesstudied in [BRL96℄ should be generalizable to �Ob|a: from a very general pointof view, a strategy is a binary relation between addressed terms and addresses.The addresses, in relation with a given term, determines whih redexes of theterm has to be redued next (note that in a given term at a given address, atmost one rule applies).The alulus �Ob|a itself is the basis for future work: we plan to ex-tend �Ob|a to handle the embedding-based tehnique of inheritane, following[LLL99℄, to inlude a type system onsistent with objet-oriented feature withthe ability to type objets extending themselves, following [GHL98℄.The applied tehniques in our framework ould be also be applied in thesetting of �xed-size objets like the Abadi and Cardelli's Objet Calulus[AC96℄.During the workshop Franois-R�egis Sinot raised an interesting questionabout linearity of addresses. Although �Ob|a is linear in addresses, we mayonsider whether to relax this onstraint. Although it is well known thatallowing non-linearity in terms an break onuene in ordinary term rewrit-ing systems, it is not lear if non-linearity in address will break onuene21
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