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Abstract. We present an approach to understanding first-order theories
by exploring their models. A typical use case is the analysis of artifacts
such as policies, protocols, configurations, and software designs. For the
analyses we offer, users are not required to frame formal properties or
construct derivations. Rather, they can explore examples of their designs,
confirming the expected instances and perhaps recognizing bugs inherent
in surprising instances.
Key foundational ideas include: the information preorder on models given
by homomorphism, an inductively-defined refinement of the Herbrand
base of a theory, and a notion of provenance for elements and facts in
models. The implementation makes use of SMT-solving and an algorithm
for minimization with respect to the information preorder on models.
Our approach is embodied in a tool, Razor, that is complete for finite
satisfiability and provides a read-eval-print loop used to navigate the set
of finite models of a theory and to display provenance.

1 Introduction

Suppose T is a first-order theory. If T specifies a software artifact written by a
user, such as an access-control policy, a description of a protocol, or a software
design, our user will want to understand whether or not the logical consequences
of T match her expectations. A standard approach using automated deduction
tools offers the following workflow: (i) the user specifies, as a sentence σ, some
typical property she hopes will hold about the system, then (ii) checks whether
σ is provable from T, using a theorem-prover or a proof-assistant.

An alternative approach is to explore the models of T. This is of course
logically at least as rich as the deductive approach, since σ will hold iff T∪¬σ has
no models. But the model-exploring approach offers a wider range of affordances
to the user than does deduction. For one thing, if property σ fails of T, it can be
instructive to see example situations, that is, to see concrete models of T ∪ ¬σ.
This will be especially useful if we can offer tools to help our user understand
these examples (“what is that element doing there? why is that fact true?”).

More radically, our user might use a model-building tool to explore models of
T without having to articulate logical consequences. For example, if T describes
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a policy for accessing a building, our user can explore the question, “who can
enter after 5 pm?” by expressing “someone enters after 5 pm” as a sentence σ and
asking for models of (T∪{σ}). The resulting models may capture situations that
confirm the user’s expectation, but there also may be models with unanticipated
settings, allowing surprising accesses, which uncover gaps in the policy.

Model-finding is an active area of investigation [1–8]. But—with some excep-
tions noted below in Related Work—existing model-finders compute an essen-
tially random set of models, present them to the user in arbitrary order, provide
no facility for exploring the space of models in a systematic way, and offer little
help to users in understanding a given model. We will clarify below what we
mean by “understanding” a model, but the notion has clear intuitive force. For
example when a sysadmin is debugging a firewall policy, a typical question at
hand is: what rule blocked (or allowed) this packet?

As our main contribution, we initiate a theory of exploration of finite models,
with two main components: (i) a notion of provenance as a way to explain why
elements are in the model and why properties are true of them, and (ii) strategies
for traversing the models of an input theory by augmentation. Our approach is
realized in a model-finding assistant, Razor.1 We call Razor a model-finding
assistant because users interact with it to build and examine models.

Minimality and the Chase. At the core of our approach is the notion of a
homomorphism between models (Section 2) and the preorder 4 determined by
homomorphism. A homomorphism preserves information, so that if A and B are
each models of some phenomenon and A 4 B, with B 64 A, then we prefer to
show A to the user, at least initially, since it has less “extraneous” information
than B. The theoretical foundations of our tool derive from the classical Chase
algorithm from database theory (Section 3), and our core algorithm (Section 4)
builds models that are minimal in the homomorphism ordering

Provenance. As a direct consequence of the fact that Razor ultimately
computes Chase-models, Razor can display provenance information for elements
and facts. Any element in a Chase-model is there in response to a sentence
in the user’s input (Section 3.2), indeed as a witness for a particular existen-
tial quantifier in the input theory. Similarly, any atomic fact of a Chase-model
is there because of the requirement that a particular input sentence hold. Ra-
zor keeps track of these justifications—we call them “naming” and “blaming,”
respectively—and can answer provenance queries from the user.

Augmentation. Focusing on Chase models promotes conceptual clarity by
allowing the user to focus only on models with no inessential aspects. But the
user can access other models of the theory by augmenting models by new facts.
When a user asks to augment a given model M of a theory T by some fact F ,
other consequences may be entailed by T, perhaps “disjunctive” consequences.
Razor thus computes a stream consisting of all the minimal extensions of M by
the augmenting fact F (Section 3.1). There may be none: F may be inconsistent
with the state of affairs M, which may be of real significance. The (relative)
minimality of the resulting models ensures that provenance information can be

1http://salmans.github.io/Razor/
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computed over them as well. Most important of all, this augmentation will be
under the control of the user.

Implementation. We have found it more efficient to implement a variation
on the Chase, which leverages an SMT-solver to handle the difficulties arising
form disjunctions and equations (Section 4). A key ingredient of this approach
is the use of a refinement of the notion of the Herbrand base of a theory, the
possible facts set defined in Algorithm 3.

The REPL. Since the original input theory need not be a Horn theory, we
will not expect unique minimal models. Razor provides a read-eval-print loop
in which users can (i) ask for the next model in the current stream, (ii) play
“what-if?” by augmenting the currently-displayed model with a new fact or (iii)
ask for the provenance of elements or facts in the current model.

1.1 Related Work

Model-Finding. The development of algorithms for the generation of finite mod-
els is an active area of research. The prominent method is “MACE-style” [2],
embodied in tools such as Paradox [3], Kodkod [6], which reduce the problem
to be solved into propositional logic and employ a SAT-solver. “Instance based”
methods for proof search can be adapted to compute finite models [5, 7, 9]. Our
approach is related to the bottom-up model generation [4] method and the refu-
tationally complete solution presented in [10]. Our techniques for bounding the
search are related to those presented in [11]. Closer in spirit to our goals are
lightweight formal methods tools such as Alloy [12] and Margrave [13, 14]. The
goals of these works differ from ours in that their main concern is usually not
the exploration of the space of all models of a theory.

Minimality. Logic programming languages produce single, least models as a
consequence of their semantics. In more specialized settings, generation of mini-
mal models usually relies on dedicated techniques, often based on tableaux [15] or
hyperresolution [16]. Aluminum [17] supports exploration by returning minimal
models: it instruments the model-finding engine of Alloy. It thus inherits the lim-
itation that it requires user-supplied bounds, and it cannot generate provenance
information. The Cryptographic Protocol Shapes Analyzer [18] also generates
minimal models. However, its application domain and especially algorithms are
quite different from ours. The Network Optimized Datalog tool [19], which has
been released as a part of Z3 [20], presents limited minimization and provenance
construction for reasoning about beliefs in the context of network reachability
policies.

Geometric Logic. The case for geometric logic as a logic of observable prop-
erties was made clearly by Abramsky [21] and has been explored as a notion of
specification by several authors [22,23] Geometric logic for theorem-proving was
introduced in [24] and generalized in [5]. The crucial difference with the current
work is of course the fact that we focus on model-finding and exploration.

Chase. Our model-finding is founded on the Chase, an algorithm well-known
in the database community [25–27]. Challenges arise for us in managing the
complexity that arises due to disjunction, and in treating equality. Our strategy
for addressing these challenges comprises Section 4.
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2 Preliminaries

We work over a first-order signature with relation symbols (including equality).
As syntactic sugar for users, we allow function symbols in the concrete syntax.
It turns out to be convenient and flexible to interpret such function symbols as
partial functions. What this means formally is that when relation symbols are
translated to function symbols in the usual way, theories are augmented with
axioms ensuring singled-valued-ness but not necessarily with totality axioms.
Skolemization will play an important role in the following, especially as regards
provenance of elements; we assume familiarity with the basic notions.

Models, and the notion of satisfaction of a formula in a model, are defined
in the usual way. If T is a theory we write Mod(T) for the class of models of
T. If Σ ⊆ Σ+ are signatures and M is a Σ+-model then the reduct of M to
Σ is obtained in the obvious way by ignoring the relations of Σ+ not in Σ. A
homomorphism from M to N is a map from the domain of M to the domain of
N, h : |M| → |N|, such that for every relational symbol R and tuple 〈e1, . . . en〉
of elements of |M|, if M |= R[e1, . . . , en] then N |= R[h(e1), . . . , h(en)]. We write
M 4 N for the preorder defined by the existence of a homomorphism from M to
N. We say that M is a minimal model in a class C of models if N ∈ C and N 4 M
implies M 4 N. A set M of models is a set-of-support for a class C if for each
N ∈ C there is some M ∈M with M 4 N.

2.1 Logic in Geometric Form

A positive-existential formula (PEF) is one built from atomic formulas (including
> and ⊥) using ∧, ∨, and ∃. If α(~x) is a PEF true of a tuple ~e in a model M
then the truth of this fact is supported by a finite fragment of M. Thus if M
satisfies α with ~e and M is expanded, by adding new elements and/or new facts,
α(~x) still holds of ~e in the resulting model. For this reason, properties defined
by PEF are sometimes called observable properties [21].

It is a classical result that PEFs are precisely the formulas preserved under
homomorphisms; Rossman [28] has shown that this holds even if we restrict
attention to finite models only. Thus the homomorphism preorder captures the
observable properties of models: this is the sense in which we view this preorder
as an “information-preserving” one.

A sentence is geometric if it is of the form ∀~x (ϕ ⇒ ψ), where ϕ and ψ
are PEFs. It is often convenient to suppress writing the universal quantification
explicitly. We sometimes refer to ϕ and ψ respectively as the body and head of
ϕ ⇒ ψ. Note that an empty conjunction may be regarded as truth (>) and
an empty disjunction as falsehood (⊥). So we may view a universally quantified
PEF, or a universally quantified negated PEF, as a geometric sentence. A theory
is in geometric form if it consists of a set of geometric sentences. 2 Thus logic in
geometric form is the logic of implications between observable properties.

2The term “geometric” arises from the original study of this class of formulas in
the nexus between algebraic geometry and logic [29].
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By routine logical manipulations we may assume that every geometric sen-
tence ϕ⇒ ψ is in standard form

α(~x)⇒
∨
i

(∃yi1 . . . ∃yip.βi(~x, yi1, . . . , yip)),

where α and each βi is a conjunction of atoms.
Transformation to Geometric Form. The sense in which geometric form is—

and is not—a restriction is delicate, but interesting. As is well-known, any theory
is equisatisfiable with one in conjunctive normal form, by introducing Skolem
functions. And modulo trivial equivalences, such a sentence is a geometric one.
But Skolemization has consequences for user-centered model-finding. For exam-
ple, traditionally, Skolem functions are total, and of course it is easy to achieve
this abstractly by making arbitrary choices if necessary. But for reasons con-
nected with computing provenance and keeping models finite, it is much more
convenient to work with partial functions, or in other words, at-most-single val-
ued relations.

It is easy to check that T can be put in geometric form—without Skolemiza-
tion —whenever each axiom is an ∀∃ sentence, with the caveat that no existential
quantifier has within its scope both an atom with negative polarity and one of
positive polarity. This circumstance arises infrequently in practice. We prefer
to avoid Skolemization if possible. Any Skolemization necessary for putting a
theory in this form is considered to happen “off stage.”

3 Model-Finding via the Chase

In this section we outline the essential features of the Chase, since it is the most
natural setting for understanding the way that minimality and provenance drive
a general model-finding framework based on geometric form. It turns out that
a straightforward implementation of the Chase algorithm is too inefficient. In
Section 4 we describe the strategy we use in Razor to build the same models the
Chase would construct but using SMT-solving technology for efficiency.

It is easiest to present the standard Chase as a non-deterministic procedure.
We assume given an infinite set K of symbols used to construct elements of the
model: at any stage of the process we will have identified a finite subset K ′ of
K and (if the theory T involves equality) a congruence relation over K ′. The
congruence classes are the elements of the model.

Assume that the input theory T is presented in standard geometric form. At
a given stage, if the current model M is not yet a model of T then there is some
sentence σ of T false in M:

σ ≡ α(x1, . . . , xk)⇒
∨
i

(∃yi1 . . . ∃yip.βi(x1, . . . , xk, yi1, . . . , yip)). (1)

That is, there is an environment (a mapping from variables to elements of M)
η ≡ {x1 7→ e1, . . . , xk 7→ ek} such that α[~e] holds in M yet for no i does βi[~e]
hold. The data (σ, η) determines a chase-step. We may execute such a chase-step
and return a new model N; this process proceeds as follows:
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1. Choose some disjunct βi(x1, . . . , xk, yi1, . . . , yip)
2. Choose new elements k1, . . . , kip from K and add them to the domain,
3. Add facts, that is, enrich the relations of M, to ensure the truth of
βi(e1, . . . , ek, k1, . . . , kip). Here we have slightly abused notation, since some
atom in βi may be an equality, in which case we must enrich the congruence
relation to identify the appropriate elements of |M| ∪ {k1, . . . kip}

A chase-step can be viewed as a database repair of the failure of the current
model to satisfy the dependency expressed by σ.

There are three possible outcomes of a run of the Chase. (i) It may halt with
success if we reach model M where we cannot apply a step, i.e. when M |= T.
(ii) It may halt with failure, if there is a sentence α ⇒ ⊥ of T and we reach a
model M in which some instance of α holds, (iii) It may fail to terminate.

Properties of the Chase Theorem 1 records the basic properties of the Chase.
These results are adaptations of well-known [27, 30] results in database theory.
A run of the Chase is said to be fair if—in the notation above—every pair of
possible choices for σ and η will be eventually evaluated.

Theorem 1. Let T be a geometric theory. Then T is satisfiable if and only if
there is a fair run of the Chase, starting with the empty model, that does not
fail. Let U be the set (possibly infinite) of models obtained by fair runs of the
Chase. Then U is a set-of-support for Mod(T): for any model M of T, there is a
U ∈ U and a homomorphism from U to M.

Note that the Theorem implies that the fair Chase is refutationally complete. If
T has no models, then in any fair run of the Chase, each set of non-deterministic
choices will eventually yield failure. By König’s Lemma, then, the Chase process
will halt.

Termination and Decidability In general, termination of the Chase for an
arbitrary theory is undecidable [31]. However, Fagin et al. [30] define a syn-
tactic condition on theories, known as weak acyclicity, by which the Chase is
guaranteed to terminate. Briefly, one constructs a directed graph whose nodes
are positions in relations and whose edges capture possible “information flow”
between positions; a theory is weakly acyclic if there are no cycles of a certain
form in this graph. (The notion of weakly acyclicity in [30] is defined for theories
without disjunction, but the obvious extension of the definition to the general
case supports the argument for termination in the general case.)

Observe that if T is such that all runs of the Chase terminate, then—by
König’s Lemma—there is a finite set of models returned by the Chase. Thus we
can compute a finite set that jointly provides a set-of-support for all models of
T relative to the homomorphism order 4.

Since weak acyclicity implies termination of the Chase we may conclude that
weakly acyclic theories have the finite model property. Furthermore, entailment
of positive-existential sentences from a weakly acyclic theory is decidable, as
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follows. Suppose T is weakly acyclic and α is a positive-existential sentence. Let
A1, . . . ,An be the models of T. To check that α holds in all models of T it suffices
to test α in each of the (finite) models Ai, since if B were a counter-model for α,
and Ai the chase-model such that Ai 4 B, then Ai would be a counter-model for
α, recalling that positive-existential sentences are preserved by homomorphisms.
This proof technique was used recently [32] to show decidability for the theory
of a class of Diffie-Hellman key-establishment protocols.

The Bounded Chase For theories that do not enjoy termination of the Chase,
we must resort to bounding our search. A traditional way to do so, used by tools
such as Alloy, Margrave, and Aluminum, is to use user-supplied upper bounds
on the domain of the model. Razor uses a somewhat more subtle device, which
is outlined in [33], but which we cannot detail here for lack of space.

3.1 Augmentation: Exploring the Set of Models

Let T be a geometric theory and M be a model of T. Razor allows the user
to augment M with an additional positive-existential formula α resulting in an
extension model N of T such that α is true in N.

N can be computed by a run of the Chase starting with a model M′ ≡
M∪{α}. A key point is that if α entails other observations given T and the facts
already in M, those observations will be added to the resulting model. And the
augmentation may fail if adding α to M is inconsistent with T.

Theorem 2. Let N be a finite model of the theory T. Suppose that M is a finite
model returned by the Chase with M 4 N. Then there is a finite sequence of
augmentations on M resulting in a model isomorphic to N.

In particular, if T is weakly acyclic, then for every N there is a Chase model
M and a finite sequence of augments of M yielding N.

3.2 Provenance and the Witnessing Signature

A crucial aspect of our approach to constructing and reasoning about models is
a notation for witnessing an existential quantifier.

Notation 3. Given a sentence α ⇒
∨
i(∃yi1 . . . ∃yip.βi(~x, yi1, . . . , yip)), we as-

sign a unique, fresh, witnessing (partial) function symbol fσik to each quantifier
∃yik. This determines an associated sentence α ⇒

∨
i βi(~x, f

σ
i1(~x), . . . , fσip(~x)) in

an expanded signature, the witnessing signature.

This is closely related to Skolemization of course, but with the important dif-
ference that our witnessing functions are partial functions, and this witnessing
is not a source-transformation of the input theory. This alternate representation
of geometric sentences allows us to define a refined version of the Chase, that
maintains bookkeeping information about elements and facts. Specifically: each
element of a model built using the Chase will have a closed term of the witnessing
signature associated with it: this is that element’s “provenance.”
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To illustrate, consider a chase-step as presented earlier, using a formula such
as Formula 1, whose associated sentence over the witnessing signature is

σw ≡ α(x1, . . . , xk)⇒
∨
i

βi(x1, . . . , xk, f
σ
i1(~x), . . . , fσip(~x)) (2)

In the chase-step, when ~x is instantiated by ~e, the elements k1, . . . , kip added
in line 2 are naturally “named” by fσi1(~e), . . . , fσip(~e). Proceeding inductively, each
of the ej will be named by a closed term tj , so that the elements k1, . . . , kip added
in line 2 have, respectively, the provenance fσi1(~t), . . . , fσip(~t).

It is possible that an element enjoys more than one provenance, in the case
when a chase-step equates two elements.

Also observe that every fact added (in line 3) to the model being constructed
can be “blamed” on the pair (σ, η), that is, the sentence and binding that fired
the rule. This is that fact’s provenance.

4 Implementation

A naive implementation of the Chase in our setting can be computationally pro-
hibitive, due to the need to fork different branches of the model-construction in
the presence of disjunctions. Instead, we take advantage of SAT-solving technol-
ogy to navigate the disjunctions. The use of SAT-solving is of course the essence
of MACE-style model-finding, but the difference here is that we do not simply
work with the ground instances of the input theory, T, over a fixed set of con-
stants. Rather we compute a ground theory T∗ consisting of a sufficiently large
set of instantiations of T by closed terms of the witness signature for T.

Since we want to handle theories with equality, we want to construct models
of T∗ modulo equality reasoning and the theory of uninterpreted functions, so
we use an SMT-solver. We utilize Z3 (QF UFBV) as the backend SMT-solver.

A straightforward use of SMT-solving would result in losing control over
the model-building: even though the elements of a model of T∗ returned would
have appropriate provenance, the solver may make unnecessary relations hold
between elements, and may collapse elements unnecessarily. So we follow the
SMT-solving with a minimization phase, in which we eliminate relational facts
that are not necessary, and even “un-collapse” elements when possible.

BuildModel (Algorithm 1) presents the overall process by which models
of an input theory T are generated. The Ground procedure (line 2, given as
Algorithm 3) consists of construction of ground instances of T by a run of a
variation of the Chase, where every disjunction in the head of geometric sentences
is replaced by a conjunction. In this way we represent all repair-branches that
could be taken in a Chase step over the original T. Such a computation creates
a refined Skolem-Herbrand base, containing a set of possible facts PT that could
be true in any any Chase model of T. (Some care is required to handle contingent
equalities; space does not permit a detailed explanation here.)

The anonymization procedure (line 3, not detailed here) constructs a flat
theory TK by replacing every term in T∗ over the witness signature with con-
stants from a signature ΣK. The theory TK is in a form that can be fed to the
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underlying model-finding and minimization algorithms by a call to Next (Al-
gorithm 2). Finally, Razor returns the set models U produced by model-finding
and minimization, reduced to the signature of the original input T.

Algorithm 1 Razor

1: function BuildModel(T) . T over signature Σ
2: (T∗, PT) ← Ground(T) . T∗ over the witness signature Σw

3: TK ← Anonymize(T∗) . TK over the anonymized signature ΣK

4: U ← ∅
5: M ← Next(TK, U)
6: while M 6= unsat do
7: U ← U ∪ {M}
8: M ← Next(TK, U)

9: return Reduct(U) . Reduct of models in U to Σ

Algorithm 2 Next Model

Require:
T is ground and flat
for all U ∈ U, U |= T and U is homomorphically minimal

1: function Next(T, U)
2: Φ ←

⋃
i{Flip(Ui)} for all Ui ∈ U . Flip axioms about existing models.

3: if exists M such that M |= (T ∪ Φ) then . Ask the SMT-solver for M.
4: N ← Minimize(T,M)
5: return N
6: else
7: return unsat . No more models.

The Next algorithm (Algorithm 2) accepts a set U of minimal models under
the homomorphism ordering and returns a minimal model M for T that is not
reachable from any of the models in U via homomorphism. The flip procedure
(line 2, not detailed here) on an existing model U ∈ U records the disjunction of
the negation of all facts (including equational facts) true in U: this guarantees
that the next model returned by the solver will not be reachable from any of the
models in U via homomorphism. The call to Minimize (Algorithm 4) on line 4
reduces the next model returned by the solver to a homomorphically minimal
one by repeated invocations of the solver. In every reduction step i, the solver is
asked for a model Mi that satisfies

– the input theory T.
– the negation preserving axiom of Mi−1, which is the conjunction of all facts

(including equational facts) that are false in Mi−1.
– the flip axioms about the model Mi−1 from the previous step.
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Algorithm 3 Grounding

1: function Ground(G)
2: PG ← ∅ . PG is initially the empty model
3: G∗ ← ∅ . G∗ is initially an empty theory
4: repeat
5: choose σ ≡ ϕ⇒ ψ ∈ G

6: for each λ where λϕ ∈ PG do
7: PG ← Extend(PG, σ, λ)
8: G∗ ← G∗ ∪ {Instantiate(PG, σ, λ)}
9: until G∗ and PG are changing

10: return (G∗, PG)

11: function Extend(M, ϕ⇒~x ψ, η)
12: if ψ = ⊥ then fail

13: N ← M
14: for each disjunct ∃f1y1, . . . , ∃fmym.

∧n
j=1 Pj in ψ do

15: |N| ← |N| ∪ {Jfi(~x)KMη | 1 ≤ i ≤ m}
16: µ ← η[y1 7→ Jf1(~x)KMη , . . . , ym 7→ Jfm(~x)KMη ]
17: N ← N ∪ {P1[µ(~x, ~y)], . . . , Pn[µ(~x, ~y)]}
18: return N

19: function Instantiate(PG, ϕ⇒~x

∨
i ∃

fi1yi1 . . .∃fimyim.ψi, η)

20: µ ← η[yij 7→ Jfij(~x)KP
G

η ] (1 ≤ j ≤ m)
21: return µσ

Algorithm 4 Minimize

Require: M |= T

1: function Minimize(T, M)
2: repeat
3: N ← M
4: M ← Reduce(M)
5: until M = unsat . Cannot reduce
6: return N . N is a minimal model for T

Algorithm 5 Reduce

Require: M |= T

1: function Reduce(T, M)
2: ν ← NegPreserve(T ,M )
3: ϕ ← Flip(T ,M )
4: if exists N such that N |= T ∪ {ν ∧ ϕ} then . Ask the SMT solver for N
5: return N
6: else
7: return unsat . M is minimal.
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It can be shown that for every model M, Reduce(T,M) ≺M. The reduction
process continues until the solver returns “unsatisfiable”.

Theorem 4. Fix a relational theory in geometric form T. Let PT and T∗ be a
set of possible facts and its corresponding ground theory for T, constructed by
the Chase-based grounding algorithm. Let M be a model in the witness signature
for T∗ and M− the reduct of M to the signature of T.

1. (Soundness.) If M |= T∗ and M is homomorphically minimal, then M− is a
model of T.

2. (Completeness.) If M is constructed by the Chase and M− |= T then M is a
model of T∗.

Proof (Sketch). For (1): Let σ ≡ ϕ⇒ (
∨
i ∃fi1yi1 . . . ∃fipyip . ψi) be a sentence in

T. Let ~x be the free variables of σ. We show that if M− |=η ϕ for environment
η, then M− |=η (

∨
i ∃fi1yi1 . . . ∃fipyip . ψi): because M is minimal, the facts in

M are contained in PT, and since ϕ is positive, ηϕ ∈ PT. Therefore, by the
construction of T∗, a sentence ϕ[~t]⇒

∨
i ψi[~t, ~ui] exists in T∗ where ~t = η~x, and

for each uij in ~ui, uij = fij(~t) (1 ≤ j ≤ p). Observe that because M− |=η ϕ then
M |= ϕ[~t] as ~t are witnesses for the elements that are images of ~x in η. Finally,
since M is a model of T∗, then M |= ψi[~t, ~ui] for some i. Therefore, it follows
that M− |=η (

∨
i ∃yi1, . . . ,∃yip . ψi).

For (2): Let σ∗ ≡ ϕ[~t] ⇒
∨
i ψi[~t, ~ui] be a sentence in T∗. By definition, σ∗

is an instance of a sentence σ ≡
∨
i ϕ⇒ (∃fi1yi1 . . . ∃fipyip . ψi) by a substitution

that sends the free variables ~x of σ to ~t and ~yi to ~ui. Moreover, for each uij in
~ui (1 ≤ i ≤ p), uij = fij(~t).
Assume M |= ϕ[~t]. Then, M− |=η ϕ where the environment η sends the variables
in ~x to the elements ~e in M− that are denoted by ~t in M. Because M− is a chase-
model for T, then for some i, M− |=λ ∃yi1 . . . ∃yip . ψi where λ = η[yij 7→ dj]
(1 ≤ j ≤ p). Let uij denote dj in M under λ. Therefore, M |= ψi[~t, ~ui] follows.

It remains to show that a set-of-support computed by the minimization al-
gorithm for T∗ (modulo anonymization) is in fact a set-of-support for T.

Theorem 5. Fix a theory T in geometric form over a signature Σ. Let T∗ be
computed by a run of the grounding algorithm on T.

1. The set U of models computed during Algorithm 1 is a set-of-support for T∗.
2. The reducts U− of U to Σ, returned by Algorithm 1, is a set-of-support for

T.

Proof (Sketch). For (1): In every call of Next for a set of models Ui, the flip
axioms about the models in Ui ensure that every model M returned satisfies
M 64 U for each U ∈ U. If an M is returned by the solver, a model U with U 4 M
will be added to Ui.

For (2): Let A be a model of T. By Theorem 1 a chase-model M over the
witness signature exists such M− 4 A. By Theorem 4, part (2) M |= T∗. By
part (1) of this theorem there exists a model U ∈ U such that U 4 M. Therefore,
for the reduct U− of U to Σ, U− 4 A.
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5 Examples

From the Alloy Repository Our main focus is on theories developed by hand.
A natural source of such theories is the Alloy repository. We ran Razor on 11
theories from the Alloy book, suitably translated to Razor’s input language. The
following summarizes the experience; space precludes a detailed report.

For 6 theories Razor returned a complete set-of-support in unbounded mode;
the time to return the first model was less than a second. For the remaining 5,
we had to run in bounded mode in order to return models within 5 minutes.
For 2 of these, iterative deepening succeed in finding a bound that was sufficient
for finding a complete set of support for all finite models: the times-to-first-
model were 375 msec and 17.2 sec, respectively. For the other 3, with respective
bounds 1,2, and 3, we computed models quickly at the respective bounds but
incrementing the bound led to a 5-minute timeout. In all cases, once the first
model was found, subsequent models were completed in negligible time.

From TPTP We performed several experiments running Razor on the satisfi-
able problems in the TPTP problem repository [34] Razor’s current performance
on these problems is not satisfactory: it frequently fails to terminate within a
five-minute bound. Razor tends to perform better on problems that are devel-
oped by hand, have a limited number of predicates, and don’t include relations
with high arity. Future developments in Razor’s implementation will improve
performance; a long-term research question is exploring the tradeoffs between
efficiency and the kind of enhanced expressivity we offer.

Extended Example: Lab Door Security Here is an introductory example,
demonstrating a specification in Razor of a simple policy for access to a our
local lab, and typical queries about the policy. The sentences below capture the
following policy specification.

Logic and Systems are research groups in lab (1-2). Research group members
must be able to enter the lab (3). Key or card access allows a person to enter
(4-5). To enter a lab, a member must have a key or card (6). Only members
have cards (7). Employees grant keys to people (8-9). Systems members are not
allowed to have keys (10).

1. LabOf(’Logic,’TheLab);

2. LabOf(’Systems, ’TheLab);

3. MemberOf(p,r) & LabOf(r,l) => Enter(p,l);

4. HasKey(p,k) & KOpens(k,l) => Enter(p,l);

5. COpens(cardOf(p),l) => Enter(p,l);

6. Enter(p,l) => COpens(cardOf(p),l)

| exists k. HasKey(p,k) & KOpens(k,l);

7. COpens(cardOf(p), l) => exists r. MemberOf(p,r) & LabOf(r,l);

8. HasKey(p,k) => exists e. Grant(e,p,k) & Employee(e);

9. Grant(e,p,k) => HasKey(p,k)

10. MemberOf(p,’Systems) & HasKey(p,k)

& KOpens(k,’TheLab) => Falsehood;

12



The user can ask if a thief can access the lab without being Logic or Systems
member:

Enter(’Thief, ’TheLab);

First Model: Granted a Key. The first model exhibits that there is no policy
restriction on employee key-granting capabilities:

Enter = {(p1, l1)} ’TheLab = l1

Employee = {(e1)} ’Systems = r2

Grant = {(e1,p1,k1)} ’Logic = r1

HasKey = {(p1,k1)} ’Thief = p1

KOpens = {(k1,l1)}

LabOf = {(r1,l1), (r2,l1)}

The user can investigate if the thief p1 and the employee e1 can be the same
person in this example? This may be done by augmenting the model with aug
p1 = e1. The augmentation results in one model (not shown).

Second Model: Third research group. The second example is more curious:

Enter = {(p1, l1)} ’TheLab = l1

COpens = {(c1, l1)} ’Systems = r2

MemberOf = {(e1, r3)} ’Logic = r1

cardOf = {(p1, c1)} ’Thief = p1

LabOf = {(r1, l1), (r2, l1), (r3, l1)}

The user may ask “where did this third research group come from?”, then
user look at the provenance information about r3 by running origin r3. Razor
pinpoints an instance of the causal sentence (sentence 7):

7: COpens(c1, l1) => MemberOf(e1, r3) & LabOf(r3, l1)

This policy rule does not restrict which research groups live in the lab. Such a
restriction would force the mystery group r3 to be the Systems or Logic group.
The user confirms this policy fix by applying aug r3 = r2. The augmentation
produces no counter examples; the fix is valid. The research group r3 exists
because the thief has a card. By asking blame COpens(c1, l1), the user sees why:

6: Enter(p1, l1) => COpens(c1, l1)

| HasKey(p1, k1) & KOpens(k1, l1)

The thief has a card because the user’s query said he could enter the lab. He
could also have a key, which is evident in the first model. Why does the thief
belong to a research group in this scenario, but not in the previous? Being a
research group member is a consequence of having a card; not for having a key.
Belonging to a research group when having a key is extraneous information.
Razor does not include this scenario in the minimal model returned.
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Software-Defined Networks At Razor’s web page http://salmans.github.
io/Razor/ one can find a more advanced extended example, showing how Ra-
zor can reason about controller programs for Software-Defined Networks. For a
program P in the declarative networking program Flowlog [35], we show how to
define a theory TP such that a model M of TP is a snapshot of the state of the
system at a moment in time. The user can augment M by a fact capturing a
network event, and the resulting models correspondingly capture the next state
of the system. In this way, augmentation acts as a stepper in a debugger.

6 Future Work

Highlights of the ongoing work on this project include (i) work on efficiency of
the model-building, (ii) taking real advantage of the fact that we incorporate
an SMT-solver, to work more effectively when part of a user’s input theory
has a known decision procedure, and (iii) an improved user interface for the
tool, including a more sophisticated GUI for presenting models, and parsers to
allow input in native formats such as Description Logic, firewall specifications,
XAMCL, and cryptographic protocols.

Acknowledgements We benefitted from discussions with Henning Günther,
Joshua Guttman, Daniel Jackson, Shriram Krishnaturthi, Tim Nelson, and John
Ramsdell. The name of our tool is homage to Ockham’s Razor (William of Occam
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