NEFR’s: Fact or Fiction?

Janet E. Burge and David C. Brown

Computer Science Department
WPI, Worcester, MA 01609, USA.

Abstract

Requirements, derived from the customers’
needs and desires, are used to guide software
development and to determine if the completed
system is what the customer needs. Require-
ments Engineering (RE) captures and repre-
sents system requirements so that they can
be traced through to both implementation and
testing to ensure that the resulting system does
what the customer has requested.

The primary focus of RE has been on the
functional requirements: ensuring that the nec-
essary functionality of the system is delivered
to the user. The non-functional requirements
(NFRs), however, are also important since they
contribute to the overall quality of the result-
ing system. RE has treated NFRs as some-
thing separate and distinct from the functional
requirements.

This raises several questions: 1. What does
“functional” really mean? 2. Are NFRs really
non-functional or are they a form of functional
requirements? 3. Are NFRs really require-
ments? 4. Can NFRs be represented as and
by functional requirements?

In this paper, we begin by discussing the
definitions of functional requirement, non-
functional requirement, software requirement,
and function. We then examine NFRs to see
if the reasons that normally distinguish them
from functional requirements are valid in the
context of the definition of function. Finally,
we discuss how re-defining NFRs can assist in

assuring that they are met and discuss some
approaches that can be used.

1 Introduction

Customer requirements are the foundation
upon which a software system is built. These
requirements, derived from the customers’
needs and desires, are used to both guide the
development of the system and to determine
if the completed system is what the customer
requested. Because of its importance, require-
ment specification has become a research area
known as Requirements Engineering (RE) both
in Software Engineering [23, 15] and Systems
Engineering [9, 5].

The primary goal of Requirements Engineer-
ing is to capture and represent system require-
ments so that they can be traced through
to both implementation and testing to en-
sure that the resulting system does what the
customer has requested. Requirements are
commonly broken into two types: functional
requirements (FRs) that correspond to desired
functional capabilities of the system and non-
functional requirements (NFRs) that describe
desirable overall properties that the system
must have (such as being “cost-effective” or
“user-friendly”). NFRs generally are not di-
rectly related to specific system components
and often involve aggregate system behavior
[14].

The primary focus of requirements engineer-
ing has been on the functional requirements:



ensuring that the necessary functionality of the
system is delivered to the user. The NFRs,
however, are also important since they con-
tribute to the overall quality of the resulting
system. RE research has treated NFRs as
something separate and distinct from the func-
tional requirements. This raises several ques-
tions:

1. What does “functional” really mean?

2. Are NFRs really non-functional or are they
a form of functional requirements?

3. Are NFRs really requirements?

4. Can NFRs be represented as or by func-

tional requirements?

In this paper, we examine if NFRs really
are separate and distinct from FRs. First, we
begin by discussing the definitions of “func-
tional requirement”, “non-functional require-
ment”, “software requirement”, and “func-
tion”. We then examine NFRs to see if the
reasons that normally distinguish them from
functional requirements are valid in the con-
text of the definition of function. Finally, we
look at how re-classifying NFRs can assist in
ensuring that they are satisfied.

2 Requirement Definitions

In many cases, terms such as function,
functional requirements, and non-functional
requirements are used without being defined.
Before discussing NFRs, it is useful to describe
what they are and give some examples. The fol-
lowing sections present definitions of functional
requirements and non-functional requirements.

2.1 Functional Requirements

Functional requirements (FRs) define what the
system must do [22, 20]. Roman [17], de-
scribes FRs as capturing “the nature of the in-
teraction between the component and its envi-
ronment”. These are both somewhat vague
definitions since there are likely to be many
things that a system “does”, not all of which
may be needed by the user. Since the FRs are
required things, they must be desired by the
customer, and intended by the designer.

If the system being designed was an air traffic
control system, a functional requirement might

be that aircraft positions must be reported with
an accuracy of within two nautical miles. The
requirement does not specify how to achieve
that accuracy, only that the accuracy is neces-
sary. Another important feature of the require-
ment is that it is “testable” (i.e., it is possible
to demonstrate that the requirement has been
met).

2.2 Non-Functional
Requirements

While functional requirements describe what
the system or device should do, non-functional
requirements are concerned with the manner in
which the system or device should accomplish
that function given “the constraints of a non-
ideal world” [20]. Roman [17] describes NFRs
as restricting the types of solutions under con-
sideration. Roman also refers to the NFRs as
“constraints”. For example, there are likely to
be any number of ways in which a given func-
tional requirement can be met. NFRs provide
guidance on differentiating between these solu-
tions. For example, if the NFR concerns per-
formance, solutions that are faster will be pre-
ferred and solutions with a poor performance
should be rejected.

NFRs are typically described as attributes
of the system or device that contribute to
the overall quality of the product. These at-
tributes are not confined to one portion of the
product’s functionality. In a software system,
these include the “ilities” such as reliability, se-
curity, scalability, extensibility, manageability,
maintainability, interoperability, composabil-
ity, evolvability, survivability, affordability, un-
derstandability, and agility [10], as well as other
system wide properties, such as performance,
security, availability, modifiability, adaptabil-
ity, nomadicity, survivability, evolvability, and
responsiveness [8].

Other types of NFRs include quality of ser-
vice parameters (QoS) such as performance pa-
rameters [14] and system attributes (also re-
ferred to as properties) such as “ease-of-use”
that apply to the system in general but cannot
be phrased as a task that the system performs
[13].

Roman views NFRs as constraints (refer-
ring to them as both non-functional require-



ments and non-functional constraints). Ro-
man lists several constraint categories: inter-
face constraints, performance constraints, op-
erating constraints (such as personnel avail-
ability), life cycle constraints (maintainabil-
ity, enhanceability, etc.), economic constraints
(such as cost), and political constraints (such
as avoiding use of a competitor’s device).
NFRs tend to be very general and are likely
to be desirable to varying degrees in different
systems. For example, in a military system,
user safety may be extremely important, while
in a banking system there are few user safety
concerns. There are often conflicts between the
NFRs that result in tradeoffs being made. Typ-
ical examples would be trading off cost versus
safety or resources used versus performance.

2.3 Software Requirements

When designing software, the consideration of
requirements falls into a sub-field of Software
Engineering known as Requirements Engineer-
ing. There are several RE areas where research
is being done [15]: eliciting requirements,
modeling and analyzing requirements, commu-
nicating the requirements, reaching agreement
on requirements, and evolving requirements.
There is also work done specifically on NFRs.
For example, the NFR Framework [6] repre-
sents the NFRs as goals that must be satisfied
by the system. The system design consists of a
goal-graph giving the NFRs, alternative ways
of satisfying them, and claims for and against
these alternatives.

One aspect of software engineering that dif-
fers from the design and manufacture of other
systems is that one of the largest costs is not the
development, but instead is the maintenance.
That is because software systems are mutable
and can change over time, either due to finding
and correcting defects in the original system
or by responding to the customer’s changing
needs.

One way to keep software costs down is to
reuse or modify existing systems for new needs.
This makes the ability to keep track of require-
ments even more crucial. Requirements for the
new system (both FR and NFR) will consist of
some or all the requirements met by the reused
system (if not, then it is likely that the cost

saved by reuse and modification will be min-
imal) plus some additional ones. It is impor-
tant to ensure that the modifications result in
the system meeting the new requirements but
do not cause the system to violate any prior
requirements.

3 Functional versus Non-
Functional

Before examining more closely what makes a
requirement functional, we will first look at the
meaning of “function”. Researchers have stud-
ied the definition and representation of function
for a variety of engineered artifacts, and have
also studied how to reason using those repre-
sentations [21].

3.1 Function

Chandrasekaran and Josephson [3, 4] define
function by viewing it as a set of effects that
an entity has on its environment. These ef-
fects must be desired by some agent in order
for them to have meaning as a function. Oth-
erwise they will be spurious, just as a clock’s
ticking does not help someone know the time.

Functions are usually utilized by agents in
the environment (e.g., users) to achieve goals.
Typically, designers intend effects and users de-
sire them. Effects may be behaviors or prop-
erties of the functioning entity: e.g., a clock’s
second hand moving, or a chair’s flat seat.

Chandrasekaran and Josephson refer to the
“mode of deployment” as the way that causal
interactions between the entity and the envi-
ronment are instantiated. Some things only
function when in certain physical relationships
to the environment (e.g., “plugged in”) or when
the environment acts on them in some way
(e.g., “press button to start”).

If a set of behavioral constraints on the envi-
ronment are satisfied when the entity is cor-
rectly deployed then that entity can be said to
play a “role” in that environment. Behavioral
constraints are any constraints on the behavior
of the environment, such as a required voltage
being achieved, or some condition producing
some action.



If the entity “plays a role” in the envi-
ronment and that role is desired by some agent
in the environment, then the entity has (or per-
forms) a function. The actual function is de-
fined by the constraints being satisfied. The
agent desiring that role can be thought of as
the “user”, but it might also be some other en-
tity.

This comprehensive and general view of func-
tionality is highly compatible with Roman’s
[17] statement that functional requirements in-
volve the interaction between the object and its
environment.

3.2 Function and Software

If functional requirements can be described
by their effect on the environment, then in
order to examine functional requirements we
must first look at what environments are im-
portant for software. With its long life cy-
cle, software exists in a number of different en-
vironments either defined by the sequence of
time (first development, then operation) or by
who is interacting with the software (the de-
veloper/maintainer or the user). There are
many ways that the environments could be de-
lineated, but for this paper we will look at
three different environments: development, op-
erational, and maintenance.

The development environment may have
its own requirements (functional and non-
functional) that are not directly related to
the task that the system performs. A typical
development requirement would be one that re-
quires the development team to write the soft-
ware in a particular language. For example,
in the early 1980s, the Department of Defense
mandated that government software be written
in Ada. There may also be requirements on the
hardware platform, especially if the software is
going to be run on equipment already owned
by the customer.

The operational environment is the one
where most customer requirements apply.
Most requirements defined as functional apply
to this environment—these requirements spec-
ify what services the software must provide.
An example would be a requirement for an air
traffic control system that specifies the target
tracking accuracy.

The maintenance environment must also be
considered. This may not always be the same
as the development environment. There may
be requirements that affect maintenance specif-
ically. An example would be a requirement
to allow expansion of the software capacity in
some way, like responding to additional data
storage needs or additional users. These ex-
pansions would take place after the software is
deployed.

If the functional requirements define how
the system must interact with its environment,
then all of the different environments the sys-
tem exists in must be considered. Many of
the requirements normally referred to as non-
functional (such as scalability, extensibility,
and others) refer to the development (or main-
tenance) of the system rather than its deploy-
ment. When the environment under consid-
eration is development or maintenance, these
requirements do have an effect on that envi-
ronment. This suggests that many of the NFRs
can be considered as functional when looked at
from the point of view of the environment to
which they apply.

4 What are NFRs?

So what differentiates an NFR from an FR? A
wide variety of different types of NFRs have
been described—what do they have in com-
mon?

4.1 NFR Characteristics

There are a number of characteristics (or miss-
ing characteristics) of NFRs that are used to
distinguish them from FRs:

1. NFRs do not describe something that the
system “does”, i.e. they are not require-
ments that describe a function that the
system performs;

2. NFRs do not relate to a specific system
component, instead they “cross-cut” soft-
ware functionality;

3. NFRs can not be evaluated without look-
ing at the system as a whole—this partic-
ularly applies to NFRs that involve end-
to-end performance.



The question is: do these characteristics au-
tomatically mean that the requirement is non-
functional? For the first characteristic, if this
is combined with Chandrasekaran’s definition
of function, then many NFRs do perform a
function. For the second characteristic, the
cross-cutting functionality may actually imply
that the NFR is really an abstract description
of many more specific functional requirements
that apply to the various functions that the
software performs. For the third item, the need
to have the entire system in place is not unique
to performance-based NFRs, there are proba-
bly many functions of the system that can not
be evaluated until the system is complete.

4.2 Abstract FRs or Preferences

One way to handle an NFR is to break it down
into the associated FRs that together would
satisfy the requirement. For example, the NFR
of affordability can be translated into specific
requirements on the cost of the system if the
range of acceptable costs can be made known.
An NFR regarding accuracy could be broken
into a number of more specific requirements
that indicate what needs to be accurate and
what “accurate” means in each case.

In some cases, however, this is not possible.
For example, if the requirement was that the
system be “as cheap as possible” there would
not be a way to translate that into a specific
dollar amount that can be tested. In this case,
there may be a range of acceptable costs but
the requirement cannot be expressed in terms
of a specific one. The only way to determine
if the system was “as cheap as possible” would
be to compare the costs of alternative designs.
Even such a comparison is no guarantee unless
all possible alternatives are known.

In this case, and others, the degree to which
the NFR is met may vary. This is different from
more concrete, functional requirements where
testing the requirement results in a pass/fail
answer. Indicating that the system should be
“as cheap as possible” is not a requirement. If
it were a requirement then there would need to
be a way to ensure that it has or has not been
met. Instead, this is a preference indicating
that when given a choice between a solution
with a higher cost and one with a lower cost,

the lower cost alternative is preferable. Chung,
et. al. [7] discuss the notion of satisficing [19],
looking for solutions that are “good enough”
although not necessarily optimal.

This means that some NFRs may actually
be expressed as both requirements and pref-
erences. They may be refinable to functional
requirements that specify the threshold of ac-
ceptability and may also include additional
preferences that indicate that solutions that
“beat” the threshold should be preferred.

5 An NFR Portfolio

If something is considered a requirement,
whether functional or non-functional, there
needs to be some way to verify that it has been
met. Listing the NFRs that apply to a given
system can be a useful aid to defining design
and development priorities but there needs to
be sufficient rigor applied to ensure that these
priorities hold. Here we list a portfolio of NFR
techniques that can be used to assist in follow-
ing and testing NFRs.

One method, already mentioned, is to trans-
late the NFR into a set of FRs that together
will ensure that the NFR is met. The new FRs
can then be added to the initial set of FRs
and used and tested in a similar fashion. Since
NFRs are general, the refinement to more spe-
cific FRs could be aided by a catalog of knowl-
edge describing likely refinements.

Chung, et. al. [7] have designed an NFR
Framework that uses NFRs as the basis for sys-
tem design. In this approach, Softgoal Interde-
pendency Graphs (SIGs) are used to refine the
NFRs and show relationships between them.
The softgoals in the NFR framework describe
how the more general NFRs apply to a spe-
cific system. As part of the framework, catalogs
are provided and used that provide information
about specific NFRs, development techniques
for meeting requirements, and correlations and
tradeoffs among softgoals. While they do not
go so far as to state that their refined NFRs are
actually FRs, many of them could be described
as such.

Testing the NFRs is very difficult, but nec-
essary if they are to have any real meaning in
the system. One approach is to associate each



NFR with a battery of tests that could indi-
cate either compliance with the NFR or non-
compliance. Tests from this set would be se-
lected (and even refined) for the specific sys-
tem being tested based on knowledge of the re-
lated FRs and the system architecture. The
tests would not prove NFR satisfaction but
they would serve as an indication of the degree
to which the NFR is likely to be satisfied.

Another possible way to test NFRs is by
taking advantage of known tradeoffs between
them. If it is known that a particular trade-
off takes place in a system between two NFRs,
and only one of these is considered important
for the system under development, it might be
easier to test for the lack of the less desirable
NFR and use that as a possible indicator that
the other is satisfied. The success of this ap-
proach hinges on how strong the relationship
is between the two NFRs. It may be better at
pointing out non-compliance than compliance
but could still be a useful addition to a battery
of standard NFR tests.

These approaches look at NFR testing and
verification, it is also important to ensure that
the NFRs are met during development (or
maintenance). One way would be to develop
an NFR critiquing system [18] that would make
use of compiled experiential design knowledge
[1] to detect design decisions and software char-
acteristics that tend to lead to lack of satisfac-
tion for an NFR.

Some critiquing systems make use of design
rationale. One example of a critiquing system
using rationale is Janus, [11] which looked at
kitchen designs and their conformance or non-
conformance to rules describing good design.
InfoRat [2] looked at design rationale to test
for inconsistency and for tradeoff violations.

If the NFRs that guided the design deci-
sions are clearly documented along with the
decisions (i.e., as rationale), it is then possible
to look at what the priorities were for the de-
sign and if they are consistent with the require-
ments. Consistent thought about an NFR dur-
ing development, as revealed by rationale, is a
good sign, while decisions without adequate ra-
tionale are bad. The rationale-driven approach
also has the advantage that the NFRs can have
relative priorities assigned to assist in conflict
resolution.

Another use of rationale is in selecting be-
tween different pre-existing design and archi-
tecture structures. Attribute Based Architec-
tural Styles (ABAS) [12] offer a mechanism to
design for various quality attributes at the ar-
chitectural level. Each style is designed to ad-
dress a specific quality attribute. This asso-
ciates the architecture with the reason, or ra-
tionale, for using it. The intention is to have
a collection of styles so that the architect can
combine them as needed to form the complete
system architecture. The rationale, which in-
cludes the NFRs, can be used to select between
the different styles. This applies to other de-
sign elements as well. For example, rationale
was used by Vadhavkar and Pefia-Mora [16] to
select between different design patterns.

6 Summary and Conclu-
sions

In this paper we have addressed these ques-
tions: what does “functional” mean, whether
NFRs are really non-functional, whether NFRs
are requirements at all, whether NFRs be rep-
resented by FRs, and what techniques might
be employed to ensure and indicate NFR satis-
faction.

Every requirement affects the system in some
way, otherwise it would not be worth requir-
ing. This applies both to requirements typi-
cally classified as functional and those typically
classified as non-functional. If something is re-
quired, there should be some way to determine
if that requirement has or has not been satis-
fied.

This does not imply that un-testable NFRs
such as “minimize cost” are not valuable—such
factors are important to consider so that the
system provides the maximum degree of user
satisfaction. Such requirements, however, are
not really requirements but are actually prefer-
ences.

Viewing NFRs as being separate and dis-
tinct from FRs has been an obstacle in the
way of discovering methods to ensure that these
requirements are met. In this paper, we look at
how function has been defined for other design
domains and use that definition to show that a
requirement being defined as functional or non-



functional is a matter of how it is viewed.

A significant danger of keeping NFRs in a
class by themselves is that it allows the devel-
oper to avoid looking beneath them to see how
they affect the functional requirements of the
system. In many cases, the NFRs can be re-
fined into FRs that together satisfy the original
NFR.

The other issue that must be addressed is
how to verify NFRs that cannot be refined.
In this case, the NFRs can be treated as pref-
erences and the developer should look toward
avoiding conflict as well as ensuring compli-
ance.

In the previous section we described some
possible ways of ensuring that NFRs, whether
abstract FRs or preferences, could be ad-
dressed. Since many NFRs describe the overall
quality of the system, rigorously ensuring that
they are followed by using critiquing, rationale,
or an approach similar to the NFR Framework
[7], will help to build a higher quality system.

Supported by information describing trade-
offs, NFR to FR refinements and relationships
between the NFRs, a portfolio of techniques
will increase the chance that the system meets
the NFRs and that customer satisfaction re-
sults.

Acknowledgements

The authors would like to acknowledge the as-
sistance and support provided by Prof. George
T. Heineman.

About the Author

Janet Burge is a PhD student and instruc-
tor at Worcester Polytechnic Institute doing
research on using Design Rationale in Software
Maintenance. She has B.S. and M.S. degrees in
Computer Science and is a student member of
the ACM. Her master’s thesis was on “Knowl-
edge Elicitation for Design Task Sequencing
Knowledge.” She also works part-time as a Se-
nior Research Associate at Charles River Ana-
lytics, a small AT R&D company.

David Brown is Professor of Computer Sci-
ence at Worcester Polytechnic Institute. He
has B.Sc., M.Sc., M.S. and Ph.D. degrees in
Computer Science, and is a member of the

ACM, TEEE Computer Society, AAAI, and
IFIP WG 5.2. He is the Editor of the Cam-
bridge UP journal ATEDAM: AT in Engineer-
ing, Design, Analysis and Manufacturing; and
is on the Editorial Boards of several Journals,
including: Concurrent Engineering: Research
and Application; Research in Engineering De-
sign and the International Journal of Design
Computing.

References

[1] D.C. Brown. Compilation: The hid-
den dimension of design systems. In
H. Yoshikawa and F. Arbab, editors, In-
telligent CAD, volume IIT. North-Holland,
1991.

[2] J.E. Burge and D.C. Brown. Inferencing
Over Design Rationale. In J. Gero, edi-
tor, Artificial Intelligence in Design 00,
pages 611-629. Kluwer Academic Publish-
ers, 2000.

[3] B. Chandrasekaran and J.R. Josephson.
Representing Function as Effect. In Proc.
of the Functional Modeling Workshop,
Paris, France, 1997.

[4] B. Chandrasekaran and J.R. Josephson.
Function in Device Representation. Engi-
neering with Computers, Special Issue on
Computer Aided Engineering, pages 162—
177, 2000.

[5] B. Chandrasekaran and H. Kaidal. Rep-
resenting Functional Requirements and
User-system Interactions. In Proc. of the
AAATI Workshop on Modeling and Reason-
ing about Function, pages 78-84, Portland,
Oregon, 1996.

[6] L. Chung, B.A. Nixon, and E. Yu. Using
Non-Functional Requirements to System-
atically Select Among Alternatives in Ar-
chitectural Design. In Proc. of the ICSE-
17 Workshop on Architectures for Soft-
ware Systems, pages 31-43, Seattle, WA,
USA, 1995.

[7] L. Chung, B.A. Nixon, E. Yu, and J. My-
lopoulos. Non-Functional Requirements in



8

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Software Engineering. Kluwer Academic
Publishers, 2000.

L. Chung and E. Yu. Achieving System-
Wide Architectural Qualities. In Proc.
of the OMG-DARPA MCC Workshop
on Compositional Software Architectures,
Monterey, CA, USA, 1998.

M. Dorfman. System and software require-
ments engineering. In R.H. Thayer and
M. Dorfman, editors, System and Soft-
ware Requirements Engineering, pages 4—
16. IEEE Computer Society Press, Los
Alamitos, CA, 1st edition, 1990.

R.E. Filman. Achieving Ilities. In Proc. of
the Workshop on Compositional Software
Architectures, Monterey, CA, USA, 1998.

G. Fischer, A. Lemke, R. McCall, and
A. Morch. Making argumentation serve
design. In T. Moran and J. Carroll, ed-
itors, Design Rationale Concepts, Tech-
niques, and Use, pages 267-294. Lawrence
Erlbaum Associates, 1995.

M. Klein and R. Kazman. Attribute-based
architectural styles.  Technical Report
CMU/SEI-99-TR-22, CMU/SEI, 1999.

C. Larman. Applying UML and Patterns:
An Introduction to Object-Oriented Anal-
ysis and Design. Prentice Hall, 1997.

F. Manola. Providing Systematic Prop-
erties (Ilities) and Quality of Service in
Component-Based Systems. Technical re-
port, Object Services and Consulting, Inc.,
February 1999.

B. Nuseibeh and S. Easterbrook. Require-
ments engineering: a roadmap. In Proc.
of the Conference on The Future of Soft-
ware Engineering, pages 35—46, Limerick,
Ireland, 2000.

F. Pena-Mora and S. Vadhavkar. Aug-
menting design patterns with design ratio-
nale. Artificial Intelligence for Engineer-
ing Design, Analysis, and Manufacturing,
pages 93-108, 1996.

G. Roman. A Taxonomy of Current Issues
in Requirements Engineering. Computer,
pages 14-22, April 1985.

[18]

[19]

[20]

[21]

[22]

[23]

B.G. Silverman. Building a Better Critic:
Recent Empirical Results. IEFE FExpert,
pages 18-25, April 1992.

H.A. Simon. The Sciences of the Artificial.
MIT Press, 1981.

R.H. Thayer and M. Dorfman. Introduc-
tion, issues, and terminology. In R.H.
Thayer and M. Dorfman, editors, System
and Software Requirements Engineering,
pages 1-3. IEEE Computer Society Press,
Los Alamitos, CA, 1st edition, 1990.

Y. Umeda and T. Tomiyama. Functional
Reasoning in Design. IEEE Ezpert, pages
42-48, April 1997.

R.T. Yeh and P.A. Ng. Requirements anal-
ysis — a management perspective. In R.H.
Thayer and M. Dorfman, editors, Sys-
tem and Software Requirements Engineer-
ing, pages 440-461. IEEE Computer Soci-
ety Press, Los Alamitos, CA, 1st edition,
1990.

P. Zave. Classification of research efforts
in requirements engineering. ACM Com-
puting Surveys, pages 315-321, December
1997.



