
REASONING WITH DESIGN RATIONALE

J. BURGE, D. C. BROWN
AI in Design Research Group
Department of Computer Science
WPI, 100 Institute Road
Worcester, MA 01609, USA

Abstract. Design Rationale (DR) consists of the decisions made
during the design process and the reasons behind them. Because it
offers more than just a “snapshot” of the final design decisions, DR is
invaluable as an aid for revising, maintaining, documenting,
evaluating, and learning the design. Much work has been performed
on how DR can be captured and represented but not as much on how it
can be used. In this paper, we investigate the use of DR by building
InfoRat, a system that inferences over a design’s rationale in order to
detect inconsistencies and to assess the impact of changes.

1. Introduction

Standard design documentation consists of a description of the final design
itself: effectively a “snapshot” of the final decisions. Design rationale (DR)
offers more: not only the decisions, but also the reasons behind each
decision, including its justification, other alternatives considered, and
argumentation leading to the decision (Lee, 1997). This additional
information offers a richer view of both the product and the decision making
process. DR is invaluable as an aid for revising, maintaining, documenting,
evaluating, and learning the design.

If design rationale were available, designers revising a design could use
it to determine the original designer’s intent, as well as determining what
alternatives had already been considered and why they were rejected. This
can help to avoid duplicating work that was done on a previous iteration
through the design. In some cases, the reasons for making a decision may
no longer be valid, and choosing a different alternative may be preferable.
For example, one part may have been chosen over another because there
was a surplus of them and the price was low. If this is no longer true,
another part might be more cost effective. Rationale can also serve as a

2 J. BURGE AND D.C. BROWN

form of “corporate memory” providing valuable insight into a design that
would otherwise be lost if designers leave the company (Peña-Mora and
Vadhavkar, 1996, Brice and Johns, 1998).

In this paper, we describe InfoRat (Inferencing over Rationale), a system
that inferences over a design’s rationale in order to detect inconsistencies
and to assess the impact of changes. The analysis consists of two types of
inferences: syntactic to inference over the “structure” of the rationale, and
semantic, to look at the content.

The paper is structured as follows: in section 2, we discuss the problem
of capturing, representing, and using design rationale. In section 3, we
describe related work. Section 4 describes our approach, including a
description of the sample problem used in the paper. Section 5 describes the
implementation of the system and gives an example, while section 6 states
our conclusions and plans for future work.

2. The Design Rationale Problem

Most work on design rationale has concentrated on capture and
representation. Capturing, or recording, design rationale is a particularly
diff icult problem. Recording all decisions made, as well as those rejected,
can be time consuming and expensive. The more intrusive the capture
process, the more designer resistance will be encountered. Because it is
time consuming and viewed as documentation, DR capture is viewed as
expendable if deadlines are an issue (Conklin and Burgess-Yakemovic,
1995). Documenting the decisions can impede the design process if it is
viewed as a separate process from constructing the artifact (Fischer, et al.,
1995). Also, designers are reluctant to take the time to document the
decisions they did not take, or took and then rejected (Conklin and Burgess-
Yakemovic, 1995).

The representation of DR has also been studied extensively. Design
rationale representations range from formal to informal. A formal approach
allows the computer to use the data but does not always output information
in a form that a human can understand. In addition, it requires that data be
provided to the system in a more rigid format. An informal approach
provides data in formats that are easily generated and understand by a
human but can not easily be used by the computer (e.g., natural language).
Semi-formal approaches attempt to use the advantages of both approaches.

While capture and representation are important for design rationale, the
real value of a system is how well the rationale can be put to use. Capturing
large amounts of detailed rationale is not useful i f it is never looked at again.
If rationale is useful to the designers, there is a greater incentive for the
designer to assist with the capture of the needed information, particularly if

REASONING WITH DESIGN RATIONALE 3

the designer who is recording it can immediately use the rationale. Also,
knowing how the information will be used provides guidance about what
information should be captured and how it should be represented. These are
the key reasons why our research concentrates on DR use.

3. Related Work

How the DR can be used depends its representation format and content.
Shipman and McCall (1996) describe three perspectives on design rationale:
argumentation, documentation, and communication. Argumentation and
documentation focus on the design decisions and the reasons behind them.
The difference is that the goal of documentation is to convey understanding
to people outside the project, while argumentation has the additional goal of
structuring how the designer approached the problem. The communication
perspective is an attempt to capture naturally occurring design
communication, such as e-mail , meeting minutes, etc. Design Rationale can
also be viewed as a design history – the sequence of events that occurred
while performing the design (Garcia, 1993). In this case, the focus is more
on what actions were taken over time and less on the reasons behind them.

Design Rationale representations vary from informal representations
such as audio or video tapes, or transcripts, to formal representations such as
rules embedded in an expert system (Conklin and Burgess-Yakemovic,
1995). A compromise is to store information in a semi-formal
representation that provides some computation power but is still
understandable by the human providing the information. Semi-formal
representations are often used to represent argumentation.

There are several argumentation notations. Design Space Analysis
(DSA) uses the Questions, Options, and Criteria (QOC) representation
(MacLean, et al., 1991). This notation is used by Desperado (Ball , et al.,
1999). QOC represents the argumentation as questions, options, and criteria
for choosing the options. Another notation is Issue Based Information
Systems (IBIS), used by gIBIS (graphical IBIS) and itIBIS (text based IBIS)
(Conklin and Burgess-Yakemovic, 1995). IBIS represents the argumentation
as issues, positions, and arguments. IBIS is the basis of another notation,
PHI that is used in JANUS (Fischer, et al., 1995). PHI captures similar
concepts to IBIS but links them together differently. There have also been
many notations created for specific DR tools. Examples of this are DRCS
(the Design Rationale Capture System) (Klein, 1992) and DRIM (Design
Recommendation and Intent Model) (Peña-Mora, et al., 1995). DRCS
represents argumentation using entities and claims about the entities. DRIM
is used in SHARED-DRIM, which captures recommendation, justification,
and intent for each participant in the design process. InfoRat bases its

4 J. BURGE AND D.C. BROWN

representation on DRL (Decision Representation Language), the
representation used by SIBYL (Lee, 1990). DRL is described later in this
paper.

There are also many different ways to capture DR. One approach is to
build the rationale capture into a system used for the design task. Active
Design Documents (ADD), a system that does routine, parametric design
(Garcia, et al., 1993), uses rationale already built i nto a knowledge base and
associates it with the user’s decisions. Some systems capture DR by
integrating the system into an existing design tool. This is done by M-LAP
(Machine-Learning Apprentice System) (Brandish, et al., 1996). In M-LAP,
user actions are recorded at a low level and formed into useful sequences
using machine-learning techniques. This is also done in the RCF (Rationale
Construction Framework) (Myers, et al., 1999). RCF uses its theory of
design metaphors to interpret actions recorded in a CAD tool and convert
them into a history of the design process. DHT (Design History Tool)
(Chen, et al., 1990) is also integrated with a design tool and captures the
history as a byproduct of the designing process. Some systems, such as
itIBIS and gIBIS (Conklin and Burgess-Yakemovic, 1995) require that
rationale be captured in a specific format, while others, such as HOS
(Hyper-Object Substrate) (Shipman and McCall , 1996), use data captured
informally during the design process and convert it into a useable form.

DR has a variety of uses. Systems such as JANUS (Fischer, et al., 1995),
critique the design and provide the designers with rationale to support the
criti cism. Others, such as SYBIL (Lee, 1990), verify the design by checking
that the rationale behind the decisions is complete. SYBIL also does some
rationale evaluation. SHARED-DRIM (Peña-Mora, et. al, 1995) uses DR for
confli ct mitigation in collaborative design efforts. PTTT (Process
Technology Transfer Tool) (Brown and Bansal, 1991) is used to transfer
process design information between development and manufacturing. DME
(Device Modeling Environment) (Gruber, 1990) is used to generate
documentation “on demand” about electromechanical devices. C-Re-CS
(Klein, 1997) performs consistency checking on requirements and
recommends a resolution strategy for detected exceptions.

Less work has been done to study the usefulness of DR. Field trials were
done using itIBIS and gIBIS for software development at NCR (Conklin and
Burgess-Yakemovic, 1995). Capturing rationale was found to be useful
during both requirements analysis and design. In particular, several errors
were found during design that would not have been uncovered until much
later when the code was written. IBIS also helped with team
communication by making meetings more productive. A study was also
performed using DR documents to evaluate a design (Karsenty, 1996). In
this study, 50% of the designers’ questions were about the rationale behind
the design and 41% of these questions were answered by the recorded

REASONING WITH DESIGN RATIONALE 5

rationale. The rationale had been recorded manually using the QOC
method.

4. Approach

In the InfoRat approach, design rationale is viewed as a bridge between
design phases. The design begins with a set of requirements defining the
system being designed. These requirements are then mapped to goals and,
if required, sub-goals. Goals and sub-goals then can be satisfied by one or
more alternatives. Each alternative then maps to an artifact, or a
requirement for the next stage of design. The rationale for each choice is
represented as arguments, expressed as claims, for or against each
alternative. Figure 1 shows how design rationale links the requirements and
the design.

Requirement

Goal Alternative Claim

Artifact

Requirement
Space

Rationale
Space

Design
Space

Figure 1. Design Rationale in the Design Process

The resulting rationale serves both to document the design and to provide
a means for design verification. This verification involves ensuring that the
design is consistent and complete, i.e., all requirements correspond to goals
and all goals have selected alternatives. The following subsections describe
the important aspects of this approach.

4.1 EXAMPLE PROBLEM

For ill ustrative purposes, a simple example of a traff ic light design (Gogolla,
1998) was used. This was done to provide rationale that was simple to
construct but rich enough to demonstrate the concepts. For more detailed
information on traff ic signal phase and cycle selection, see Zozayza-
Gorostiza and Hendrickson (1987).

The traff ic light example describes the high level design of the traff ic
lights for an intersection between two streets where one street had a heavier

6 J. BURGE AND D.C. BROWN

flow of traff ic than the other, except during rush hour. This intersection also
had frequent traff ic turning from travelli ng South to travelli ng East. In
addition to supporting those aspects of the intersection, the light system also
had to be designed so that it would handle failure as safely as possible.
Figure 2 shows the intersection.

N

Heavier Flow
of Traff ic

Figure 2. Intersection Diagram

This results in the following requirements for the traff ic light
system:

• Use four traff ic lights
• Provide safe traff ic flow
• Allow for heavier traff ic on the North-South road
• Allow for traff ic turning South to East
• Safely handle light failures

Each of these requirements can be satisfied in a number of ways. For
example, choosing four traff ic lights involves deciding what types of phases
the lights should have, deciding if all four lights should be identical, and
deciding if the lights should have arrows for turning or not. Providing safe
traff ic flow requires controllers for the lights to ensure that traff ic can not be
flowing on the E-W road at the same time that it is flowing on the N-S road.
There are also a number of ways that the heavier traff ic flow on the N-S
road can be handled. Sensors can be used to monitor the flow of traff ic or
the lights can go to flashing yellow or red at times when traff ic on the E-W
road is lighter. Assistance for turning can be provided by delaying the lights
or by using turn signals. There are also different ways that light failures that
can be handled. One way is to shut down the intersection completely,
although it might be better to turn it into a “four way stop” so that some
traff ic flow can still occur.

REASONING WITH DESIGN RATIONALE 7

4.2 REPRESENTATION

As described above, there are a variety of methods for representing
rationale. In order to support inferencing, a structured or semi-structured
representation is required. DRL (Lee, 1990) has the richest rationale
representation of the systems studied. A meaningful subset of DRL was
chosen to allow exploration of possible inferences and to keep the
representation relatively simple. For DRL, the elements represented are
artifact, requirement, goal, alternative, claim, group, viewpoint, and
question. DRL also supports several relations between these elements
including: is-a-part-of, is-a-subclass-of, is-argument-for, and is-argument-
against.

The InfoRat system implements a subset of these elements: requirement,
goal, alternative, and claim. It also allows several relationships: supported-
by, sub-goal, alternative-for, argument-for, and argument-against. Figure 3
shows the elements represented in InfoRat and the relationships between
them.

has-argument-against

has-argument-for
has-alternative

Goal Alternative Claim

Requirement

has-subgoal one-to-many

many-to-many

Figure 3. Design Rationale Elements

As the figure indicates, each goal can have multiple sub-goals, an
alternative can be used to satisfy more than one goal, and a claim can be an
argument for or against multiple alternatives. Figure 4 shows the goals as
well as a partial set of alternatives and claims for the requirement to use four
traff ic lights.

8 J. BURGE AND D.C. BROWN

against
against

againstfor

forfor

satisfied-by satisfied-by

subgoalsubgoal

satisfied-by

Four Traff ic
Lights

Arrows

Select
Configuration

Select
Directionals

Select Types
of Phases

Select Four
Lights

No
Arrows

NOT
Safety

Simplicity

Affordabilit ySafety

NOT
Affordabilit y

NOT
Simplicity

subgoal
Requirement

Goal

Alternative

Claim

Figure 4. Subset of Alternatives for Requirement “Four Traff ic Lights”

When a claim is used as an argument for or against an alternative, it is
given a “rating” between one and ten to indicate its importance in the design
decision. This weighting scheme was used because it is simple and easily
understood by the designer. These ratings can be added together to indicate
the overall rating for an alternative. For example, if the alternative
“Arrows” (as shown in Figure 4) has a claim in its favor of “Safety” , with a
rating of seven, and claims against it of “NOT Affordabilit y” , with a rating
of two and “NOT Simplicity” , with a rating of one, its overall rating would
be four.

4.3 INFERENCES

The InfoRat system inferences over the rationale to check for completeness
and consistency. The inferencing can be broken into two categories:
syntactic inferencing that uses the structure of the rationale, and semantic
inferencing that looks at the contents/values of the different rationale
elements.

Syntactic inferencing looks for the following inconsistencies in the
rationale: requirements with no corresponding goals, and goals (or sub-
goals) with no selected alternatives. The syntactic checks are primarily
concerned with ensuring that the rationale is complete. Figure 5 shows the
requirement “Four Traff ic Lights” and its relationships. In this example, the
goal “Select Type of Directionals” has two alternatives but neither has been
selected. Figure 6 shows a syntactic check that looks to see if there are any
requirements that do not trace to goals with selected alternatives. This
check detects that the requirement “Four Traff ic Lights” was not satisfied.

REASONING WITH DESIGN RATIONALE 9

Both these figures, as well as those that follow, show actual output from
InfoRat.

Requirement: Four Traffic Lights
 Goals:
 Goal: Select Four Lights
 Subgoals:
 Goal: Select Types of Phases
 Alternatives:
 German 4-Phase Lights
 Italian 3-Phase Lights (Selected)
 Goal: Select Type of Directionals
 Alternatives:
 Light w/o Turn Signals
 Light with Turn Signal
 Goal: Select Light Configuration
 Alternatives:
 Mixed Light Types (Selected)
 All Lights the Same

Figure 5. Goals and Sub-goals for the Unsatisfied Requirement

* Verify Design Rationale *

Choose one of the following:

 1: Show Full Verification Report
 2: Check for Unsatisfied Requirements
 3: Check for Unsubstantiated Alternatives
 4: Check for Non-Optimal Alternatives
 5: Check for Contradictory Arguments

 E: Exit Menu

Enter Selection: 2

Unsatisfied Requirements:
 Four Traffic Lights

Figure 6. Unsatisfied Requirement Check

Semantic inferencing looks at the reasons for and against the alternatives.
There are three types of discrepancies looked for: selected alternatives
where the arguments against the alternative outweigh the arguments for the
alternative, as shown in Figure 7, selected alternatives where the alternative
selected is not the best choice, as shown in Figure 8, and selected
alternatives where the same argument is used both for and against the
alternative, as shown in Figure 9.

10 J. BURGE AND D.C. BROWN

Arguments AGAINST outweigh FOR:

 For Goal: Priority to NS Traffic
 Selected Alternative: Configuration Changes w/Time
 (Rating = -3)

Figure 7. Arguments Against Outweigh For

Best Alternative not chosen for Select Light Configuration
 Selected Alternative: Mixed Light Types
 (Rating = 3)
 Best Rated Alternative: All Lights the Same
 (Rating = 5)

Best Alternative not chosen for Priority to NS Traffic
 Selected Alternative: Configuration Changes w/Time
 (Rating = -3)
 Best Rated Alternative: Sensor Controlled E/W
 (Rating = -2)

Figure 8. Best Alternative Not Chosen

Enter Selection: 5
Same argument for and against:
 For Goal:If EW traffic, no NS traffic
 Alternative: Individual Light Control
 Claim FOR:Safety and Claim AGAINST: Safety

 For Goal:If NS traffic, no EW traffic
 Alternative: Individual Light Control
 Claim FOR:Safety and Claim AGAINST: Safety

Figure 9. Contradictory Arguments

4.4 VOCABULARY

In order to support semantic inferencing, it is necessary to have a known
vocabulary for claims (arguments for or against an alternative). The
vocabulary consists of two categories: a pre-defined, standard vocabulary,
and a user-defined, domain-oriented vocabulary. We refer to these as the
Standard Claim Vocabulary and the User-Defined Claim Vocabulary
respectively.

The Standard Claim Vocabulary is pre-defined to match the design task.
For software design, a vocabulary has been built based on the “iliti es”
(Filman, 1998). Figure 10 shows the Standard Claim Vocabulary used by
InfoRat.

REASONING WITH DESIGN RATIONALE 11

Standard Arguments:

 Affordability
 Safety
 Availability
 Simplicity
 Reliability
 Adaptability
 Configurability
 Trustability

Figure 10. Standard Claim Vocabulary

Claims can be added to the User-Defined Claim Vocabulary at
any time during the design process. These are arguments that are
specific to the design project. Figure 11 shows the User-Defined
Claim Vocabulary for the traff ic light design problem.

User Defined Arguments:

 Starves one direction
 Optimizes Traffic Flow

Figure 11. User Defined Claim Vocabulary

4.5 RATIONALE PATTERN DETECTION

Because InfoRat supports semantic inferencing, there are several additional
inference types that have been investigated and could be supported in future
versions of InfoRat. Most, and perhaps all , of these types could be
supported by looking for rationale patterns−sets of claims that frequently
appear together when evaluating an alternative.

One such pattern is a tradeoff−a pattern of claims where one type of
claim is being traded off against another. An example of a typical, well -
known tradeoff would be cost versus strength. These tradeoffs can be
detected by looking for frequent groups of claims where one subset of the
group is for one alternative and another subset is for a competing
alternative. This information, combined with background information
indicating which claims have causal relationships with other claims, can be
used to detect if the tradeoff appears to be balanced or if there is a
preference for one claim, or set of claims, over another. If both claims, or
sets of claims, are considered to be of equal importance, then a balanced
approach would be desirable. If the requirements indicate that one is more
important, then it should be preferred and any deviations from that

12 J. BURGE AND D.C. BROWN

preference can be shown as potential errors. For example, for a cost versus
safety tradeoff , if safety is considered more important than cost, as it would
be for the traff ic light example, a selected alternative that preferred cost
over safety might signal a possible error in reasoning.

Another possibilit y would be co-occurrence patterns−sets of claims that
frequently occur together in an argument. For example, safety and
trustabilit y might occur together in evaluating alternatives. If trustabilit y
then occurs alone, InfoRat could indicate that the designer might want to
look at safety for that alternative as well .

There may also be modification patterns−patterns in the original
rationale version history. If there are commonalties in the rationale for
portions of the design that have been changed, these patterns could be used
to predict the location and li kelihood of changes in new, similar designs.

By detecting these and other rationale patterns, InfoRat would be able to
look deeper into the design rationale to detect more subtle inconsistencies
than are supported by other evaluation systems.

5. Implementation and Examples

InfoRat has been implemented in CLIPS (CLIPS, 1998) and performs three
main functions: Rationale Browsing, Rationale Modification, and Rationale
Verification.

5.1 BROWSE RATIONALE

The browse function is used to examine the rationale stored in the system.
The designer can examine the status of each element and its relationship.
with other elements.

The first option, List DR Element Types, allows the user to quickly view
the different DR elements currently in the system. Figures 12 through 14
show the element listings for requirements, goals, and alternatives.

Requirements:

 Four Traffic Lights (Satisfied)
 Safe traffic flow (Satisfied)
 Traffic heavier N-S (Satisfied)
 Frequent South to East Turning Traffic (Satisfied)
 Safely Handle Light Failures (Satisfied)

Figure 12. Requirement Listing

REASONING WITH DESIGN RATIONALE 13

Goals:

 Select Types of Phases (Satisfied)
 Select Type of Directionals (Satisfied)
 Select Light Configuration (Satisfied)
 If EW traffic, no NS traffic (Satisfied)
 If NS traffic, no EW traffic (Satisfied)
 Safe Flow of Traffic (Satisfied)
 Priority to NS Traffic (Satisfied)
 Turn Assistance to SE Traffic (Satisfied)
 Select Four Lights (Satisfied)
 Stop all if Light Fails (Satisfied)

Figure 13. Goal Listing

Alternatives:

 German 4-Phase Lights
 Italian 3-Phase Lights (Selected)
 Light with Turn Signal (Selected)
 Light w/o Turn Signals
 All Lights the Same
 Mixed Light Types (Selected)
 Central Light Controller (Selected)
 Individual Light Control
 Blinking Red/Yellow
 Sensor Controlled E/W
 Configuration Changes w/Time (Selected)
 Turn Arrow for S->E (Selected)
 Delayed Green
 All Lights go to Blinking Red (Selected)
 All Lights go to Solid Red

Figure 14. Alternative Listing

The remaining options give the user a more detailed view of each
element. Figure 5 (in Section 4) showed the information displayed about a
requirement and its goals. Figure 15 shows the contents of an alternative,
Blinking Red/Yellow.

Each rationale element contains a version number and a description of
the element. The version number is used to keep track of changes in the
rationale so that it can be determined if the state of any rationale element
was changed during the design process. The description is used to describe
the element to the user. InfoRat also allows the user to view the version
history to see the changes made to the rationale and the reasons for the
changes in the rationale. Figure 16 shows an example of a version history.

14 J. BURGE AND D.C. BROWN

Alternative: Blinking Red/Yellow

 Alternative for:
 Priority to NS Traffic (Not Selected)

 Claims For:

 Claim: Simplicity
 Applicability: IS
 Weight: 3

 Claim: Affordability
 Applicability: IS
 Weight: 4

 Claims Against:

 Claim: Safety
 Applicability: NOT
 Weight: 7

 Claim: Starves one direction
 Applicability: IS
 Weight: 7

Figure 15. Alternative Blinking Red/Yellow

Version History:
 Version: 1

 Change: Removed claim [Safety] from
[Configuration Changes w/Time]

Reason: Duplicate Argument

 Version: 2
 Change: Removed claim [Affordability] from

[All Lights the Same]
Reason: Contradiction with another argument

 Version: 3
 Change: Added new Argument: [Optimizes Traffic Flow] for

Alternative: [Mixed Light Types]
Reason: Mixed lights can optimize flow

Version: 4
 Change: Removed claim [Safety] from

[Individual Light Control]
Reason: Individual lights are less safe (synch problems)

 Version: 5
 Change: Changed weight of argument [Optimizes Traffic Flow]

to 5
 Reason: Traffic flow is very important

Figure 16. Version History

REASONING WITH DESIGN RATIONALE 15

The first two changes were made in response to errors detected by
InfoRat. The remaining three could either be triggered by the system or in
response to changes in the requirements. Notice that the reasons given for
the first two changes are reasons for changes to the rationale, not reasons for
changes to the design.

5.2 VERIFY RATIONALE

InfoRat verifies rationale by generating several different verification reports.
The system can check for unsatisfied requirements (requirements that do not
have goals associated or that have goals associated where the goals and their
sub-goals do not map to selected alternatives), unsubstantiated alternatives
(alternatives with a negative overall rating), non-optimal alternatives (when
the alternative selected for a goal has a lower overall rating than one or more
of the other alternatives for that goal), and contradictory arguments
(arguments where the same argument is used for and against an alternative).
InfoRat can also perform a summary check for all of these problems and
produce a report. Figure 17 shows an example of a complete verification
report.

Unsatisfied Requirements:
 None!

Arguments AGAINST outweigh FOR:
 For Goal: Priority to NS Traffic
 Selected Alternative: Configuration Changes w/Time
 (Rating = -3)

Best Alternative not chosen for Select Light Configuration
 Selected Alternative: Mixed Light Types
 (Rating = 3)
 Best Rated Alternative: All Lights the Same
 (Rating = 5)
Best Alternative not chosen for Priority to NS Traffic
 Selected Alternative: Configuration Changes w/Time
 (Rating = -3)
 Best Rated Alternative: Sensor Controlled E/W
 (Rating = -2)

Same argument for and against:
 For Goal: Select Light Configuration
 Alternative: All Lights the Same
 Claim FOR: Affordability and Claim AGAINST: Affordability
 For Goal: If EW traffic, no NS traffic
 Alternative: Individual Light Control
 Claim FOR: Safety and Claim AGAINST: Safety
 For Goal: If NS traffic, no EW traffic
 Alternative: Individual Light Control
 Claim FOR: Safety and Claim AGAINST: Safety

Figure 17. Full Verification Report

16 J. BURGE AND D.C. BROWN

5.3 MODIFY RATIONALE

InfoRat allows the user to modify the different DR elements. Figure
18 shows the modification choices.

* Modify Design Rationale *

Choose one of the following:

 1: Modify Requirements
 2: Modify Goals
 3: Modify Alternatives
 4: Modify Arguments

 E: Exit Menu

Figure 18. Modify Rationale Options

For requirements, the user is allowed to add a requirement, delete a
requirement, or change which goals are associated with the requirement.
Goals can either be associated or disassociated with the requirement. If a
requirement is deleted, the delete cascades, i.e. any goals, sub-goals, and
alternatives that only relate to this requirement are also removed.

For goals, the user can add a new goal or modify a goal already in the
system. Allowable modifications for existing goals are adding a sub-goal,
deleting a sub-goal, adding an alternative, removing an alternative, or
selecting an alternative. When an alternative is selected, any alternative for
that goal that may have been selected earlier is deselected to ensure that
only one alternative can be selected for a goal.

For alternatives, the user again has the option of adding a new alternative
or modifying an existing one. For an existing one, the user must first
specify which goal the alternative is for. This is required because an
alternative can apply to more than one goal. The user is then presented with
several options for changing the arguments for and against the alternative.
Figure 19 shows the options for modifying alternatives.

For arguments, the only option is adding additional arguments. When
each modification is made, the user is prompted for a reason for the change.
This provides additional information that can be retrieved by the user as part
of the version history.

REASONING WITH DESIGN RATIONALE 17

* Modify Alternative *

Target Goal: [Select Light Configuration]
Target Alternative: [Mixed Light Types]

Choose one of the following:

 1: Select the Alternative
 2: Add an Argument for the Alternative
 3: Add an Argument against the Alternative
 4: Remove an Argument for/against the Alternative
 5: Change the weight of an Argument for/against the
 Alternative

 E: Exit Menu

Figure 19. Modify Alternative Options

6. Conclusions

InfoRat supports a designer by inferencing over DR to check for
completeness and consistency, as well as other problem indicators. This
augments existing approaches, such as constraint satisfaction, that only
reason about the design. Our work complements the work by Klein and Lee
on reasoning over design rationale.

A predefined vocabulary is provided so that the contents of the
arguments can be used for inferencing. The user can extend this vocabulary
by adding additional arguments that are more design problem specific.
When the user modifies the design rationale, the system prompts them for
modification rationale. This combination of a standard, machine-
interpretable vocabulary and user-supplied rationale allows the design
history to be kept, and enables the system to reason over the rationale.

One drawback to InfoRat is that it does not eliminate the need to
manually enter the DR. This, however, was not the focus of our research.
Ideally, DR capture should be a byproduct of the design process, not a
separate task that creates more work for the designer. One way to make this
process easier is to integrate InfoRat with a design tool.

The target domain for InfoRat is software design. There are several
points in the software design process where InfoRat could obtain
information from software tools. These include the CASE tools used in
software design to capture the initial DR elements, configuration
management tools used to aid in capturing the design history, and problem

18 J. BURGE AND D.C. BROWN

reporting tools used to capture the reasons why the design required
modification as well as what changes were made.

Besides tool integration, future work for InfoRat includes
implementation of the rationale patterns previously described. Also, the
representation needs to be extended to add the abilit y to form “groups’’ of
rationale elements, allowing InfoRat to scale to larger design problems as
well as additional extensions needed to capture possible interactions
between the alternatives. InfoRat also needs to be extended from supporting
the initial high level design stage, as shown in this paper, to supporting
multiple stages in the design process. In addition, more investigation is
needed to see how InfoRat could be used to support teams of designers who
may not agree on the claims for and against the alternatives. The integration
of modification rationale with design rationale also needs attention. Finally,
the user interface needs to be replaced with a Graphical User Interface
(GUI).

The concepts developed in this work, as demonstrated by the InfoRat
system, provide a new and different way of looking at DR use. Intelli gent
reasoning over DR will provide more beneficial use for the collected DR
than just its retrieval and presentation. Such reasoning can provide strategic
guidance for the design process. In addition it can provide a novel way of
checking for design quality, as designs with poor rationale are less li kely to
be of high quality. We believe that this research provides a new view of
how to use Design Rationale whose development has great potential.

Acknowledgements

We would like to thank George Heineman for his discussions about how design rationale

could be used to support the software design process. The first author was supported by

WPI’ s Robert S. Park Fellowship while performing this work.

References

Ball , L., Lambell , N., Ormerod, T., Slavin and S., Mariani, J.: 1999, Representing
Design Rationale to Support Innovative Design Reuse: A Minimalist Approach,
from Proceedings of the 4th Annual Design Research Thinking Symposium, MIT,
May 1999.

Brandish M., Hague, M. and Taleb-Bendiab, A.: 1996, M-LAP: A Machine
Learning Apprentice Agent for Computer Supported Design, AID’96 Machine
Learning in Design Workshop.

Brice, A. and Johns, B.: 1998, Improving process design by improving the design
process, QSL-9002A-WP-001, QuantiSci, October 1998.

REASONING WITH DESIGN RATIONALE 19

Brown, D. C. and Bansal, R.: 1991, Using Design History Systems for Technology
Transfer, in Computer Aided Cooperative Product Development, D. Sriram, R.
Logcher and S. Fukuda, eds., Lecture Notes Series, No. 492, Springer-Verlag,
New York, pp. 544-559.

Chen, A., McGinnis, B., Ullman, D. and Dietterich, T.: 1990, Design History
Knowledge Representation and Its Basic Computer Implementation, The 2nd

International Conference on Design Theory and Methodology, ASME, Chicago,
IL, pp. 175-185.

Conklin, J. and Burgess-Yakemovic, K.: 1995, A Process-Oriented Approach to
Design Rationale, in Design Rationale Concepts, Techniques, and Use, T. Moran
and J. Carroll , (eds), Lawrence Erlbaum Associates, Mahwah, NJ, pp. 293-428.

Filman, R. E. : 1998, Achieving Iliti es, Workshop on Compositional Software
Architectures, Monterey, Cali fornia, Jan. 1998.
http://www.objs.com/workshops/ws9801/papers/paper046.doc.

Fischer, G., Lemke, A., McCall , R. and Morch, A.: 1995, Making Argumentation
Serve Design, in Design Rationale Concepts, Techniques, and Use, T. Moran
and J. Carroll , (eds), Lawrence Erlbaum Associates, pp. 267-294.

Garcia, A., Howard, H. and Stefik, M.: 1993, Active Design Documents: A New
Approach for Supporting Documentation in Preliminary Routine Design, Tech.
Report 82, Stanford Univ. Center for Integrated Facilit y Engineering, Stanford,
CA.

Gogolla, M.: 1998, UML for the Impatient, Research Report 3/98, Universität
Bremen

Gruber, T.: 1990, Model-based Explanation of Design Rationale, in Proceedings of
the AAAI-90 Explanation Workshop, Boston, July 30, 1990.

Karsenty, L.: 1996, An Empirical Evaluation of Design Rationale Documents, in
Proceedings of the Conference on Human Factors in Computing Systems,
Vancouver, BC, April 13-18.

Klein, M.: 1993, DRCS: An Integrated System for Capture of Designs and Their
Rationale, in Artificial Intelli gence in Design ‘92, Gero, J. (ed.), Kluwer
Academic Publishers, pp. 393-412.

Klein, M.: 1997, An Exception Handling Approach to Enhancing Consistency,
Completeness and Correctness in Collaborative Requirements Capture,
Concurrent Engineering Research and Applications, March. 1997.

Lee, J.: 1990, SIBYL: A qualitative design management system. In P.H. Winston
and S. Shellard (eds), Artificial Intelli gence at MIT: Expanding Frontiers,
Cambridge MA: MIT Press, pp. 104-133.

Lee, J.: 1997, Design Rationale Systems: Understanding the Issues, IEEE Expert,
Vol. 12, No. 3, pp. 78-85.

Myers, K., Zumel, N. and Garcia, P.: 1999, Automated Capture of Rationale for the
Detailed Design Process, In Proceedings of the Eleventh National Conference on

20 J. BURGE AND D.C. BROWN

Innovative Applications of Artificial Intelli gence, AAA I Press, Menlo Park, CA,
pp. 876-883.

Peña-Mora, F. and Vadhavkar, S.: 1996, Augmenting design patterns with design
rationale, Artificial Intelli gence for Engineering Design, Analysis and
Manufacturing, 11, Cambridge University Press, pp. 93-108.

Peña-Mora, F., Sriram, D. and Logcher, R.: 1995, Design Rationale for Computer-
Supported Conflict Mitigation, ASCE Journal of Computing in Civil
Engineering, pp. 57-72.

Shipman, F. and McCall , R.: 1996, Integrating different perspectives on design
rationale: Supporting the emergence of design rationale from design
communication, Artificial Intelli gence for Engineering Design, Analysis, and
Manufacturing, 11, Cambridge University Press, pp. 141-154.

Zozayza-Gorostiza, C. and Hendrickson, C.: 1987, An Expert System for Traff ic
Signal Setting Assistance, ASCE Journal of Transportation Engineering,
113(2), pg. 108-126.

CLIPS Reference Manual: 1998, Volume I: Basic Programming Guide, Version
6.10, http://www.ghgcorp.com/clips/download/documentation.

