
Ele
troni
 Notes in Theoreti
al Computer S
ien
e 73 (2004)URL: http://www.elsevier.nl/lo
ate/ent
s/volume73.html 24 pagesAddressed Term Rewriting Systems:Syntax, Semanti
s, and Pragmati
s[Extended Abstra
t℄Dan DoughertyWor
ester Polyte
hni
 Institute, Wor
ester, MA, U.S.A.Pierre Les
anne�E
ole Normale Sup�erieure, Lyon, Fran
eLuigi LiquoriINRIA Sophia Antipolis, Fran
eFr�ed�eri
 LangINRIA Rhone-Alpes, Fran
eAbstra
tWe present a formalism
alled Addressed Term Rewriting Systems, whi
h
an beused to de�ne the operational semanti
s of programming languages, espe
ially thoseinvolving sharing, re
ursive
omputations and
y
li
 data stru
tures. AddressedTerm Rewriting Systems are therefore well suited for des
ribing obje
t-based lan-guages, as for instan
e the family of languages
alled �Ob|a, involving both fun
-tional and obje
t-based features.1 Introdu
tion1.1 Addressed Cal
uli and Semanti
s of SharingEÆ
ient implementations of lazy fun
tional languages (and of
omputer al-gebras, theorem provers, et
.) require some sharing me
hanism to avoidmultiple
omputations of a single argument. A natural way to model thissharing in a symboli

al
ulus is to pass from a tree representation of termsto dire
ted graphs. Su
h term graphs
an be
onsidered as a representa-tion of program-expressions intermediate between abstra
t syntax trees and

2004 Published by Elsevier S
ien
e B. V.

http://www.elsevier.nl/locate/entcs/volume73.html

Corresponding addressed termAcyclic graph

a

b b

a

b

b

a a

Cyclic graph Corresponding addressed term

b

bFigure 1. Sharing and Cy
les Using Addresses
on
rete representations in memory, and term-graph rewriting provides a for-mal operational semanti
s of fun
tional programming sensitive to sharing.There is a wealth of resear
h on the theory and appli
ations of term graphs;see for example [BvEG+87,SPv93,Plu99,Blo01℄ for general treatments, and[Wad71,Tur79,AK94,AFM+95,AA95℄ for appli
ations to �-
al
ulus and im-plementations.In this paper we annotate terms, as trees, with global addresses in thespirit of [FF89,Ros96,BRL96℄. L�evy [L�ev80℄ and Maranget [Mar92℄ previouslyintrodu
ed lo
al addresses; from the point of view of the operational semanti
s,global addresses des
ribe better what is going in a
omputer or an abstra
tma
hine.The formalisms of term-graph rewriting and addressed-term rewriting arefundamentally similar but we feel that the addressed-term setting has severaladvantages. Our intention is to de�ne a
al
ulus that is as
lose to a
tualimplementations as possible, and the addresses in our terms really do
orre-spond to memory referen
es. To the extent that we are trying to build a bridgebetween theory and implementation we prefer this dire
tness to the impli
it
oding inherent in a term-graph treatment.With expli
it global addresses we
an keep tra
k of the sharing that
anbe used in the implementation of a
al
ulus. Sub-terms that share a
ommonaddress represent the same sub-graphs, as suggested in Figure 1 (left), wherea and b denote addresses. In [DLL+02℄, addressed terms were studied in the
ontext of addressed term rewriting, as an extension of
lassi
al �rst-orderterm rewriting. In addressed term rewriting we may rewrite simultaneouslyall sub-terms sharing a same address, mimi
king what would happen in animplementation.We also enri
h the sharing with a spe
ial ba
k-pointer to handle
y
li
graphs [Ros96℄. Cy
les are used in the fun
tional language setting to representin�nite data-stru
tures and (in some implementations) to represent re
ursive
ode; they are also interesting in the
ontext of imperative obje
t-orientedlanguages where loops in the store may be
reated by imperative updatesthrough the use of self (or this). The idea of the representation of
y
lesvia addressed terms is rather natural: a
y
li
 path in a �nite graph is fullydetermined by a pre�x path ended by a \jump" to some node of the pre�xpath (represented with a ba
k-pointer), as suggested in Figure 1 (right).The in
lusion of expli
it indire
tion nodes is a
ru
ial innovation here.Indire
tion nodes allow us to give a more realisti
 treatment of the so-
alled
ollapsing rules of term graph rewriting (rules that rewrite a term to one of2

its proper sub-terms). More detailed dis
ussion will be found in Se
tions 2.1.2 Suitability of Addressed TRS for des
ribing an Obje
t-based FrameworkRe
ent years have seen a great deal of resear
h aimed at providing a rigorousfoundation for obje
t-oriented programming languages. In many
ases, thiswork has taken the form of \obje
t-
al
uli" [FHM94,AC96,GH00,IPW01℄.Su
h
al
uli
an be understood in two ways. On the one hand, the formalsystem is a spe
i�
ation of the semanti
s of the language, and
an be used asa framework for
lassifying language design
hoi
es, to provide a setting forinvestigating type systems, or to support a denotational semanti
s. Alterna-tively, we may treat an obje
t-
al
ulus as an intermediate language into whi
huser
ode (in a high-level obje
t-oriented language) may be translated, andfrom whi
h an implementation (in ma
hine language) may be derived.Several treatments of fun
tional operational semanti
s exist in the lit-erature [Lan64,Aug84,Kah87,MTH90℄. Addressed Term Rewriting Systems(originally motivated by implementations of lazy fun
tional programming lan-guages [PJ87,PvE93℄) are the foundation of the �Ob|a framework [LLL99℄ formodeling obje
t-oriented languages. The results in [LLL99℄ showed how tomodel �Ob|a using Addressed Term Rewriting Systems, but with no formalpresentation of those systems. Here we exposes the graph-based ma
hineryunderneath the rewriting semanti
s of �Ob|a. To our knowledge, term graph-rewriting has been little explored in the
ontext of the analysis of obje
t-basedprogramming.The novelty of �Ob|a is that it provides a homogeneous approa
h to bothfun
tional and obje
t-oriented aspe
ts of programming languages, in the sensethe two semanti
s are treated in the same way using addressed terms, withonly a minimal sa
ri�
e in the permitted algebrai
 stru
tures. Indeed, theaddressed terms used were originally introdu
ed to des
ribe sharing behav-ior for fun
tional programming languages [Ros96,BRL96℄. A useful way tounderstand the �Ob|a framework is by analogy with graph-redu
tion as animplementation-
al
ulus for fun
tional programming. Comparing �Ob|a withthe implementation te
hniques of fun
tional programming (FP) and obje
toriented programming (OOP) gives the following
orresponden
e. The �Ob|a\modules" L, C, and F are de�ned in se
tion 3.Paradigm �Ob|a fragment Powered byPure FP �Ob|a (L) ATRSPure FP+OOP �Ob|a (L+C+F) ATRS1.3 Outline of the PaperThe paper is organized as follows: Se
tion 2 details the framework of addressedterm rewriting systems and establishes a general relation between addressed3

term rewriting systems and �rst-order term rewriting systems. Se
tion 3 putsaddressed term rewriting system to work by presenting the three modules ofrewriting rules that form the
ore of �Ob|a. For pedagogi
al sake, we pro
eedin two steps: �rst we present the
al
ulus �Ob|�, intermediate between the
al
ulus �Ob| of Fisher, Honsell and Mit
hell [FHM94℄, and then we s
ale upto our �Ob|a. Se
tion 4 presents a running obje
t-based example in the �Ob|aframework. Se
tion 6
on
ludes. Se
tion 5 show some theorems there addressthe relationship between �Ob| and �Ob|a.For la
k of spa
e not all proof are presented here. A longer version of thispaper
ontaining full proofs and a large
olle
tion of fun
tional and obje
t-based and imperative examples
on
erning the obje
t framework
an be foundin the te
hni
al reports and manus
ript [LDLR99,DLL+02℄.2 Addressed Term Rewriting SystemsIn this se
tion we introdu
e addressed term rewriting systems or ATRS inshort. Classi
al term rewriting [DJ90,Klo90,BN98℄
annot easily express issuesof sharing and mutation. Cal
uli that give an a

ount of memory managementoften introdu
e some ad-ho
 data-stru
ture to model the memory,
alled heap,or store, together with a

ess and update operations. However, the use ofthese stru
tures ne
essitates restri
ting the
al
ulus to a parti
ular strategy.The aim of addressed term rewriting (and that of term graph rewriting) isto provide a mathemati
al model of
omputation that re
e
ts memory usageand is robust enough to be independent of the rewriting strategy.Sharing of
omputation.Consider the redu
tion square(x) ! times(x; x): In order to share sub-terms, addresses are inserted in terms making them addressed terms. Forinstan
e if we are to
ompute square(square(2)), we atta
h addresses a; b;
 tothe individual subterms. This yields squarea(squareb(2
)) whi
h
an then beredu
ed as follows: squarea(squareb(2
)); timesa(squareb(2
); squareb(2
))timesa(timesb(2
; 2
); timesb(2
; 2
)); timesa(4b; 4b); 16a;where \;" designates a one step redu
tion with sharing. The key point of ashared
omputation is that all terms that share a
ommon address are redu
edsimultaneously.Sharing of Obje
t Stru
tures.It is important not only to share
omputations, but also to share stru
tures.Indeed, obje
ts are typi
ally stru
tures that re
eive multiple pointers. As anexample, if we \zoom" on Figure 6, we
an observe that the obje
t p and q4

share a
ommon stru
ture addressed by b. This
an be very easily formalizedin the framework, sin
e addresses are �rst-
lass
itizens. See Se
tion 4.Cy
les.Cy
les are essential in fun
tional programming when one deals with in�nitedata-stru
tures, as in lazy fun
tional programming languages. Cy
les are alsoused to save spa
e in the
ode of re
ursive fun
tions. Moreover in the
ontextof obje
t programming languages,
y
les
an be used to express loops whi
h
an introdu
ed in memory via lazy evaluation of re
ursive
ode.2.1 Addressed TermsAddressed terms are �rst order terms labeled by operator symbols and de
o-rated with addresses. They satisfy well-formedness
onstraints ensuring thatevery addressed term represents a
onne
ted pie
e of a store. Moreover, thelabel of ea
h node sets the number of its su

essors. Abstra
tly, addressedterms denote term graphs, as the largest tree unfolding of the graph withoutrepetition of addresses in any path. Addresses intuitively denote node lo
ationsin memory. Identi
al subtrees o

urring at di�erent paths
an thus have thesame address
orresponding to the fa
t that the two o

urren
es are shared.The de�nition is in two stages: the �rst stage de�nes the basi
 indu
tiveterm stru
ture,
alled preterms, while the se
ond stage just restri
ts pretermsto well-formed preterms, or addressed terms.De�nition 2.1 [Preterms℄(i) Let � be a term signature, and � a spe
ial symbol of arity zero (a
on-stant). LetA be an enumerable set of addresses denoted by a; b;
; : : :, andX an enumerable set of variables, denoted by X; Y; Z; : : : An addressedpreterm t over � is either a variable X, or �a where a is an address, or anexpression of the form F a(t1; : : : ; tn) where F 2 � (the label) has arityn � 0, a is an address, and ea
h ti is an addressed preterm (indu
tively).(ii) The lo
ation of an addressed preterm t, denoted by lo
(t), is de�ned bylo
�F a(t1; : : : ; tn)� 4= lo
(�a) 4= a;and it is not de�ned on variables.(iii) The set of variables and addresses o

urring within a preterm t is denotedby var(t) and addr(t), respe
tively, and de�ned in the obvious way.The de�nition of a preterm makes use of a spe
ial symbol �
alled a ba
k-pointer and used to denote
y
les [Ros96℄. A ba
k-pointer �a in an addressedterm must be su
h that a is an address o

urring on the path from the rootof the addressed term to the ba
k-pointer node. It simply indi
ates at whi
haddress one has to bran
h (or point ba
k) to go on along an in�nite path.5

An essential operation that we must have on addressed (pre)terms is theunfolding that allows seeing, on demand, what is beyond a ba
k-pointer. Un-folding
an therefore be seen as a lazy operator that traverses one step deeperin a
y
li
 graph. It is a

ompanied with its dual,
alled folding, that al-lows giving a minimal representation of
y
les. Note however that folding andunfolding operations have no operational meaning in an a
tual implementa-tion (hen
e no operational
ost) but they are essential in order to represent
orre
tly transformations between addressed terms.De�nition 2.2 [Folding and Unfolding℄Folding. Let t be a preterm, and a be an address. We de�ne fold(a)(t) asthe folding of preterms lo
ated at a in t as follows:fold(a)(X) 4= Xfold(a)(�b) 4= �bfold(a)�F a(t1; : : : ; tn)� 4= �afold(a)�F b(t1; : : : ; tn)� 4= F b�fold(a)(t1); : : : ; fold(a)(tn)� if a 6� bUnfolding. Let s and t be preterms, su
h that lo
(s) � a (therefore de�ned),and a does not o

ur in t ex
ept as the address of �a. We de�ne unfold(s)(t)as the unfolding of �a by s in t as follows:unfold(s)(X) 4= Xunfold(s)(�b) 4= 8<: s if a � b�b otherwiseunfold(s)�F b(t1; : : : ; tm)� 4= F b�t01; : : : ; t0m�where s0 4= fold(b)(s)t01 4= unfold(s0)(t1): : :t0m 4= unfold(s0)(tm)We now pro
eed with the formal de�nition of addressed terms also
alledadmissible preterms, or simply terms, for short, when there is no ambiguity.As already mentioned, addressed terms are preterms that denote term graphs.The notion of in-term helps to de�ne addressed terms. The de�nition ofaddressed terms takes two steps: the �rst step is the de�nition of danglingterms, that are the sub-terms, in the usual sense, of a
tual addressed terms.Simultaneously, we de�ne the notion of a dangling term, say s, at a givenaddress, say a, in a dangling term, say t. When the dangling term t (i.e. the\out"-term) is known, we just
all s an in-term. For a dangling term t, itsin-terms are denoted by the fun
tion t� , read \t at address ", whi
h returnsa minimal and
onsistent representation of terms at ea
h address, using the6

unfolding.Therefore, there are two notions to be distinguished: on the one hand theusual well-founded notion of \sub-term", and on the other hand the (no longerwell-founded) notion of \term in another term", or \in-term". In other words,although it is not the
ase that a term is a proper sub-term of itself, it may bethe
ase that a term is a proper in-term of itself or that a term is an in-term ofone of its in-terms, due to
y
les. The fun
tions ti� are also used during the
onstru
tion to
he
k that all parts of the same term are
onsistent, mainlythat all in-terms that share a same address are all the same dangling terms.Dangling terms may have ba
k-pointers that do not point anywhere be-
ause there is no node with the same address \above" in the term. The latterare
alled dangling ba
k-pointers. For instan
e, (�x:y)[�b=y℄
 has a danglingba
k-pointer, while (�x:y)[�
=y℄
 has none. The se
ond step of the de�nitionrestri
ts the addressed terms to the dangling terms that do not have danglingba
k-pointers. The following de�nition provides simultaneously two
on
epts:� The dangling terms.� The fun
tion t� from addr(t) to dangling in-terms. t� a returns the in-term of t at address a.De�nition 2.3 [Dangling Addressed Terms℄ The set DT (�) of dangling ad-dressed terms is the smallest set that satis�es the following properties.Variables. X � DT (�) and X � is nowhere de�ned.Ba
k-pointers. �a 2 DT (�) and �a� a � �a.Expressions. For t1 2 DT (�); : : : ; tn 2 DT (�) su
h that: b 2 addr(ti) \addr(tj)) ti� b � tj � b, for a an address su
h that: a 2 addr(ti))ti� a � �a and for F 2 � of arity n,� t � F a(t1; : : : ; tn) 2 DT (�).� t� a � t.� b 2 addr(ti) n fag) t� b � unfold(t)(ti� b).Admissible addressed terms are those where all �a do point ba
k to somethingin t su
h that a
omplete (possibly in�nite) unfolding of the term exists. Theonly way we
an observe this with the t� fun
tion is through
he
king that no�a
an \es
ape" be
ause this
annot happen when it points ba
k to something.De�nition 2.4 [Addressed Term℄ A dangling addressed term t is admissibleif a 2 addr(t)) t� a 6� �a. An admissible dangling addressed term will besimply denoted an addressed term.Proposition 2.5 (In-terms Admissibility) If t is an admissible term, anda 2 addr(t), then(i) t� a is admissible, and(ii) 8b 2 addr(t� a), we have (t� a)� b � t� b.7

2.2 Addressed Term RewritingThe redu
tion of an addressed term must return an addressed term (not just apreterm). In other words, the
omputation model (here addressed term rewrit-ing) must take into a

ount the sharing information given by the addresses,and must be de�ned as the smallest rewriting relation preserving admissibilitybetween addressed terms. Hen
e, a
omputation has to take pla
e simultane-ously at several pla
es in the addressed term, namely at the pla
es lo
atedat the same address. This simultaneous update of terms
orresponds to theupdate of a lo
ation in the memory in a real implementation.In an ATRS, a rewriting rule is a pair of open addressed terms (i.e.,
on-taining variables) at the same lo
ation. The way addressed term rewritingpro
eeds on an addressed term t is not so di�erent from the way usual termrewriting does;
on
eptually there are four steps.(i) Find a redex in t, i.e. an in-term mat
hing the left-hand side of a rule.Intuitively, an addressed term mat
hing is the same as a
lassi
al termmat
hing, ex
ept there is a new kind of variables,
alled addresses, whi
h
an only be substituted by addresses.(ii) Create fresh addresses, i.e. addresses not used in the
urrent addressedterm t, whi
h will
orrespond to the lo
ations o

urring in the right-handside, but not in the left-hand side (i.e. the new lo
ations).(iii) Substitute the variables and addresses of the right-hand side of the ruleby their new values, as assigned by the mat
hing of the left-hand side or
reated as fresh addresses. Let us
all this new addressed term u.(iv) For all a that o

ur both in t and u, the result of the rewriting step, sayt0, will have t0 � a � u� a, otherwise t0 will be equal to t.We give the formal de�nition of mat
hing and repla
ement, and then we de�nerewriting pre
isely.De�nition 2.6 [Substitution, Mat
hing, Uni�
ation℄(i) Mappings from addresses to addresses are
alled address substitutions.Mappings from variables to addressed terms are
alled variable substitu-tions. A pair of an address substitution � and a variable substitution �is
alled a substitution, and it is denoted by h�; �i.(ii) Let h�; �i be a substitution and p a term su
h that addr(p) � dom(�) andvar(p) � dom(�). The appli
ation of h�; �i to p, denoted by h�; �i(p),is de�ned indu
tively as follows:h�; �i(�a) 4= ��(a)h�; �i(X) 4= �(X)h�; �i�F a(p1; : : : ; pm)� 4= F �(a)(q1; : : : ; qm) and qi 4= fold(�(a))�h�; �i(pi)�(iii) We say that a term t mat
hes a term p if there exists a substitution h�; �i8

su
h that h�; �i(p) � t.(iv) We say that two terms t and u unify if there exists a substitution h�; �iand an addressed term v su
h that v � h�; �i(t) � h�; �i(u).We now de�ne repla
ement. The repla
ement fun
tion operates on terms.Given a term, it
hanges some of its in-terms at given lo
ations by other termswith the same address. Unlike
lassi
al term rewriting (see for instan
e [DJ90℄pp. 252) the pla
es where repla
ement is performed are simply given by ad-dresses instead of paths in the term.De�nition 2.7 [Repla
ement℄ Let t; u be addressed terms. The repla
ementgenerated by u in t, denoted by repl(u)(t) is de�ned as follows:repl(u)(X) 4= Xrepl(u)(�a) 4= 8><>:u�a if a 2 addr(u)�a otherwise,repl(u)�F a(t1; : : : ; tm)� 4= 8><>:u�a if a 2 addr(u)F a�repl(u)(t1); : : : ; repl(u)(tm)� otherwiseProposition 2.8 (Repla
ement Admissibility) If t and u are addressedterms, then repl(u)(t) is an addressed term.We now de�ne the notions of redex and rewriting.De�nition 2.9 [Addressed Rewriting Rule℄ An addressed rewriting rule over �is a pair of addressed terms (l; r) over �, written l ; r, su
h that lo
(l) �lo
(r) and var(r) � var(l). Moreover, if there are addresses a; b in addr(l) \addr(r) su
h that l� a and l� b are uni�able, then r� a and r� b must beuni�able with the same uni�er.The
ondition lo
(l) � lo
(r) says that l and r have the same top address,therefore l and r are not variables; the
ondition var(r) � var(l) ensures thatthere is no
reation of variables.De�nition 2.10 [Redex℄ A term t is a redex for a rule l; r, if t mat
hes l.A term t has a redex, if there exists an address a 2 addr(t) su
h that t� a isa redex.Note that, in general, we do not impose restri
tions as linearity in addresses(i.e. the same address may o

ur twi
e), or a
y
li
ity of l and r. However,�Ob|a is linear in addresses (addresses o

ur only on
e) and patterns are never
y
li
. Beside redire
ting pointers, ATRS
reate new nodes. Fresh renaminginsures that these new node addresses are not already used.De�nition 2.11 [Fresh Renaming℄ 9

(i) We denote by dom(') and rng(') the usual domain and range of a fun
-tion '.(ii) A renaming is an inje
tive address substitution.(iii) Let t be a term having a redex for the addressed rewriting rule l ; r.A renaming �fresh is fresh for l ; r with respe
t to t if dom(�fresh) =addr(r)naddr(l) i.e. the renaming renames ea
h newly introdu
ed addressto avoid
apture, and rng(�fresh) \ addr(t) = ;, i.e. the
hosen addressesare not present in t.Proposition 2.12 (Substitution Admissibility) Given an admissible termt that has a redex for the addressed rewriting rule l; r. Then(i) A fresh renaming �fresh exists for l; r with respe
t to t.(ii) h� [�fresh; �i(r) is admissible.At this point, we have given all the de�nitions needed to spe
ify rewriting.De�nition 2.13 [Rewriting℄ Let t be a term that we want to redu
e at ad-dress a by rule l; r. Pro
eed as follows:(i) Ensure t� a is a redex. Let h�; �i(l) 4= t� a.(ii) Compute �fresh, a fresh renaming for l; r with respe
t to t.(iii) Compute u � h� [�fresh; �i(r).(iv) The result s of rewriting t by rule l ; r at address a is repl(u)(t).We write the redu
tion t ; s, de�ning \;" as the relation of all su
hrewritings.Theorem 2.14 (Closure under Rewriting) Let R be an addressed termrewriting system and t be an addressed term. If t; u in R then u is also anaddressed term.2.3 A
y
li
 Mutation-free ATRSIn this subse
tion, we
onsider a parti
ular sub-
lass of ATRS, namely theATRS involving no
y
les and no mutation. We show that this parti
ular
lass of ATRS is sound to simulate Term Rewriting Systems.De�nition 2.15 [A
y
li
ity and Mutation-freeness℄� An addressed term is
alled a
y
li
 if it
ontains no o

urren
e of �.� An ATRS rule l; r is
alled a
y
li
 if l and r are a
y
li
.� An ATRS is
alled a
y
li
 if all its rules are a
y
li
.� An ATRS rule l; r is
alled mutation-free ifa 2 (addr(l) \ addr(r)) n flo
(l)g) l� a � r� a:� An ATRS is
alled mutation-free if all its rules are mutation-free.10

The following de�nition aims at making a relation between an ATRS andTerm Rewriting System. We de�ne mappings from addressed terms to alge-brai
 terms, and from addressed terms to algebrai

ontexts.De�nition 2.16 [Mappings℄� An ATRS to TRS mapping is a homomorphism � from a
y
li
 addressedpreterms to �nite terms su
h that, for some fun
tion set fF� j F 2 �gwhere ea
h F� is either a proje
tion or a
onstru
tor:�(X) 4= X�(F a(t1; : : : ; tn)) 4= F�(�(t1); : : : ; �(tn))� Given an ATRS to TRS mapping �, and an address a, we de�ne �a asa mapping from addressed preterms to multi-hole
ontexts, su
h that allsub-terms at address a (if any) are repla
ed with holes, written 3. Moreformally, �a(X) 4= X�a(F b(t1; : : : ; tn)) 4= 8<:3 if a � bF�(�a(t1); : : : ; �a(tn)) otherwise� Given a
ontext C
ontaining zero or more holes, we write C[t℄ the termobtained by �lling all holes in C with t.� Given an ATRS to TRS mapping �, we de�ne the mapping �s from ad-dressed terms substitutions to term substitutions as follows:�s(�)(X) 4= 8<:�(�(X)) if X 2 dom(�)X otherwiseTheorem 2.17 (TRS Simulation) Let S = fli ; ri j i = 1::ng be ana
y
li
 mutation-free ATRS, and t an a
y
li
 term. If t ; u in S, then�(t);+ �(u) in the system �(S) = f�(li); �(ri) j i = 1::ng3 Modeling an Obje
t-based Framework via ATRS: �Ob|aThe purpose of this se
tion is to des
ribe the top level rules of the framework�Ob|a as a framework strongly based on ATRS introdu
ed in the previousse
tion. The framework is des
ribed by a set of rules arranged in modules.The three modules are
alled respe
tively L, C, and F.L is the fun
tional module, and is essentially the
al
ulus ��aw of [BRL96℄.This module alone de�nes the
ore of a purely fun
tional programminglanguage based on �-
al
ulus and weak redu
tion.11

M;N ::= �x:M jMN j x j
 jh i j hM m = Ni jM (m (Code)U; V ::= M [s℄ j UV jU (m j hU m = V i j Sel�O;m;U� (Eval. Contexts)O ::= h i j hO m = V i (Obje
t Stru
tures)s ::= U=x ; s j id (Substitutions)Figure 2. The Syntax of �Ob|�Basi
s for Substitutions (MN)[s℄; (M [s℄N [s℄) (App)�(�x:M)[s℄U�;M [U=x ; s℄ (Bw)x[U=y ; s℄; x[s℄ x 6� y (RVar)x[U=x ; s℄; U (FVar)hM m = Ni[s℄; hM [s℄ m = N [s℄i (P)Method Invo
ation h i[s℄; h i (NO)(M (m)[s℄; (M [s℄(m) (SP)(O(m); Sel(O;m;O) (SA)Sel(hO m = Ui; m; V); (U V) (SU)Sel(hO n = Ui; m; V); Sel(O;m; V) m 6� n (NE)Figure 3. The Rules of �Ob|�12

M;N ::= �x:M jMN j x j
 j h i j hM m = Ni jM (m CodeU; V ::= M [s℄a j (UV)a j Eval. Contexts(U (m)a j hU m = V ia j ddOeea j Sela�O;m;U� j dUea j �aO ::= h ia j hO m = V ia j �a Obje
t Stru
turess ::= U=x ; s j id SubstitutionsFigure 4. The Syntax of �Ob|aC is the
ommon obje
t module, and
ontains all the rules
ommon to allinstan
es of obje
t
al
uli de�ned from �Ob|a. It
ontains rules for instan-tiation of obje
ts and invo
ation of methods.F is the module of fun
tional update,
ontaining the rules needed to implementobje
t update that also
hanges obje
t identity.The set of rules L + C + F is the instan
e of �Ob|a for fun
tional obje
t
al
uli.We do this in two steps:(i) �rst we present the fun
tional
al
ulus �Ob|�, intermediate between the
al
ulus �Ob| of Fisher, Honsell and Mit
hell [FHM94℄ and our �Ob|a.(ii) Then we s
ale up over the full �Ob|a as a
onservative extension of �Ob|�in the sense that for an a
y
li
 mutation-free term,
omputations in �Ob|aand
omputations in �Ob|� return the same normal form. Sin
e a �Ob|a-term yields a �Ob|�-term by erasing addresses and indire
tions, one
orol-lary of this
onservativeness is address-irrelevan
e, i.e. the observationthat the program layout in memory
annot a�e
t the eventual result ofthe
omputation. This is an example of how an informal reasoning aboutimplementations
an be translated in �Ob|a and formally justi�ed.3.1 Syntax of �Ob|��Ob|� does not use addresses (see the syntax in Figure 2). The syntax of�Ob|� is presented in Figure 3; the reader will note that terms of this
al
ulusare terms of �Ob|a without the addresses, indire
tions, and obje
t identities,and the rules are properly
ontained in those of modules L + C + F of �Ob|a.The �rst
ategory of expressions is the
ode of programs. Terms that de�nethe
ode have no addresses, be
ause
ode
ontains no environment and is notsubje
t to any
hange during the
omputation (remember that addresses aremeant to tell the
omputing engine whi
h parts of the
omputation stru
ture
an or have to
hange simultaneously). The se
ond and third
ategories de�nedynami
 entities, or inner stru
tures: the evaluation
ontexts, and the internal13

The Module L(MN)[s℄a ; (M [s℄bN [s℄
)a (App)�(�x:M)[s℄b U�a ; M [U=x ; s℄a (Bw)x[U=x ; s℄a ; dUea (FVar)x[U=y ; s℄a ; x[s℄a x 6� y (RVar)(dUeb V)a ; (U V)a (AppRed)d(�x:M)[s℄bea ; (�x:M)[s℄a (LCop)The Module Ch i[s℄a ; ddh ibeea (NO)(M (m)[s℄a ; (M [s℄b (m)a (SP)(ddOeeb (m)a ; Sela(O;m; ddOeeb) (SA)(dUeb (m)a ; (U (m)a (SRed)Sela(hO m = Uib; m; V) ; (U V)a (SU)Sela(hO n = Uib; m; V) ; Sela(O;m; V) m 6� n (NE)The Module FhM m = Ni[s℄a ; hM [s℄b m = N [s℄
ia (FP)hddOeeb m = V ia ; ddhO m = V i
eea (FC)hdUeb m = V ia ; hU m = V ia (FRed)Figure 5. The Modules L and C and Fstru
ture of obje
ts (or simply obje
t stru
tures). The last
ategory de�nessubstitutions also
alled environments, i.e., lists of terms bound to variables,that are to be distributed and augmented over the
ode.3.2 Syntax of �Ob|aThe syntax of �Ob|a is summarized in Figure 4. As for �Ob|� terms thatde�ne the
ode have no addresses (the same for substitutions). In
ontrast,terms in evaluation
ontexts and obje
t stru
tures have expli
it addresses.14

Notation.The \ ; " operator a
ts as a \
ons"
onstru
tor for lists, with the envi-ronment id a
ting as the empty, or identity, environment. By analogy withtraditional notation for lists we adopt the following aliases:M [℄a 4= M [id℄aM [U1=x1; : : : ;Un=xn℄a 4= M [U1=x1 ; : : : ; Un=xn ; id℄aIn what follows, we review all the four synta
ti

ategories of �Ob|a.The Code Category.Code terms, written M and N , provide the following
onstru
ts:� Pure �-terms,
onstru
ted from abstra
tions, appli
ations, variables, and
onstants. This allows the de�nition of higher-order fun
tions.� Obje
ts,
onstru
ted from the empty obje
t h i and a fun
tional updateoperator h i. An informal semanti
s of the update operator is givenin Se
tion 4. In a fun
tional setting, this operator
an be understood asextension as well as override operator, sin
e an override is handled as aparti
ular
ase of extension.� Method invo
ation (().Evaluation Contexts.These terms, written U and V , model states of abstra
t ma
hines. Eval-uation
ontexts
ontain an abstra
tion of the temporary stru
ture needed to
ompute the result of an operation. They are given addresses as they denotedynami
ally instantiated data stru
tures; they always denote a term
losedunder the distribution of an environment. There are the following evaluation
ontexts:� Closures, of the formM [s℄a, are pairs of a
ode and an environment. Roughlyspeaking, s is a list of bindings for the free variables in the
ode M .� The terms (UV)a, (U (m)a, and hU m = V ia, are the evaluation
on-texts asso
iated with the
orresponding
ode
onstru
tors. Dire
t sub-termsof these evaluation
ontexts are themselves evaluation
ontexts instead of
ode.� Obje
ts, of the form ddOeea, represent evaluated obje
ts whose internal obje
tstru
ture is O and whose obje
t identity is a. In other words, the address aplays the role of an entry point or handle to the obje
t stru
ture O, asillustrated by Figure 6.� The term Sela(O;m;U) is the evaluation
ontext asso
iated to a method-lookup, i.e., the s
anning of the obje
t stru
ture O to �nd the method m,and apply it to the obje
t U . It is an auxiliary operator invoked when onesends a message to an obje
t. 15

� The term dUea denotes an indire
tion from the address a to the root of theaddressed term U . The operator d ea has no denotational meaning. It isintrodu
ed to make the right-hand side stay at the same address as the left-hand side. Indeed in some
ases this has to be enfor
ed. e.g. rule (FVAR).This gives a

ount of phenomena well-known by implementors. Rules like(AppRed), (LCop) and (FRed) remove those indire
tions.� Ba
k-referen
es, of the form �a represents a ba
k-pointer intended to denote
y
les as explained in Se
tion 2.Internal Obje
ts.The
ru
ial
hoi
e of �Ob|a is the use of internal obje
ts, written O, tomodel obje
t stru
tures in memory. They are persistent stru
tures that mayonly be a

essed through the address of an obje
t, denoted by a in ddOeea, andare never destroyed nor modi�ed (but eventually removed by a garbage
olle
-tor in implementations, of
ourse). Sin
e our
al
ulus is inherently delegation-based, obje
ts are implemented as linked lists (of �elds/methods), but a moreeÆ
ient array stru
ture
an be envisaged. Again, the potential presen
e of
y-
les means that obje
t stru
tures
an
ontain o

urren
es of ba
k-pointers �a.The evaluation of a program, i.e., a
ode term M , always starts in an emptyenvironment, i.e., as a
losure M [℄a.Remark 3.1 [ATRS-based preterms of �Ob|a℄ The
on
rete syntax of �Ob|aof Figure 4 is
onsistent with the preterm de�nition in two ways:(i) Symbols in the signature may also be in�x (like e.g., (()), bra
keting(like e.g., dd ee), mix�x (like [℄), or even \invisible" (as is traditional forappli
ation, represented by juxtaposition). In these
ases, we have
hosento write the address outside bra
kets and parentheses.(ii) We shall use �Ob|a sort-spe
i�
 variable names.For example we write (UV)a instead of applya(X; Y) and M [s℄a instead of
losurea(X; Y) (substituting U for X, et
.). Indeed, we shall leave the namesof �Ob|a fun
tion symbols, su
h as apply and
losure alluded to above, unspe
-i�ed.It is
lear that not all preterms denote term graphs, sin
e this may lead toin
onsisten
y in the sharing. For instan
e, the preterm �(ddh iaeeb (m)a ddh iaeeb�
is in
onsistent, be
ause lo
ation a is both labeled by h i and � (�. Thepreterm �(ddh iaeeb (m)
 ddh ieeeb�d is in
onsistent as well, be
ause the node atlo
ation b has its su

essor at both lo
ations a and e, whi
h is impossible fora term graph. On the
ontrary, the preterm �(ddh iaeeb (m)
 ddh iaeeb�d denotesa legal term graph with four nodes, respe
tively, at addresses a, b,
, and d 1 .1 Observe that
omputation with this term leads to a method-not-found error sin
e theinvoked method m does not belong to the obje
t ddh iaeeb, and hen
e will be reje
ted by asuitable sound type system or by a run-time ex
eption.16

Moreover, the nodes at addresses a and b, respe
tively labeled by h i and dd ee,are shared in the
orresponding graph sin
e they have several o

urren
esin the term. These are the distin
tion
aptured by the well-formedness
on-straints de�ned in se
tion 2.1. The rules of �Ob|a as a
omputational-engineare de�ned in Figure 5.Remark 3.2 [On fresh addresses℄ We assume that all addresses o

urring inright-hand sides but not in left-hand sides are fresh. This is a sound assump-tion relying on the formal de�nition of fresh addresses and addressed termrewriting (see Se
tion 2), whi
h ensures that
lashes of addresses
annot o
-
ur. The informal meaning of the redu
tion rules are de�ned in [LLL99℄, whilea more formal explanation is given in the more
omplete [DLL+01℄.4 ATRS at Work: an Example in �Ob|aHere we propose examples to help understanding the framework. We �rstgive an example showing a fun
tional obje
t that extends itself [GHL98℄ witha �eld n upon re
eption of message m.Example 4.1 [An Obje
t whi
h \self-in
i
ts" an Extension℄ Letself ext 4= h h i add n = �self:hself n = �s:1i| {z }N i:The redu
tion of M 4= (self ext (add n) in �Ob|a starting from an emptysubstitution is as follows:M [℄a ;� (hh i[℄d add n = N [℄
ib (add n)a (1); (hddh ieeed add n = N [℄
ib (add n)a (2); (ddhh ie add n = N [℄
if| {z }O eeb (add n)a (3); Sela(O; add n; ddOeeb) (4); ((�self:hself n = �s:1i)[℄
 ddOeeb)a (5); hself n = �s:1i[ddOeeb=self℄a (6); hself[ddOeeb=self℄h n = (�s:1)[ddOeeb=self℄gia (7); hdddOeebeh n = (�s:1)[ddOeeb=self℄gia (8); hddOeeb n = (�s:1)[ddOeeb=self℄gia (9); ddhO n = (�self:1)[ddOeeb=self℄giheea (10)In (1), two steps are performed to distribute the environment inside the ex-tension, using rules (SP), and (FP). In (2), the empty obje
t is given anobje
t-stru
ture and an obje
t identity (NO). In (3), this new obje
t is fun
-tionally extended (FC), hen
e it shares the stru
ture of the former obje
t but17

has a new obje
t-identity. In (4), and (5), two steps (SA) (SU) perform thelook up of method add n. In (6) we apply (Bw). In (7), the environment isdistributed inside the fun
tional extension (FP). In (8), (FVar) repla
es selfby the obje
t it refers to, setting an indire
tion from h to b. In (9) the indi-re
tion is eliminated (FRed). Step (10) is another fun
tional extension (FC).There is no redex in the last term of the redu
tion, i.e. it is in normal form.Sharing of stru
tures appears in the above example, sin
e e.g. ddOeeb turnsout to have several o

urren
es in some of the terms of the derivation.4.1 Obje
t Representations in Figures 6The examples in this se
tion embody
ertain
hoi
es about language designand implementation (su
h as \deep" vs. \shallow"
opying, management ofrun-time storage, and so forth). It is important to stress that these
hoi
es arenot tied to the formal
al
ulus �Ob|a itself; �Ob|a provides a foundation for awide variety of language paradigms and language implementations. We hopethat the examples are suggestive enough that it will be intuitively
lear howto a

ommodate other design
hoi
es. These s
hemati
 examples will be alsouseful to understand how obje
ts are represented and how inheritan
e
an beimplemented in �Ob|a.Re
e
ting implementation pra
ti
e, in �Ob|a we distinguish two distin
taspe
ts of an obje
t:� The obje
t stru
ture: the a
tual list of methods/�elds.� The obje
t identity: a pointer to the obje
t stru
ture.We shall use the word \pointer" where others use \handle" or \referen
e".Obje
ts
an be bound to identi�ers as \ni
knames" (e.g., pixel), but theonly proper name of an obje
t is its obje
t identity: an obje
t may haveseveral ni
knames but only one identity.Consider the following de�nition of a \pixel" prototype with three �eldsand one method. With a slight abuse of notation, we use \:=" for bothassignment of an expression to a variable or the extension of an obje
t with anew �eld or method and for overriding an existing �eld or method inside anobje
t with a new value or body, respe
tively.pixel = obje
t {x := 0;y := 0;onoff := true;set := (u,v,w){x := u; y := v; onoff := w;};}After instantiation, the obje
t pixel is lo
ated at an address, say a, and itsobje
t stru
ture starts at address b, see Figure 6 (top). In what follows, wewill derive three other obje
ts from pixel and dis
uss the variations of howthis may be done below. 18

b c d e
f

Object structure

a
pixel

Nickame Object identity

empty

code

trueonoffset y0 0x

qppixel

set

x 0

0y

empty

onoff true

code of set

rqp

empty

onoff true

code of set

set new code of set

pixel

set

x 0

0y

q

r

ppixel

set

0

0

empty

onoff true

x

code of set

y

new code of setset

code of switchswitch

Figure 6. An Obje
t Pixel (top), two Clones p and q (left), the Memory after (1,2)(right) and (3) (bottom).4.2 CloningThe �rst two derived obje
ts, ni
k-named p and q, are
lones of pixel (Herelet x = A in B is synta
ti
 sugar for the fun
tional appli
ation (�x.B)A.)let p = pixel in let q = p in qObje
t p shares the same obje
t-stru
ture as pixel but it has its own obje
t-identity. Obje
t q shares also the same obje
t-stru
ture as pixel, even if it isa
lone of p. The e�e
t is pi
tured in Figure 6 (left). We might stress here thatp and q should not be thought of as aliases of pixel as Figure might suggest;this point will be
learer after the dis
ussion of obje
t overriding below. Then,we show what we want to model in our framework when we override the setmethod of the
lone q of pixel, and we extend a
lone r of (the modi�ed) qwith a new method swit
h.let p = pixel inlet q = p.set :=(u,v,w){((self.x := self.x*u).y := self.y*v).onoff := w} inlet r = (q.swit
h := (){self.onoff := not(self.onoff);}) in rwhi
h obviously redu
es to: (pixel.set:=(u,v,w){..}).swit
h:=(){..}.Figure 6 (middle) shows the state of the memory after the exe
ution of theinstru
tions (1,2). Note that after (1) the obje
t q refers to a new obje
t-stru
ture, obtained by
haining the new body for set with the old obje
t-stru
ture. As su
h, when the overridden set method is invoked, thanks todynami
 binding, the newer body will be exe
uted sin
e it will hide the olderone. This dynami
 binding is embodied in the treatment of the method-lookuprules (SU) and (NE) from Module C as des
ribed in Se
tion 3.19

Observe that the override of the set method does not produ
e any side-e�e
t on p and pixel; in fa
t, the
ode for set used by pixel and p will bejust as before. Therefore, (1) only
hanges the obje
t-stru
ture of q without
hanging its obje
t-identity. This is the sense in whi
h our
lone operatorreally does implement shallow
opying rather than aliasing, even though thereis no dupli
ation of obje
t-stru
ture at the time that
lone is evaluated.This implementation model performs side e�e
ts in a very restri
ted and
ontrolled way. Figure 6 (right), �nally, shows the �nal state of memoryafter the exe
ution of the instru
tion (3). Again, the addition of the swit
hmethod
hanges only the obje
t-stru
ture of r.In general,
hanging the nature of an obje
t dynami
ally by adding amethod or a �eld
an be implemented by moving the obje
t identity toward thenew method/�eld (represented by a pie
e of
ode or a memory lo
ation) and to
hain it to the original stru
ture. This me
hanism is used systemati
ally alsofor method/�eld overriding but in pra
ti
e (for optimization purposes)
an berelaxed for �eld overriding, where a more eÆ
ient �eld look up and repla
ementte
hnique
an be adopted. See for example the
ase of the Obje
t Cal
ulus inChapter 6-7 of [AC96℄, or observe that Java uses stati
 �eld lookup to makethe position of ea
h �eld
onstant in the obje
t.4.3 ImplementingRepresenting obje
t stru
tures with the
onstru
tors h i (the empty obje
t),and h i (the fun
tional
ons of an obje
t with a method/�eld), andobje
t identities by the bra
keting symbol dd ee, the obje
t p and q, presentedin Figure 6, will be represented by the following addressed terms.p 4= dd hhhhh if y = 0ie x = 0id onoff = truei
 set = : : : ibeeaq 4= ddhhhhhh if y = 0ie x = 0id onoff = truei
 set = : : : ib set = : : : igeehThe use of the same addresses b;
; d; e; f in p as in q denotes the sharingbetween both obje
t stru
tures while g; h; are unshared and new lo
ations.5 Relation between �Ob|� and �Ob|aIn this se
tion we just list (for obvious la
k of spa
e) some fundamental resultsabout the relationship between �Ob|� and �Ob|a.As a �rst step we note that the results presented in Se
tion 2.3 are appli-
able to �Ob|�.Lemma 5.1 (Mapping �Ob|a to �Ob|�) Let � be the mapping from a
y
li
�Ob|a-terms that erases addresses, indire
tion nodes (d ea), and obje
t identi-ties (dd eea), and leaves all the other symbols un
hanged. Ea
h term �(U) is aterm of �Ob|�. 20

Then we show a simulation result.Theorem 5.2 (�Ob|� Simulates �Ob|a) Let U be an a
y
li
 �Ob|a-term. IfU ; V in L + C + F, then �(U);� �(V) in �Ob|�.Another issue, ta
kled by the following theorem, is to prove that all normalforms of �Ob|�
an also be obtained in L + C + F of �Ob|a.Theorem 5.3 (Completeness of �Ob|a w.r.t. �Ob|�) IfM ;� N in �Ob|�,su
h that N is a normal form, then there is some U su
h that �(U) � N andM [℄a ;� U in L + C + F of �Ob|a.The last issue is to show that L + C + F of �Ob|a does not introdu
enon-termination w.r.t. �Ob|�.Theorem 5.4 (Preservation of Strong Normalization) IfM is a stronglynormalizing �Ob|�-term, then all �Ob|a-term U su
h that �(U) � M is alsostrongly normalizing.6 Con
lusionsWe have presented the theory of addressed term rewriting systems and de-tailed its use as a foundation for �Ob|a, a framework to des
ribe obje
t-based
al
uli. This
ase study of �Ob|a shows how ATRSs
an support the analysisof implementations at the level of resour
e usage, modeling sharing of
ompu-tations and sharing of storage, where ea
h
omputation-step in the
al
ulus
orresponds to a
onstant-
ost
omputation in pra
ti
e.The ATRS setting is a
ongenial one to analyze strategies in rewriting-based implementations. For example the approa
h for fun
tional languagesstudied in [BRL96℄ should be generalizable to �Ob|a: from a very general pointof view, a strategy is a binary relation between addressed terms and addresses.The addresses, in relation with a given term, determines whi
h redexes of theterm has to be redu
ed next (note that in a given term at a given address, atmost one rule applies).The
al
ulus �Ob|a itself is the basis for future work: we plan to ex-tend �Ob|a to handle the embedding-based te
hnique of inheritan
e, following[LLL99℄, to in
lude a type system
onsistent with obje
t-oriented feature withthe ability to type obje
ts extending themselves, following [GHL98℄.The applied te
hniques in our framework
ould be also be applied in thesetting of �xed-size obje
ts like the Abadi and Cardelli's Obje
t Cal
ulus[AC96℄.During the workshop Fran
ois-R�egis Sinot raised an interesting questionabout linearity of addresses. Although �Ob|a is linear in addresses, we may
onsider whether to relax this
onstraint. Although it is well known thatallowing non-linearity in terms
an break
on
uen
e in ordinary term rewrit-ing systems, it is not
lear if non-linearity in address will break
on
uen
e21

in �Ob|a. Allowing non-linearity
ould have positive bene�ts, like reasoningabout term equality in a �ner way. As an example we
ould design the fol-lowing termseq(xa; xa)! true (1)eq(xa; xb)! true (2)eq(xa; ya)! true (3)The �rst rewriting
ould
orrespond to physi
al equality (same obje
t at thesame address), while the se
ond
ould
orrespond to a form of stru
turalequality (same obje
t in two di�erent lo
ations). The third equation
ould,e.g. be �red only if x = y, or simply not legal.Enri
hing our framework with
onstant address is also another improve-ment suggested by Sinot. This
ould, e.g. allow term of the following shape:private eq(xFRXX0004; yFRXX0004)! truewhere FRXX0004 is a
onstant address (in hexade
imal form).Finally, a prototype of �Ob|a will make it possible to embed spe
i�

al
uliand to make experiments on the design of realisti
 obje
t oriented languages.A
knowledgments.Suggestions by Maribel Fernandez are gratefully a
knowledged: they werevery helpful in improving the paper. Moreover, the authors are sin
erelygrateful to all anonymous referees for their useful
omments. �-dis
ussionspost-workshop by Fran
ois-R�egis Sinot were useful and greatly appre
iated.Referen
es[AA95℄ Z. M. Ariola and Arvind. Properties of a First-order Fun
tionalLanguage with Sharing. Theoreti
al Computer S
ien
e, 146(1{2):69{108, 1995.[AC96℄ M. Abadi and L. Cardelli. A Theory of Obje
ts. Springer-Verlag, 1996.[AFM+95℄ Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and Ph. Wadler.A Call-By-Need Lambda Cal
ulus. In Pro
. of POPL, pages 233{246.ACM Press, 1995.[AK94℄ Z. M. Ariola and J. W. Klop. Cy
li
 Lambda Graph Rewriting. In Pro
of LICS, pages 416{425. IEEE Computer So
iety Press, 1994.[Aug84℄ L. Augustson. A Compiler for Lazy ML. In Symposium on Lisp andFun
tional Programming, pages 218{227. ACM Press, 1984.[Blo01℄ S. C. Blom. Term Graph Rewriting, Syntax and Semanti
s. PhD thesis,Vrije Universiteit, Amsterdam, 2001.[BN98℄ F. Baader and T. Nipkow. Term Rewriting and All That. CambridgeUniversity Press, 1998. 22

[BRL96℄ Z.-E.-A. Benaissa, K.H. Rose, and P. Les
anne. Modeling Sharing andRe
ursion for Weak Redu
tion Strategies using Expli
it Substitution.In Pro
. of PLILP, volume 1140 of LNCS, pages 393{407. Springer-Verlag, 1996.[BvEG+87℄ H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, J. R.Kennaway, M. J. Plasmeijer, and M. R. Sleep. Term Graph Rewriting.In Pro
. of PARLE, volume 259 of LNCS, pages 141{158. Springer-Verlag, 1987.[DJ90℄ N. Dershowitz and J.-P. Jouannaud. Handbook of Theoreti
al ComputerS
ien
e, volume B,
hapter 6: Rewrite Systems, pages 244{320. ElsevierS
ien
e Publishers, 1990.[DLL+01℄ D. Dougherty, F. Lang, P. Les
anne, L. Liquori, and K. Rose. AGeneri
 Obje
t-Cal
ulus based on Addressed Term Rewriting Systems.In P. Les
anne, editor, Pro
. of WESTAPP'01, Fourth InternationalWorkshop on Expli
it Substitutions: Theory and Appli
ations toPrograms and Proofs, pages 6{25. Logi
 Group Preprint series No 210.Utre
ht University, the Netherlands, 2001.[DLL+02℄ D. Dougherty, F. Lang, P. Les
anne, L. Liquori, and K. Rose. AGeneri
 Obje
t-
al
ulus Based on Addressed Term Rewriting Systems.Te
hni
al Report RR-4549, INRIA, 2002.http://www.inria.fr/rrrt/rr-4549.html.[EEKR99℄ H. Ehrig, G. Engels, H-J. Kreowski, andG. Rozenberg, editors. Handbook of Graph Grammars and Computingby Graph Transformation. World S
ienti�
, 1999. Vol 2: Appli
ations,Languages and Tools.[FF89℄ M. Felleisen and D. P. Friedman. A Synta
ti
 Theory of SequentialState. Theoreti
al Computer S
ien
e, 69:243{287, 1989.[FHM94℄ K. Fisher, F. Honsell, and J. C. Mit
hell. A Lambda Cal
ulus of Obje
tsand Method Spe
ialization. Nordi
 Journal of Computing, 1(1):3{37,1994.[GH00℄ A. D. Gordon and P. D. Hankin. A
on
urrent obje
t
al
ulus:Redu
tion and typing. In Uwe Nestmann and Benjamin C. Pier
e,editors, Ele
troni
 Notes in Theoreti
al Computer S
ien
e, volume 16.Elsevier, 2000.[GHL98℄ P. Di Gianantonio, F. Honsell, and L. Liquori. A Lambda Cal
ulusof Obje
ts with Self-in
i
ted Extension. In Pro
. of OOPSLA, pages166{178. ACM Press, 1998.[IPW01℄ A. Igarashi, B. C. Pier
e, and P. Wadler. Featherweight Java: a minimal
ore
al
ulus for Java and GJ. ACM Trans. Program. Lang. Syst.,23(3):396{450, 2001. 23

http://www.inria.fr/rrrt/rr-4549.html

[Kah87℄ G. Kahn. Natural Semanti
s. Te
hni
al Report RR-87-601, INRIA,1987.[Klo90℄ J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, andT. Maibaum, editors, Handbook of Logi
 in Computer S
ien
e, volume 1,
hapter 6. Oxford University Press, 1990.[Lan64℄ P. J. Landin. The Me
hani
al Evaluation of Expressions. ComputerJournal, 6, 1964.[LDLR99℄ F. Lang, D. Dougherty, P. Les
anne, and K. Rose. Addressed TermRewriting Systems. Te
hni
al Report RR 1999-30, LIP, ENS, Lyon,1999.[L�ev80℄ J.-J. L�evy. Optimal Redu
tions in the Lambda-
al
ulus. In J. P. Seldinand J. R. Hindley, editors, To H.B. Curry: Essays on CombinatoryLogi
, Lambda Cal
ulus and Formalism, pages 159{191. A
ademi
Press, 1980.[LLL99℄ F. Lang, P. Les
anne, and L. Liquori. A Framework for De�ning Obje
t-Cal
uli (Extended Abstra
t). In Pro
. of FM, volume 1709 of LNCS,pages 963{982. Springer-Verlag, 1999.[Mar92℄ L. Maranget. Optimal Derivations in Weak Lambda Cal
uli and inOrthogonal Rewriting Systems. In Pro
. of POPL, pages 255{268, 1992.[MTH90℄ R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML.MIT Press, 1990.[PJ87℄ S. Peyton-Jones. The Implementation of Fun
tional ProgrammingLanguages. Prenti
e Hall, 1987.[Plu99℄ D. Plump. Term Graph Rewriting,
hapter 1, pages 3{61. WorldS
ienti�
, 1999. in [EEKR99℄.[PvE93℄ M. J. Plasmeijer and M. C. D. J. van Eekelen. Fun
tional Programmingand Parallel Graph Rewriting. International Computer S
ien
e Series.Addison-Wesley, 1993.[Ros96℄ K. H. Rose. Operational Redu
tion Models for Fun
tional ProgrammingLanguages. PhD thesis, DIKU, Kobenhavn, Denmark, 1996. DIKUreport 96/1.[SPv93℄ R. Sleep, R. Plasmeijer, and M. C. D. J. van Eekelen, editors. TermGraph Rewriting. Theory and Pra
ti
e. John Wiley Publishers, 1993.[Tur79℄ D. A. Turner. A New Implementation Te
hnique for Appli
ativeLanguages. Software Pra
ti
e and Experien
e, 9:31{49, 1979.[Wad71℄ C. P. Wadsworth. Semanti
s and Pragmati
s of the Lambda Cal
ulus.PhD thesis, Oxford, 1971. 24

	Introduction
	Addressed Calculi and Semantics of Sharing
	Suitability of Addressed TRS for describing an Object-based Framework
	Outline of the Paper

	Addressed Term Rewriting Systems
	Addressed Terms
	Addressed Term Rewriting
	Acyclic Mutation-free ATRS

	Modeling an Object-based Framework via ATRS: Oba
	Syntax of Ob
	Syntax of Oba

	ATRS at Work: an Example in Oba
	Object Representations in Figures 6
	Cloning
	Implementing

	Relation between Ob and Oba
	Conclusions
	References

