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1.0  Introduction
It has become obvious in recent years that design systems need, or at lea
benefit from, some type of learning (Duffy 1997). So far the effort to bring lea
ing into design systems has addressed this need in a very specific way. Dev

ers1 have singled outa priori a particular learning target, and have shaped t
design system to acquire data for the learning task. Thus, a developer de
beforehand that the design system would learn how to classify (Reich and Fe
1991); how to rank designs (Murdoch and Ball 1994); that it would develop re
tions between design concepts (Maher and Li 1994); or that it would acq
descriptions that lead to structurally optimal designs. Depending on the
defined learning task, design systems were ‘crafted’ to collect the approp
information to achieve their learning goal.

The learning approach described above responds to two types of dem
formulated by developers and designers:
1. It may be the case that thedesignerneeds design information or designin

information that is otherwise not available, and therefore requests that
information be learned by the design system. Situations of this type are o
encountered when the designer needs to solve optimization problem
which data is hard to acquire and/or process (Figure 1a).

2. As design systems become more complex, thedevelopersbecome those that
are in need of information. If a developer finds it difficult to provide a certa
kind of knowledge when crafting the design system, he/she has the optio
building a learning component into the design system that will acquire
missing knowledge (Figure 1b). The learned knowledge is typically desi
ing knowledge (problem-solving and other design process knowledge)
the design system will use in generating future designs.

1. In this paper we refer to the experts in charge of creating design systems asdevelopers, and to
the experts that create design artifacts in a particular design domain asdesigners.
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Figure 1.Control and use of learning in a design system

In both cases learning is procedural, i.e., it is implemented through pro
dures that always use the same sources of information for learning, and
always geared towards the same type of learning target(s).

What if the designer requires other types of information to be learned? H
can a developer, who realizes that he/she needs to provide the design system
new kinds of design information, redirect the learning component towards
learning targets? The answer lies inre-engineeringthe design system’s learning
procedure so that it can capture new types of training data, and use it to cla
or predict new types of design or design process values.

Another important observation is that in both cases the learning support
human. In the first case the learning component supplies the designer with te
cal design data, whereas in the second case it serves as an acquisition to
information items indicated by the developer.

In this paper we investigate a ‘learning in design’ model that differs subs
tially from previous models. In this work, learning has a strong declarat
dimension, as the sources for the learning information and the learning targe
notbuilt into the learning mechanism. They are specified in a declarative man
and are the result of other reasoning processes in the design system.

This flexibility in instantiating a learning mechanism in various contexts p
vides the challenge of how to leave the control of the learning in the ‘hands
the design system (Figure 1c). We are investigating how a design system ca
the learning towards targets that it selectsitself. To demonstrate the autonomy o
the learning, independent from the designer and developer, we will also show

Designer Developer Designer Developer Designer Developer

Le
ar

ni
ng

co
m

po
ne

nt

Le
ar

ni
ng

co
m

po
ne

nt

Le
ar

ni
ng

co
m

po
ne

nt

Design Design
process

DesignDesign Design
process

Design
process

Learning
target

Learning
target

Learning
target

specifiesspecifies

specifies

specifies

specifies
specifiesused used

used

D
E

S
IG

N
 S

Y
S

T
E

M

D
E

S
IG

N
 S

Y
S

T
E

M

D
E

S
IG

N
 S

Y
S

T
E

M

a) b) c)



is-
eria
are

d the
se of
stem

ily
viron-
gent
high
that

mall
the

ers’,
ask,
not

n the
to
igner

sign
ted
s pre-

ke
on

ssing
the
on-
ents

ke
uires
s or
the proposed learning model enables a design systemto search and find informa-
tion sources that will support the learning processes it has initiated.

To provide a strong motivation for this type of learning we will place our d
cussion in the context of multi-agent design systems (MADS), where the crit
for defining the exact dimensions of learning processes from the beginning
particularly hard to define.

The rest of the paper proceeds by presenting the need for learning, an
nature of design agents and their decision-making. We then discuss the u
expectations, as well as when and how they can be learned. Finally, a sy
called LEAD is presented and experiments with it are discussed.

2.0  Distributed Design

2.1 FROM EVALUATION NEEDS TO LEARNING

As the complexity of design problems that fall into the realm of AI stead
increases, more and more design systems are developed as distributed en
ments, whether as collaborative design systems (Malone 1998), or as multi-a
design systems (Lander 1998). Collaborative design systems operate at the
end of design complexity, and attempt to integrate the work of human experts
contribute to the development of a product. Multi-agent systems focus on s
scale design problems, however with little or no human involvement during
design process.

Both approaches involve considerable integration problems. The ‘design
be they humans or agents, proceed with their individual problem solving t
only to realize at some point that their partial solutions are inconsistent, or do
achieve the desired design requirements. Design expertise is not additive, i
sense that simply the presence ofall the domain design knowledge needed
solve a design problem does not create a skilled ‘designer’, whether this des
is a design team or a multi-agent design system.

Good designing relies, amongst other things, on the ability to relate de
decisions with the rest of the design, both temporally and spatially. Isola
design takes an immediate perspective, where a decision can be adopted if it
conditions are met atthe current time pointby the information available inthe
limited design contextof a given designer. In contrast, skilled designers often ta
a decision before all the underlying information becomes available, by relying
good (perhaps heuristic) evaluation mechanisms to compensate for the mi
information. They are able to look at the impact of the decision further “down
road”, and to rule out decision options that may fail. They are also able to c
sider the ramifications of the preconditions of the decision, and look at elem
from the global design environment that may cause the decision to fail.

Clearly, all the skills outlined above rely on some kind of evaluation. To ta
decisions early, before all the components of the decision are confirmed, req
consideration of these missing components. To weigh the potential problem
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benefits of a decision, one needs to evaluate the impact of the decision by pre
ing the values with which the decision may come in conflict, or by predicting
goals that it may ‘serve’. Experts resort to the integration of preliminary eval
tions made with partial data into the decision-making heuristic. This enhanc
decision’s sensitivity to the larger design context,

The ability to evaluate can be learned. In this learning task the learning ta
is the object of the evaluation. Consider, for example, the need to evaluate
area of a chair seat during chair design before the parameter values that defi
area have been decided. The designer has to identify the design or design p
elements available at that particular point on which to base the evaluation.

Will the chair seat be supported by one central foot, by three, or by four le
Will the seat be curved or flat? Will the seat be made of wood, plastic or me
Does the maximal cost of the chair have an impact on the surface of the sea
these factors, once pruned to a relevant set, will represent potential indicator
might be used to predict the seat area. An experienced designer will know ho
quickly acquire representative values for these indicators, allowing him/he
make good predictions for the chair seat area early in the design process.

Little in a designproblemindicates that there will be a need to evaluate t
area of a chair seat. This need will become clear only after repeated design
sions. Therefore, the need for a learning component in the design system, ca
of handling this type of evaluation, will arise from thedesigning process,i.e.,
only after the developers have completed the design system.

How does this analysis relate to the discussion of the learning approach
the first section? First of all, as the next section will point out in more det
learning clearly becomes an integration tool in a distributed design system,
this remains true whether the system is a collaborative design environment
multi-agent design system. Distribution eliminates the presence of a comp
global image of the design, and it also abolishes the single designing perspe
Evaluation and learning become tools to regain some of the advantages lost
fragmentation of designing.

Since we are interested in design systems that are completely autonomo
their design task, we will restrict our further discussion to multi-agent syste
Under this assumption it is clear that the type of learning we are looking a
intended to support the design system itself. The learning component neither
vides additional design information to an external designer, nor does it dire
respond to developers’pre-specifiedknowledge insertion goal through learning
The essential elements of the learning process are to be determined by the a
themselves:what to learn about,whereto look for supporting information, and
when to initiate a learning process in the first place.

2.2 THE DESIGN AGENT WORLD

Consider a multi-agent system for basic chair design. Agents are in charg
various aspects of designing, such as seat design, backrest design, frame d
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and assessment based on ergonomic and cost criteria. Design agents havespecial-
izedknowledge about the problem domain in which they operate. Based on
tasks they execute,agent functionalitiesinclude decision-makingabout the
design components (e.g., seat, backrest and frame), andcritiquing of design
aspects (e.g., ergonomics and cost).

Within its ‘society’ an agent may know about the roles or specializations
the agents with which it interacts, about when to act, how to communicate,
how to solve conflicts with other agents. However, it is not realistic to expec
agent to be able to anticipate or to compute the behavior of all the other agen
the system (Cherniak 1986; Russell and Wefald 1991).

We would like to have a system where design agents base their decision
all the knowledge that is available in the design system, and where they know
possible consequences ofeverypotential decision. The utilities associated wit
these consequences would drive the decision selection, and would allow age
precisely respond to design goals (Figure 2).

Figure 2.Agent decision-making in design
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In reality agents have only limited information about how other agents op
ate, about their knowledge, and their internal reasoning strategies. Furtherm
agents typically see only the part of the design covered by their domain com
tence. As a result, agents base their decisions on the knowledge theyhave, and
not on the knowledge that is available in the system. After a decision has b
taken an agent maysometimesknow someof the consequences of a decision
has made, but it cannot know or compute all the consequences of its decis
Decision making and decision analysis require some means to compensa
information that is not available at that point or cannot be deduced.

The difference between the “ideal” and the “real” setting in a multi-age
design system calls for the support of learning to acquire knowledge that ca
helpful in the design process. This knowledge is inherently heuristic, sinc
results from design experience. Human designers perceive the need to
delimit the learning setting, and accumulate observations with considerable
Neither of these skills is a trivial task for a design agent. We now describ
model that implements precisely these features into a design agent.

3.0  Expectations in Design

3.1 USING EXPECTATIONS IN DESIGN

Expectations are a form of empirically derived knowledge that compensate
the absence of deductively derived knowledge. Expectations express the b
that an event will happen, and describe the circumstances or conditions u
which that event will happen. They are typically created because lim
resources, such as time or information, prevent the holder of the expectation
establishing a proven causal relationship between the set of conditions an
ensuing situation.

In a multi-agent design system, expectations represent the knowledg
agents that events will occur in a pre-defined way: for example, that de
parameters will be within specific ranges, that responses from other agents
arrive within a given amount of time, or that decisions will lead to given o
comes. Figure 3 shows an example of an expectation, expressed as a rule
conditions for the cost expectation include conditions related to the design an
the design agents.

Expectations are precisely the form of knowledge one would like to h
when a decision needs to be taken, and some of the pre-conditions for that
sion have not yet been confirmed. Alternatively, one might use expectation
determine the consequences of a decision. For example, an agent might u
expectation, such as the one described in figure 3, when deciding the frame
rial for a chair to make sure that a cost constraint will not be violated.
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Figure 3.Design expectation example

Expectations are of particular benefit in a multi-agent system where ag
would be otherwise isolated in their own domain niches. There are two aspec
expectations that makes them particularly appealing. First, from the point of v
of their contents, they tend to combine information from outside of an age
own realm. Expectations are typically formed in an area where an agent doe
have the ability to reason in detail. Second, expectations are always genera
response to an information need. This guarantees that a learning process ba
expectations can be confined within semantically meaningful limits, and th
will not attempt to acquire information that is questionable from the point of vi
of its usability.

3.2 LEARNING EXPECTATIONS

3.2.1  Human learning
The task of acquiring expectations is not as intuitive as are the possibilities
their use. From the very beginning we should make a clear distinction betw
learning expectationsand learning from expectation violations. The latter is a
topic which has been investigated in some well-known models, such as the
corla-Wagner psychological theory (1972) that states that “organisms only l
when events violate expectations,” and in Roger Schank’s model of dyna
memory (1984) that contends that expectation failures prompt humans to m
rize new information, and describes how expectations can be revised thr
explanation processes.

There is considerably less work that attempts to explain how expectation
acquired in the first place. In psychological research, the speed with which ex

IF
     The frame material is aluminum
     The seat is covered in leather
     There is no cost agent present

THEN
     The chair price will exceed $100

conditions
design information

design agent information

assertion
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tations are generated and applied by humans has led to the conclusion th
process of expectation formation and use is not highly deliberative. Resear
this direction has proven very difficult since subjects “while engaging in inter
tion, typically are not aware of how expectation states are formed, what state
formed, or how these states are transformed into behavior” (Berger et al. 19

Expectations have been strongly tied to the ability to work in teams. Witt
baum et al. (1996) describe how working groups develop a tacit coordina
through “the synchronization of the members’ actions based on unspo
assumptions about what others in the group are likely to do” (p. 129). T
research shows that expectations refer to a task domain, including the step
are part of the task, the goals that are pursued, and the quality criteria. They
refer to the participants in the task, the decisions they take, and the circumsta
under which they act or react. One of the important conclusions they draw is
expectations are developed based on carefully selected cues, and are not s
associations between any factors that might correlate with the target of the ex
tation.

Expectation learning requires the identification of theconditionsthat predict
values for the object on which the expectation focuses, i.e., thetarget of the
expectation. Statements that assign values or ranges to the target are calledsser-
tions. Expectation learning amounts to a ‘causal reasoning’ process – a searc
the conditions that might influence the assertion. Recent research in unders
ing the mechanisms that underlie causal reasoning has identified two m
stages within this process: the use of causal mechanisms to delimit a set ofcandi-
date conditions, and the use of covariational principles to extract from the can
date conditions the subset that isrelevantfor predicting the assertion (Koslowsk
1996).

The causal mechanisms involved in the first stage of the expectation lear
process play a fundamental role in focusing the learning process. A pure cov
tional process would be simply overwhelmed by the number of influence fac
it would have to consider. It has been argued that people rely only on statis
associations to identify causes and explain events, and deviations from
behavior were regarded as cognitive biases (Tversky and Kahneman 197
significant body of evidence indicates that this is the case only when any o
evidence or information is lacking. However, domain experts tend to go throu
causal attribution stage in which they use domain specific knowledge to re
about possible causes for an event, prior to proceeding to a do correlation a
sis between the variations in the conditions and the variation of the expecta
assertion (Hilton 1990; Koslowski 1996; Shultz et al. 1986).

3.2.2  When do agents acquire expectations
We first have to decidewhena design agent is going to initiate an expectatio
learning process. Our approach is to have design agents learn in respons
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repeated, specific need for information during designing. This need for infor
tion is defined in a domain-independent manner, and can fall into one of the
lowing categories: a) Preparing the information for a design decision;
Assessing the impact of a design decision.

a) Preparing the information for a design decision
Design agent decisions are based on information expressed as precond

If the design decision has to be taken before all the information needed to e
ate the preconditions is available, the design agent will use expectations to
plete the information.

Examples of situations that require or could benefit from the use of expe
tions as substitutes for precondition information are:
1. The agent is required to provide a decision within a given time.
2. The decision-making information built into the agents is cyclic, and theref

one of the agents has to make a decision before all the needed precond
are satisfied by information in the design environment.

3. Since the order of decisions influences the design and the design proces
ing a decision earlier can benefit other agents that rely on the informa
resulting from the decision.

The range of situations is not limited to the ones presented above. Each of
situations in turn requires some comment.

• The first situation occurs if there is a partial ordering of the actions of des
agents which is reflected in a design plan. In such cases, agents ma
required to complete a task before another agent can proceed, and, if pos
will have to substitute for missing information.

• The second situation can be avoided only if a formal verification process
secure that there are no circular dependencies between the knowledge
MADS agents. Such techniques are difficult to implement over an agent
Circular dependencies typically occur because of design constraints that
several agents, and removing them amounts to a constraint problem-so
task across agents. If none of the agents uses an evaluation, it is possibl
the design agents will make decisions which result in conflicts. Alternativ
MADS developers can compile out the circular dependencies by introdu
estimates. However, this approach is subject to the types of limitations
cussed in the first part of the paper.

• The use of expectations in this third case can significantly enhance the r
of options that are available in terms of the configuring the overall design p
cess. However, the expectation has to be a reliable substitute for the a
information lest its use actually represents an impediment to the design
cess.
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a) Assessing the impact of a design decision
Design agents evaluate the consequences of their decisions by inferring a

as to whether the decision value will satisfy constraints or support goals. In d
so, it is likely that some of the information required in the inference process is
yet available, and therefore the agent will attempt to substitute for it with
expectation.

Imagine the frame design agent, in our chair design problem, making a d
sion about the frame material. Before committing to the design decision the a
may verify whether the decision will satisfy cost constraints. Therefore it w
need to know the conditions that influence the cost, and the specific correla
between the values for the determined conditions and the cost ranges. An e
tation such as the one described in Figure 3 could be critical in validating
agent’s decision before all the cost components are known. Alternatively,
frame design agent may take a decision which is perfectly valid at that point,
will be used by other agents, only to be later invalidated in a cost analysis
cess.

3.2.3  How agents acquire expectations
Once an agent decides to acquire an expectation it initiates a learning pro
The agent knows the expectation target at this point, and will try: a) to iden
features or conditions in the design environment that influence the expect
target, and b) to determine the conditionvaluesthat predict given target values o
ranges.

Accordingly, the design agent implements two-stage expectation lear
(Figure 4). In the first stage,causal attribution, the agent uses causal mech
nisms to select candidate conditions from the external world and from its o
domain-specific knowledge that, in some combination, might affect the expe
tion target. Subsequently, these conditions are submitted to acovariational anal-
ysis to select the candidaterelevant conditions, i.e., the subset impacting th
target. In the process of covariational analysis the agent also determines the
cific expectation values that predict target values.

a) Causal attribution
The determination of plausible causes for the modification of a design

ment is typically a domain dependent process. While some of the knowle
used in causal attribution is social knowledge about group processes, a con
able amount of knowledge is rooted in the specific design domain of the MA

Causal attribution is a decomposition and propagation process from the t
to features in the design domain or in the designing process that are known a
point when the expectation learning process is initiated. The process of ca
attribution is iterated on these features, until the propagation reaches feature
are known at the moment when the expectation is needed. The knowledge
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supports the causal attribution process may ‘cross’ from features into the de
domain to features in the designing process, or vice versa.

Figure 4.Expectation learning

Below we present examples of knowledge categories that we believe t
suitable for causal attribution in design problems. The use of specific type
knowledge depends on the knowledge representation, and on the reasonin
cesses implemented in the MADS.

1. Structural design knowledgesupports the decomposition of causal attrib
tion based on structural criteria. For example, if the target of the expectatio
the weight of a chair, and the chair is composed of a frame, a backrest, and a
the causal attribution process will focus on these three design features as po
conditions for the expectation. The decision to proceed depends on whethe
features are known at the point where the expectation is needed.

2. Design features that share design constraintswith the expectation target
provide candidates for the expectation condition since the modification of
constraint components is likely impact the target values.

3. Representations of dependencies, if available, provide a rapid method to
elicit features influencing an expectation target. Belief net structures and in
ence diagrams explicitly introduce design features that are causally connect
the expectation target.

4. Task decompositionis useful in cases where an explicit task representat
is available within the MADS, and when tasks result in the computation of des
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features. Once a task is known to impact a design feature, the causal attrib
process needs to identify the design elements that underlie the computation
ried out by the task.

5. Agent domainsprovide another means to relate an expectation target w
the agents’ tasks or actions.Agent functionalities, when known to be relevant for
deciding or agreeing on the value of the expectation target, can be used eith
further look into their actions, or simply to relate the target value with th
involvement in the design process (see example in Figure 3).

Overall, there is no universal set of knowledge entities to serve as a bas
the causal attribution process. In this respect, the learning becomes depend
the domain and functionality of the MADS, and needs to be supported during
development process. Since a some of the knowledge involved in causal at
tion refers to the knowledge of the MADS itself, and is meta-knowledge, it of
needs to be provided by the developer or there needs to be a capability to m
tain and update this knowledge during the design process.

b) Covariational analysis
The covariational analysis is an inductive learning stage in which expe

tions are seen as concepts. The expectation conditions are the concept fea
while the ranges for the expectation target values, such as the weight rang
the chair in the previous example, represent the concept classes. The indu
learning algorithm learns a representation for the concept that will predict
class (range) of the expectation target from the values of the features identifi
expectation conditions.

We should remember at this point that in the previous stage the design a
has identified a set ofcandidateconditions that it feels are relevant. This mean
that some of the conditions may not influence the expectation target at all. O
conditions may be redundant, and therefore can the pruned. Hence, the task
covariational analysis is to determine a minimal subset of conditions that yie
sufficiently accurate prediction of the expectation target,and to learn the condi-
tion values that help make the classification of the target into ranges or cla
(e.g., the price exceeds $100).

3.2.4  How agents validate expectations
Expectations are set up empirically, and therefore some validation proce
required before using them. During the validation process an expectation is
to make predictions wherever the expectation assertion is needed. Given th
use of the expectation may actually alter the designing process, the validati
carried out in two phases.

In a first phase the expectation is used for predictions at the moment whe
is needed, however, designing proceeds as if the expectation had not been
able. The value that was predicted by the expectation is then compared wit
final value resulting from the design process. If the expectation is violated, tha
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if the resulting value does not match the predicted assertion, the agent nee
review the expectation. We call this phasecontextual validation, since the expec-
tation is validated in a designing context similar to the one where the need fo
expectation was identified.

In a second phase, the expectation is not only used to make a prediction,
is actually used in the design process. Again, the expected value is compared
the final value resulting from the design process. We call this phasesemantic val-
idation, since it proves the validity of the expectation in a wider context, that m
have been modified by the use of the expectation itself.

Figure 5 illustrates how an expectation is reviewed if it does not match
outcome of the design process. However, the process is generic and gets a
differently depending on the phase where the expectation is rejected.

If the expectation is rejected in the first phase, contextual validation, the a
will collect additional training data from both the cases where the expecta
succeeds (positive training instances), and where it fails to predict the value o
target resulting from the design (negative training instances). The con
description of the expectation is updated with the new training data. This
phase is again followed by the semantic validation process.

Figure 5.Expectation validation

If the expectation fails in the semantic validation phase, the agent procee
collect training cases from situations where the expectation is actuallyused.
These training cases are added to the initial ones, where the expectation
learned without being used, and thus the expectation will cover both types o
uations.

In both cases, the review process can be repeated for a pre-defined num
times. If the expectation does not reach a stable state, where no recent ch
have been made, the agent will drop the expectation.
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Several causes can prevent an expectation from being accepted. The c
mechanisms can lack sufficient coverage, preventing the inclusion of impo
discriminating conditions in the candidate set. Another possibility stems from
fact that several expectation learning processes can proceed simultaneou
several of the agents, thus changing their decisions and their behavior. If on
the changing elements associated with an agent is included among the cond
of an expectation that is developed by another agent, it is likely that this expe
tion will take a longer time to ‘stabilize’, or may lead to it being eliminated.

4.0  The LEAD System
LEAD is a system forLearningExpectations inAgent-basedDesign that was
developed based on the framework described above and implemented in C
(Giarratano and Riley 1998). In LEAD, agents act as design specialists an
group members. There are no agent hierarchies or relations between the a
that create rigid ‘links’ between them. However, the types of interactions betw
agents are predetermined, and they essentially represent the rules that cre
group behavior. The interactions result dynamically, at run-time, and originat
the problem the system attempts to solve. The agents have complete autono
organizing their actions, with regard to the decisions they take as design spe
ists, or to their interactions with the rest of the group.

The agent model has evolved from the Single Function Agent (SiFA) pa
digm (Dunskus et al. 1995), and includes specialized, knowledge-based d
agents with precise functionality. Each agent has a predefined function in
design process. The agent types currently implemented in LEAD are:

- Designers: agents that are responsible for taking design decisions, suc
selecting values for design parameters, or creating links between design co
nents in a configuration process.

- Critics: agents that criticize design aspects, such as design parameter va
or weak properties of component configurations. Beyond revealing undesir
properties of the design, critics may point out constraints or quality requirem
that are not met by the design aspect on which they focus.

- Praisers: agents that praise design aspects which rate particularly hig
from a given point of view. Positive evaluations are important when design
have to decide which parts of the design need to be revised and which
should preferably remain unchanged.

The agent function types are not necessarily limited to those described.
final application domain and the scale of the multi-agent system are the fa
that ultimately decide the agent types to be included in the system.

All design agents have a restricted domain, the set of design elements th
the object of an agent's functionality. In parametric design problems, an ag
domain can be as narrow as a single design parameter. Several agents, of v
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functionalities, can have overlapping domains. For example, the material f
component can be decided by a designer agent, and criticized by a cost crit

Learning in LEAD is supported by two different components:
1) Thecausal attribution componentidentifies candidate conditions that ma

influence the expectation target. The primary body of knowledge underlying
causal attribution process is a model of the artefact being designed, inclu
structural relationships, and function-structure relationships, describing the c
binations of design parameters that help achieve specific functions, such as
support, stability, comfort etcetera in the example chair domain. The causal
bution knowledge also includes a description of the association between de
parameters and agents. This allows LEAD to relate agent actions (e.g. dec
critique, request, conflict etc.) with the variation of a specific design paramet

2) Thecovariational analysis componentuses wrappers for relevant cond
tion selection. Wrappers (Kohavi and John 1998; Liu and Setiono 1998) appl
induction algorithm to a training data set. The experiments are run by elimina
different sets of features from the training data instances. Specifically, wrap
eliminate conditions from the candidate condition set.

The wrapper method proposes a subset of features that are relevant fo
identification of a given class. Features are considered relevant if their “va
vary systemically with category membership” (Gennari, Langley, and Fis
1989), in our case, with the ranges of the expectation target. For this purpos
wrapper maintains several subsets of candidate features. An accuracy te
component determines the performance of each subset, and eliminates or
new subsets of features, by providing information to a feature selector.

Wrappers have the major advantage of being able to work with differ
learning algorithms, as long as the algorithms have the same interface. They
also been proven to be effective in pruning large initial sets of features (Koh
and John 1998). Therefore, even if the agent does not have a strong set of c
mechanisms for setting up a new expectation and producing a small set of c
date conditions, the wrapper technique can partially compensate for this w
ness. LEAD uses the MLC++ wrapper developed by SGI (1996).

5.0  A Design Problem
LEAD is currently applied to and tested using a parametric chair design prob
The reason for choosing this application domain is that besides the struc
design issues, there are a considerable number of global constraints, which
not be individually covered by any of the agents. These constraints stem pr
rily from the posture requirements for the human body, and from the use of
chair in conjunction with other furniture (table, desk, operator console etc.)
different functions: such as resting, writing, reading, manipulating controls, e

For example, Figure 6a indicates the relationship between optimum ma
control areas and the angle of the backrest. Figure 6b shows the weight dis
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tion for a particular angle of the backrest and seat position. This illustrates
structural computations can be strongly influenced by the type of activity p
formed by the person in the chair.

Figure 6.a) Optimum manual control areas in relation to angle of backrest;
b) Distribution of body weight on the universal test seat

for a given seat position and backrest angle (McCormick 1964)

Even for basic chairs, the requirements generated by the need to confo
the human body are complex, and vary depending on the height and age o
person. Designers try to respond to different categories of users and custo
Therefore they use different constraints and different computational method
compute the chair’s parameters for different users.

Ergonomic criteria relate these parameters to ensure basic standard
healthy seating. For example, one criterion restricts the amount of pressure
can be applied directly through the bones. This constraint includes the
height, a chair frame parameter, as a person that has no support through the
will have a higher percentage of his/her body weight supported by the seat.

It further depends on the angle between the backrest and the seat, also a
parameter, as a closed angle raises the upper body to a vertical position
increases pressure on the bones. The pressure can be reduced by the dec
use a lumbar support–a backrest parameter. The use of a padded seat, may
reduce the direct bone pressure.

This type of analysis illustrates some of the overarching constraints that c
acterize the chair design problem. Hence the agents’ have an opportunity to
use of expectations to compensate for the part of the constraint that is ‘invis
to them and is handled by other agents.

6.0  Experiments with LEAD
For our design learning experiments we use a set of five agents: a seat d
agent, a backrest design agent, a frame design agent, an ergonomic critic,
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cost critic. The learning mechanisms are implemented only in the desig
agents, since they are the only decision-making agents in LEAD.

To illustrate the system we will discuss an example of expectation learn
extracted from LEAD. The example describes the acquisition of an expecta
that is acquired in order to evaluate the consequences of a decision.

The ergonomic critic determines that the distance between the front sid
the seat and the backrest is too large (Figure 7). This may have two cause
depth of the seat (s_depth) is too large, or the distance between the back end
the seat and the seat reference is too large (s_pos).

Thes_depthparameter is decided by the seat designer, thes_posparameter is
determined by the frame designer. It can be assumed that, since both agent
released these parameter values, they do not violate any of their individual de
constraints.

Figure 7.Schematic representation of chair parameters

The ergonomic critic will also make available the maximal allowed range
the distance between the front of the seat and the seat reference (17 in.). Bas
this information the seat designer decides to acquire an expectation about th
tance between the back end of the seat and the seat reference (s_pos).

The frame design agent’s preconditions are such that it will decide the pa
eterss_posandbr_pos(the analogous parameter for the backrest) only after
backrest and seat design are completed. Therefore, at the point where it de
s_depth, the seat designer cannot verify whether the constraint will be viola
Hence an expectation would be useful.

Once the critique is posted, the design progresses through a conflict re
tion process, implemented as a relaxation of the decision taken by one of the
agents: in this case the seat designer. However, this is a solution only for tha
ticular design session, and the situation willre-occurevery time the design con-
text repeats itself.

s_height

s_depth

s_pos

br_height

br_pos

seat reference

br_thick
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After a preset number of violations of the constraint, the seat designer
initiate an expectation learning process fors_pos. The expectation will be used
every time the agent has to make a decision fors_depth, and before posting it in
the design system.

Alternatively, the seat designer might request an estimate fors_posfrom the
backrest designer. Since the backrest designer does not have the necessary
mation to carry out the computation (not necessarily only because of the
designer), it will need in turn to substitute for the missing information throu
expectation learning.

This would transform the expectation learning of the seat designer for
purpose of evaluating theconsequencesof a decision into an expectation learnin
process of the backrest designer for the purpose of providing information fo
early decision.

In the causal attribution phase the seat designer uses the design mode
the design constraints to determine a set of candidate conditions that may im
the range ofs_pos.The values ofs_posare discretized in ranges of 0.5 in, an
each range will represent a class for the expectation targets_pos.Figure 8 illus-
trates the five candidate condition identified by the seat designer:

Figure 8.Candidate conditions for the expectation target identified through the cau
attribution process (NA = not available)

The first three parameters are decided by the backrest agent, which ha
ceded the seat agent in the design process, and are therefore known. The la
parameters will be decided by the frame designer and are unavailable a
point.

The seat designer will attempt to further the causal attribution process fo
two unavailable parameters. The only available information that it has to cont
this process is a constraint that relates the height of the useru_heightwith
s_pos+s_depth+s_height, and therefore the agent conjectures that the heigh

position of
seat (s_pos)

position of
backrest (br_pos)

height of
backrest (h_pos)

thickness of
backrest (br_thick)

height of
seat (s_height)

angle btw
seat & backrest

(a_seat_br)

height of
user (u_height)

NA
NA

Expectation
target
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the user may causally influence the height of the seat. At the end of the ca
attribution process the four candidate condition that will be subject to cova
tional analysis arebr_pos, h_pos, br_thick, andu_height.

Once a learning process is started LEAD is run through a set of similar de
problems to the one which has generated the expectation learning. For
design session, the agent will acquire the values of the candidate conditionsat the
point where it would need to use the expectation, and the value of the expectation
targetafter the design session has completed. Each data set represents a trainin
instance that will be used by the machine learning component included in
wrapper.

The LEAD wrapper component selects two conditions as part of the expe
tion condition set, the thickness of the backrest (br_thick), and the height of the
user (u_height), as the subset of conditions that yields the highest predict
accuracy (in this case 93%). It should be noted, however, that the set of co
tions is not accepted as valid if the prediction accuracy does not satisfy a min
threshold determined by the developer at system design time.

7.0  Discussion and Conclusions
Clearly the approach we have introduced here needs to be validated in se
respects. For example, given that the frame designer will proceed after the
designer, it is possible that the frame designer agent will change its dec
abouts_posbased on the new values fors_depthproposed by the seat designe
This situation can be compensated for in the second validation phase (sem
validation) when the seat designer would validate the expectation with train
instances collected after the expectation was used.

What happens if the expectation is invalidated in a design process wher
expectation is used? Besides being used as a negative training instance for
ing, the design agent implementation can retract the facts that were gene
based on that expectation, and resume the design process without usin
expectation.

Expectations summarize behaviors that are not explicitly represented
where else in the system, or at least are not available to the agent. Given
empirical status, expectations need to be evaluated primarily from the poin
view of the quality of the design. This requires additional test runs, and verifi
tion on problems that differ in requirements. Although the learning process a
ciated with an expectation stops after the validation has been successfu
agent needs to maintain the tentative character of the acquired knowledge, a
able to further verify its validity and revise its status if required.

Expectations are a vital component of a large high-quality design system
the need for them cannot be completely determined in advance, they mu
learned when a need is detected. Causal attribution and covariational ana
combine to provide a powerful technique for the formation of expectations.
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