
SEURAT: Software Engineering
Using design RATionale

Janet Burge
Dissertation Defense

Advisor: David C. Brown
Committee: George Heineman, Carolina
Ruiz, Feniosky Peña-Mora (UIUC)

What is Design Rationale?
! “Design rationales include not only the

reasons behind a design decision but also
the justification for it, the other alternatives
considered, the tradeoffs evaluated, and the
argumentation that led to the decision”

[Lee, 1997]

The whole story behind the design, not just a static
snapshot of the final product!

The Ham Story

Example (from a Conference
Room Scheduling System)

! Decision: How do we represent a
conference room in the system?

! Alternative: store the name (location) as a
string

! Argument for: simple to code
! Argument against: difficult to extend

! Alternative: create a conference room class
! Argument for: can contain information other than

location

Why is DR valuable?
! Captures designer’s intent
! Avoids duplicating past effort by providing

alternatives already considered
! Avoids repeating past mistakes by

documenting when something was tried
and failed

Why isn’t DR used now?
! Collection can impede design process
! Collection is often tedious
! Designers are reluctant to record

“mistakes”
! Collection is very costly
! Not enough examples of use to provide

motivation

Issues with Design Rationale

Representation

Capture Use

• Is there a non-
intrusive way to
capture rationale?
• How do you
determine what to
capture?

• How should rationale be
saved for later access?

• What are the
uses of rationale?
• Which portions
of rationale are
the most useful?

• Defines needs
• Provides incentive

• Defines needs

Using Rationale to Support
Software Development

! Focus on Software Maintenance:
! Software lifecycle is very long
! Maintenance costs are high
! Original designers are unlikely to be available

! Rationale supports inference to help
maintainers find problems, fix problems,
and extend software with less risk

Our Hypothesis
! With appropriate tool support, rationale can

provide useful support to the software
maintainer.
! Improved efficiency – less time required to

perform maintenance tasks
! Improved effectiveness – rationale assists

maintainers in making better decisions

SEURAT: Software Engineering
Using RATionale
! Using rationale to assist in software development

and maintenance:
! verifying consistency and completeness of the

rationale
! evaluating the support for design alternatives
! ensuring that rejected alternatives are not repeated
! presenting applicable rationale to the maintainer to

assist in modification
! maintaining rationale consistency by propagating

results of rationale modifications

SEURAT Capabilities
! Tight integration with

development/maintenance environment
! Allows “what if analysis” of

! changing design priorities
! disabling assumptions
! disabling requirements

! Supports traceability of requirements to
decisions (and then to code)

Key SEURAT Issues
! Inference – how can we inference over the

rationale to support uses that go beyond
presentation?

! Representation – what needs to be represented to
support inference?

! Ontology – how do we provide a common
vocabulary to support inferencing over content?

! Integration – how can we encourage rationale use
by integrating with an existing development
environment?

Inference
! Produce hypothesis, not conclusions
! Two categories:

! Syntactic inference that uses the structure of the
rationale

! Semantic inference that uses the content
! Syntactic inference over structure:

! Look for decisions with no selected alternative
! Look for selected alternatives with no supporting

arguments
! Check for unanswered questions

Inference (cont.)
! Semantic inference over content:

! Evaluate alternatives and alert if weaker alternatives
are selected

! Re-evaluate decisions after an assumption is disabled
! Re-evaluate decisions if argument priorities change
! Check for tradeoff violations
! Check for dependencies between alternatives
! Check for requirement violations

Rationale Representation
! Argumentation Representation

! Semi-structured representation that is
readable by machines and people

! Captures the arguments for and against each
alternative

! Supports arguments about requirements,
assumptions, claims (non-functional
requirements), and other alternatives
(dependencies)

Decision Problem

Alternative Alternative

ClaimRequirement Alternative

or

sub-Decision sub-Decision

satisfies
addresses
violates pre-supposes

pre-supposed-by
opposes
opposed-by

supports
denies

Claim

Claim

Claim Claim

Decision Problem

arguments

argument ontology

Assumption

supports
denies

Argument Ontology
! Provides a common vocabulary used to compare

alternatives and arguments during inference
! List of common arguments for software changes

at varying levels of abstraction
! Based on the “ilities” (affordability, scalability, etc.)

! Each ontology entry has an associated default
importance that can be inherited by rationale that
refers to it

Argument Ontology

Integration
! SEURAT is implemented as an Eclipse plug-in

! Rationale is more likely to be used if the developer
does not need to switch tools

! Rationale can be directly associated with code and its
presence indicated in the editor used by the developer
to write and maintain code

! Rationale is stored in a MySQL database
! Scalable to large amounts of rationale
! SQL queries support inference and presentation

Using SEURAT in Software
Maintenance

! Reasons for Maintenance
! Corrective maintenance (fixing errors)
! Enhancive maintenance (new functionality)
! Adaptive maintenance (non-functional

enhancements)
! Sources of error

! Requirement violations
! Defects (bugs)
! Changed or incorrect assumptions
! ….

Rationale
Explorer

Package
Explorer

Source
Code
Editor

Rationale
Task List

SEURAT Results

! Rationale Explorer
! Indicates disabled

assumption
! Displays a warning for

the decision that relies
on the assumption

SEURAT Results
! Rationale Task List

! Describes the warning
! Allows the decision to be viewed in an

editor

Finding the Implementation

! Alternative Editor
! Specifies the

class, method, or
instance variable

Finding the Implementation
! Bookmark List

! Lists the file, folder, and line number
! Double-clicking brings up the code in

the editor

Finding the Implementation

Evaluation
! Three maintenance tasks:

! adaptive maintenance (a non-functional change)
! corrective maintenance (fixing a “bug”)
! enhancive maintenance (extending functionality)

! Twenty subjects in two groups: experimental and control
! Measures:

! time required to find the location in the code that needed
changing and the time needed to complete the task (all subjects)

! usability survey (SEURAT group only)
! usefulness survey (SEURAT group only)

Subject Distribution

SEURAT Control

Java Experience
(Expert/Moderate/
Some)

3/4/3 people,
respectively

3/4/3 people,
respectively

Average Work
Experience

6.85 years 5.65 years

Eclipse Experience 60% 60%

Results (Time)
Average Time

0

1 0

20

30

40

50

60

70

Adaptive
Delta

Adaptive
Total

Corrective
Delta

Corrective
Total

Enhancive
Delta

Enhancive
Total

Task

Av
er

ag
e

Ti
m

e
(in

 M
in

ut
es

)

Control

SEURAT

Results by Expertise
Enhancive Maintenance

0

5

10

15

20

25

30

35

40

Expert Moderate Some All

Java Expertise

Av
er

ag
e

Ti
m

e
to

 C
om

pl
et

e
(in

 M
in

ut
es

)

Control

SEURAT

Results (Usefulness Survey)
Usefulness Assessment

0

1

2

3

4

5

6

7

Easier to Maintain
Software

Helped Find
Associated Code

Clear Error and
Warnings

Tasks Took Less
Time

Would Use SEURAT

Questions

Re
sp

on
se

s SD

D

U
A

SA

Experiment Summary
! On average, SEURAT users outperformed

the control group except for the “Expert”
users

! The learning curve was a factor
! Variances in the control group were

typically twice that in the SEURAT group
! More experiments are needed!

Contributions
! Tightly integrated usable environment that

supports rationale capture and use
! Argument ontology that contains common

arguments for making software design decisions
! Rationale representation tailored to software

engineering and maintenance
! Uses of rationale that go beyond presentation:

! support for “what-if” inferencing
! checking for rationale consistency and completeness

Related Work
! Includes:

! Lee: Decision Representation Language
! Peña-Mora: DRIM – Design Recommendation and

Intent Model
! Klein: C-Re-CS
! Beñares-Alcántara, King: KBDS
! Bose: Decision Ontology within the WinWin

framework
! Chung, et. al.: NFR-Framework

Summary and Conclusions
! Targeted software maintenance as an area

that can best utilize rationale
! Demonstrated that with appropriate tool

support, rationale can provide useful
support to the software maintainer:
! Demonstrated uses of DR that go beyond

browsing and presentation
! Integrated DR support with a standard

software development environment

Future Work
! Expansion to additional design phases (such as

associating rationale with design artifacts, e.g.
UML diagrams)

! Enhanced support for rationale capture by
integrating with other tools (such as
Configuration Management systems)

! Study of multi-user rationale
! Additional experimentation with longer-term use,

more subjects, larger projects

Acknowledgements
! My advisor: Dave Brown
! My committee: George Heineman,

Carolina Ruiz, Feniosky Peña-Mora
! My experiment subjects
! My parents and my friends
! My co-workers at CRA
! My professors and colleagues at WPI

Questions and
Discussion

