Models of Design

Why discuss?

Overall...
- Interface *Design*

Projects...
- *Design* an Experiment.
- *Design* Software.
- *Design* an Interface.

Knowing something about design processes will help!
DESIGN FACTORS

What factors influence a design?

☐ General properties of the human user.
 ➔ Memory, Perception, Motor skills.
 ➔ Natural abilities and limitations.

☐ The characteristics of the user.
 ➔ e.g., personality, education, etc.

☐ The user's task.
 ➔ e.g., stressful, repetitive, etc.

☐ The interaction hardware.
 ➔ e.g., screen, mouse, etc.

☐ The interaction and display methods used.
 ➔ menus, layout, colors, icons, etc.
 ➔ strengths and weaknesses of methods.

☐ The implementation of the methods.
 e.g., speed, tool selection and use, etc.

☐ Graphical design.
Ingredients

- Needs
 - want

- Requirements
 - must
 - testable

- Constraints
 - must not

- Preferences
 - should

- Evaluation
 - quality
Four Basic Design Activities

- Identifying Needs and Establishing Requirements
 - User Analysis
 - Task Analysis

- Developing Alternative Designs
 - Conceptual Design
 - Physical Design

- Build Interactive Versions of Designs
 - Different levels of prototyping
 - Paper, web, VB,...

- Evaluating Designs
 - Metrics, Questionnaires, Interviews, Heuristic Evaluation,...

- AND Iterate!
SEARCH ~ Multidimensional

"Parametric"
SEARCH

~ Space

starting point

one decision

DESIGN SPACE

Goal satisfying Regs.

a design or partial design
Key Idea

- Stay conceptual at the start.
 - That is, don't commit too soon.
 - Commitment adds constraints.
 - Constraints prune the search space.
 - Constraints remove possibilities.
 - Maybe including good designs.

"Late binding".
"Least commitment".
Key Idea

- Generate many alternative conceptual designs!

- Especially if being rewarded for creativity.

- Especially if likely to fixate.
Key Idea

- Make evaluation criteria explicit

e.g., cost -- low is good
 mass -- low is good
 attractiveness -- high is good

- Criteria should be measurable.
 Or at least consistently estimable.
Key Idea

- Understand the importance of each evaluation criterion (C_i).

 e.g., low cost $>\: high$ strength

 where "$>\: means "is more important than""

- Then you can weight each evaluation by its importance:

 e.g. $Eval = w_1C_1 + \ldots + w_nC_n$
Evaluate & Select Designs

Concept scoring matrix

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Weight</th>
<th>Design1</th>
<th></th>
<th>Design2</th>
<th></th>
<th>Design3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rating</td>
<td>Score</td>
<td>Rating</td>
<td>Score</td>
<td>Rating</td>
<td>Score</td>
</tr>
<tr>
<td>High Strength</td>
<td>30%</td>
<td>2</td>
<td>.6</td>
<td>3</td>
<td>.9</td>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>Low Cost</td>
<td>70%</td>
<td>5</td>
<td>3.5</td>
<td>3</td>
<td>2.1</td>
<td>1</td>
<td>.7</td>
</tr>
<tr>
<td>Total Score</td>
<td></td>
<td>4.1</td>
<td></td>
<td>3.0</td>
<td></td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Rank</td>
<td></td>
<td>1st</td>
<td></td>
<td>2nd</td>
<td></td>
<td>3rd</td>
<td></td>
</tr>
</tbody>
</table>
Key idea:

- Understand uncertainty of evaluation

Confidence

how much a person believes design alternative satisfies evaluation criterion

Knowledge

amount of knowledge to back up evaluation

For one person evalutate criterion