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Abstract. We present a comparative study of two popular implemen-
tations that make the mpi available on matlab—matlabmpi and mpi-tb.
We evaluate their performance through micro-benchmarks on a high-
performance Linux cluster and compare those to their corresponding
implementations on Octave1 as well as to the lam-mpi library accessed
through a C api. We have discovered that there are significant perfor-
mance advantages to using an implementation of the MPI that utilizes
highly tuned libraries built for high-speed interconnects, such as the
Myrinet. However, a price must be paid in terms of higher installation
and setup times and a more complicated api.
We conclude that even though there are advantages to using the mpi

within a high-level scripting language, such as matlab or Octave, there
are important philosophical differences between the programming models
of scripting languages and a relatively low-level communication library
interface, such as the mpi. This points to the need for a more sophis-
ticated long-term support for parallel programming from the language
compiler and runtime system.

1 Introduction

Productivity in high-end application development is increasingly considered a
critical issue [1]. A very effective way to improve programming productivity is
to enable users to write in high-level languages, which may be domain-specific.
To be usable these high-level languages should afford the abstractions that the
users need. Matlab is one such language and its popularity among scientists
and engineers is an evidence of the attraction of high-level languages for scientific
computing.

Unfortunately, these language systems suffer from unacceptably high perfor-
mance overheads. One way to ameliorate the performance problem is to paral-
lelize the applications. High-performance distributed-memory clusters are among
the most popular architectures for parallel machines today and the Message
Passing Interface (mpi) is, perhaps, the most popular message passing standard

1 Octave is an open source version of matlab. Matlabmpi has originally been released
only for matlab. With apologies to Jeremy Kepner, we call our port of it to Octave,
“octavempi.”
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that is used to write programs for such machines. Matlabmpi and mpi-tb are
two open source efforts that make the mpi available to matlab (and Octave)
programmers [2–4].

These mpi implementations also serve to enable the language environments
of matlab or Octave for prototype development of high-performance parallel
libraries. Parallel algorithms can often be widely different from single-processor
algorithms. The availability of an interface into a message passing library can aid
the development and testing of such parallel algorithms before these are even-
tually translated, automatically or manually, into a lower-level language. Such a
lowering of the language-level can serve as a pragmatic way to improve the scalar
performance of parallel algorithms while allowing developers to carefully craft
the communication optimizations for their algorithms. This may be particularly
important for library developers who want to retain a finer control over their
optimizations than an automatically parallelizing system would afford.

In this paper we report the results of a comparative performance analysis of
matlabmpi and mpi-tb using a suite of micro-benchmarks. The purpose of this
analysis was to characterize these two implementations of the mpi, which may
help in estimating the expected performance of a parallel matlab or Octave
program on a modern distributed-memory parallel machine. A secondary objec-
tive was to informally judge the ease of use of these implementations and to
evaluate how well each integrated with the high-level scripting language model
of matlab or Octave. To the best of our knowledge no such study of a direct
comparison of the two popular mpi implementations for matlab has ever been
published2.

For the remainder of this paper, unless otherwise stated, the phrase “matlab

program” should be construed as a program that may be executed on either the
matlab or the Octave language system.

2 MPI on MATLAB and Octave

2.1 MPI

The Message Passing Interface (mpi) is a standardized library specification for
distributed memory programming [6]. The standard comes in two primary sec-
tions: mpi-1 and mpi-2. The mpi-1 specification defines much of the basic func-
tionality including point-to-point, and collective operations. The mpi-2 specifica-
tion builds upon the mpi-1 specification adding features such as dynamic process
creation, and one-sided communication. There are many implementations of the
mpi standard which are widely available, the most popular of which include
mpich and lam-mpi.

2 We are aware of a preliminary study undertaken at the Ohio-State University to com-
pare matlabmpi and a home-grown version of a matlab api to a subset of mpich [5].
However, we are not aware of any further work on that study or publication of those
results.



Mpi has become the most widely used library for programming in distributed
memory environments. The abstraction from many of the complexities of parallel
hardware allow for portability of code between different machines, interconnec-
tion networks, and mpi implementations without changing the original source
code. The encapsulation of common parallel algorithms such as reduction, bar-
rier, and broadcast allow application programmers the ability to wield powerful
collective operations in single function calls. The mpi standard supports lan-
guage bindings for C, Fortran, and C++. There have also been proposals for
Java, and matlab language bindings.

2.2 MatlabMPI

Matlabmpi, created by Jeremy Kepner of the Lincoln Laboratory at the Mas-
sachusetts Institute of Technology, provides a set of matlab scripts which im-
plement several mpi primitives [2].

The scripts implement a subset of mpi-1 operations by utilizing a shared nfs

mount for data distribution and by issuing remote commands through secure
shell (SSH). The coverage includes functions to initialize, run, send, receive,
probe, broadcast, finalize, and abort as well as functions to discover the process’s
rank and the number of processes running. Notably, however, the functionality
includes neither the asynchronous communication primitive nor any commonly
used collective operations, such as Alltoall or Reduce, with the exception of
Bcast. However, Probe is supported.

2.3 OctaveMPI

Octave is a GNU-licensed integrated environment similar to matlab developed
chiefly by John Eaton at University of Wisconsin. A stated goal of Octave is to
be compatible with matlab.

Octavempi is the name given to our port of matlabmpi to Octave. Even though
Octave is largely compatible with matlab differences remain, primarily in the
availability of library operations (Octave supports much fewer than matlab).
There was only a moderate amount of effort involved in the porting owing mainly
to these differences in the library coverage.

2.4 MPI Toolbox for MATLAB and Octave

Mpi Toolbox for matlab, created by Javier Fernández Baldomero from the
Department of Computer Architecture and Technology at the University of
Granada, provides an interface to more advanced mpi-1 and mpi-2 primitives [3,
4].

The mpi Toolbox, called mpi-tb, is built upon lam-mpi, and provides mat-

lab function wrappers around much of the mpi implementation providing the
matlab user access to a much broader subset of mpi primitives than matlabmpi.
Mpi-tb has the ability to take advantage of different interconnection networks,
limited only by the capabilities of the underlying mpi implementation.

A version of the toolbox is also available for Octave.



3 Experimental Setup

3.1 Hardware and Software Platform

We chose a distributed-memory cluster to run our experiments, not only be-
cause it is a popular configuration for high-performance parallel machines, but
also because the mpi was designed primarily with such machines in mind. Even
though there are mpi implementations that are optimized for shared-memory,
there are often other more attractive programming alternatives available for
shared-memory machines when a choice is possible.

Lam-mpi was selected as the mpi implementation to use because mpi-tb is
designed to work with lam-mpi. While there is nothing in mpi-tb that inherently
depends on a particular implementation of the mpi we chose to use the one that
works with least amount of configuration effort.

Matlabmpi uses the Network File System (nfs) for communication. However,
to achieve reasonable performance the nfs parameters must be tweaked from
their default values.

Table 1 summarizes the hardware and software platform used for the exper-
iments. Each experiment was run at least 30 times and we report the means, as
well as the ranges in the observed data, wherever relevant.

Table 1. Details of the experimental platform

Platform Details

Machine cluster of 8 nodes, 4 CPUs per node (only one used),
Intel Xeon 2.5 GHz, 2GB RAM, 0.5 MB cache

Operating System Linux kernel 2.6.11 (gentoo) with SMP support

Matlab version 7.0.1 (R14), invoked with Java disabled

Octave version 2.1.71

MatlabMPI version 1.2

MPI-TB unknown version (only one release so far)

LAM-MPI version 7.1.1, compiled with GCC version 3.3, using
the TCP RPI

NFS ext3 filesystem locally, mounted remotely with the op-
tions rw, sync, acdirmin=0.1, hard, intr, rsize=8192,
wsize=8192, nfsvers=2, udp

Interconnect Gigabit Ethernet (GigE)



3.2 Baseline

Our goal is to compare the performance of matlabmpi and mpi-tb. However, in
order to give these results more perspective, we used C with mpi as a baseline.
This provides a practical upper-bound on the performance of the communication
library.

3.3 Micro-benchmarks

We created micro-benchmarks in order to test the performance of basic elements
of the various approaches. These benchmarks focus on the communication as-
pects of the systems; computational micro-benchmarks are irrelevant since both
matlabmpi and the mpi-tb use matlab’s core for computation.

Latency is a key element of communication. We computed this by using a
simple ping-pong test, and measuring the round-trip time. Dividing that value
in half determines the one-way latency between two processors.

For many applications where latency hiding approaches are applicable, band-
width becomes the factor that determines the parallel efficiency. Bandwidth was
estimated by measuring the point-to-point round trip time for a piece of data
and dividing the amount of data sent by half the round-trip time. We varied the
message sizes to measure the variation of achievable bandwidth with data size.

Additionally, we timed how quickly a node could broadcast a value to the
other nodes in the system. Broadcasts facilitate the sharing of information, which
many algorithms rely upon. Therefore, it is valuable to see the performance of
the primitive.

Unfortunately, matlabmpi lacks support for other popular collective opera-
tions, such as Alltoall and Reduce, therefore no comparative study could be
carried out for these operations.

All the above tests were conducted over Gigabit Ethernet (GigE) interface.
Even though our cluster has Myrinet, Infiniband, and Quadrics interconnects,
the software systems relevant to this paper have very limited or non-existent
support for these interfaces. Our hardware setup does not allow nfs mounting
over any of these interfaces, which precludes us from using these proprietary
interfaces for matlabmpi. Mpi-tb does not support Myrinet and lam-mpi has
very limited support for Inifiniband and Quadrics.

4 Results and Analysis

4.1 Bandwidth

Given the well studied and widely known latency hiding techniques, bandwidth
can play a critical role in performance of parallel programs. The benchmark used
for bandwidth estimation was inspired by Jeremy Kepner’s speedtest that ships
with matlabmpi.
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Fig. 1. Bandwidth on Gigabit Ethernet

Figure 1 shows the bandwidth achieved on sizes ranging from 4K bytes to a
little over 256M bytes over Gigabit Ethernet. The vertical bars at each sample
point indicate the spread of observed values across several experimental runs.

Mpi used from within a C program clearly achieves the maximum bandwidth.
Except for some differences for small message sizes, mpi-tb running over matlab

closely follows the bandwidth performance of C. This is not very surprising
since it is the same mpi that is being used underneath the matlab api for
communication. The matlab library call overheads cause mpi-tb to be a little
slower up to message sizes of about 64K bytes. There is little variation in achieved
bandwidth across runs, which is reflected in almost complete absence of vertical
bars for both these cases. Also, the highest bandwidth is 108 bytes per second
(i.e., about 800 Mbps), which is very close the maximum bandwidth that could
be achieved on Gigabit Ethernet.

Matlabmpi uses a file system-based communication mechanism and can be
expected to take a performance hit due to the the high nfs overheads. However,
for large message sizes of greater than 16M bytes it achieves bandwidths that
fall in the same ball-park as C-based mpi or mpi-tb over matlab. This corrobo-
rates the findings of earlier studies [7]. Interestingly, and somewhat surprisingly,
the Octave port of matlabmpi, which we call octavempi, is only able to achieve
bandwidth that is more than an order of magnitude lower than that achieved by



matlabmpi. It is not clear why there is such a huge performance difference. One
possibility is that Octave’s interaction with the file system might be unoptimized.

Another interesting observation is that while implementations utilizing lam-

mpi show very consistent bandwidth across message sizes, communication im-
plemented using nfs shows wild variations for smaller message sizes. Since there
was no other network traffic when these experiments were conducted these vari-
ations are likely to be an artifact of operating system-level scheduling triggered
by the system calls that interface with the nfs.

4.2 Latency
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Fig. 2. Latencies on Gigabit Ethernet

Latency measurements would give us an idea of how an implementation of
the communication layer can affect applications that require frequent small com-
munications. Unsurprisingly, file system-based communication has much higher
latencies than that using a communication interface. Figure 2 shows the latencies
measured for the four apis to mpi.

Once again, matlabmpi has a poorer performance over Octave than matlab.
The matlab library overheads show up very clearly here in the form of much
higher latencies for mpi-tb. Notice the log scale for the vertical axis. The small



squares superimposed on the bars represent maximum, mean, and minimum
latencies observed across the experimental runs.

4.3 Broadcast
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Fig. 3. Broadcast Scaling on Gigabit Ethernet

As of version 1.2 of matlabmpi broadcast is the only supported collective
operation. Figure 3 shows the scaling of the broadcast operation using various
mpi apis. Clearly, the broadcast operation scales well up to the small number
of processors that we tested. These results are for small messages of about 1K
bytes to bring out the worst case differences.

4.4 Analysis

Based on measuring bandwidths and latencies mpi-tb appears to be the clear
winner in terms of the performance delivered within a high-level scripting lan-
guage. Unfortunately, it involves a difficult learning curve to set up and use3.

3 We have not been able to set up the Octave version of mpi-tb on our system due to
incompatibilities between rapidly changing Octave and mpi-tb versions. It would be
interesting to obtain performance measurements on the Octave version of mpi-tb as
well.



There are benefits to using an existing mpi implementation, such as the lam-mpi.
All the existing platform-specific and interface-specific optimizations become
available, such as optimizations specific to shared memory, Myrinet, Infiniband,
etc.

In the balance of performance and ease of setup and use, Matlabmpi is de-
signed to favor the latter. It is remarkably small and easy to install. However, it
does require careful tuning of the nfs mount parameters to achieve a reasonable
performance—the package documentation has suggested parameters for specific
platforms.

Table 2 summarizes the differences between matlabmpi and mpi-tb based on
some of the usability and performance parameters.

Table 2. Usability and performance tradeoffs

MatlabMPI MPI-TB

Setup Easy Moderately difficult
Using in applications Moderately easy Moderately difficult
Learning curve Easy Difficult

Latency Poor Good
Bandwidth Poor to Very Good Excellent
MPI coverage Limited Excellent

We emphasize the need for an easy to use communication library because a
major attraction of using scripting languages is their easy of use. It is arguable if
making a straightforward C-like api to mpi available within matlab will appeal
to a broad class of users. Indeed, it is also debatable if mpi is the right level
of parallel abstraction for scripting languages. Alternative, completely transpar-
ent, approaches have been proposed, which are likely to appeal to a large class
of users, if these approaches are able to meet the user’s performance require-
ments. Examples include matlab*p and the Distributed Computing Toolbox
by MathWorks [8, 9].

If matlab is used as a development environment by parallel library devel-
opers, the availability of full mpi within matlab (or Octave) can be a great aid
in developing the algorithms. This also paves the path to leverage scalar com-
pilation technologies for high-level scripting languages [10]. Such compilation
technologies could be used by library developers to lower their algorithms to a
C-like language while retaining substantial control over communication.

4.5 Mandelbrot

We wrote a benchmark to compute Mandelbrot sets to test the hypothesis that
an application requiring infrequent large communication will perform similarly
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Fig. 4. Visualization of the sets computed by the Mandelbrot benchmark

on matlabmpi as well as mpi-tb. This hypothesis is based on the observation that
the bandwidth performance of matlabmpi approaches that of other implemen-
tations for large message sizes. Computing Mandelbrot sets can be completely,
“embarrassingly”, parallelized. The only communication is at the end of the
program when all the computed data is communicated to a central processor.

The benchmark was implemented following the description in [11]. Figure 4
shows the plot of the Mandelbrot sets as computed by our benchmark. The sets
are computed over a square matrix of size 4800×4800, except for octavempi that
takes an inordinately long time to compute the sets over a large matrix, so the
matrix size is reduced to 800×800. The matrix is divided into column blocks and
the work farmed out equally to all processors. At the end of the computation all
processors communicate the individually computed blocks to processor 0, which
records the total time after receiving data from all the other processors.

Figure 5 shows the scaling of the Mandelbrot benchmark by plotting its
parallel efficiency against the number of processors. Even though matlabmpi has
an unexpectedly low efficiency on two processors, its efficiency follows that of
mpi-tb closely on both matlab and Octave. This validates our hypothesis and
our observed bandwidth statistics. In all cases the drop in parallel efficiency is
caused by the collective communication step at the end of the computation.
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Fig. 5. Scaling of Mandelbrot

5 Related Work

There has been a large amount of interest recently in developing high-level sys-
tems for programmer’s productivity in high-performance computing, evidenced
by DARPA’s High Productivity Computing Systems initiative [1]. Collaborative
groups headed by IBM, Sun, and Cray are each in the process of developing new
high-level languages for parallel computation.

There has also been work at enhancing, or developing, scripting languages for
parallel computation. Some of the past work in this direction includes Scilab, Ot-
ter, pMATLAB, MultiMATLAB, etc. [12–15]. A comprehensive survey of several
of these and related projects can be found in [9].

Several of these efforts have aimed at making the use of parallelism as trans-
parent to the end-user as possible. The mpi interfaces discussed in this paper go
to the other extreme of exposing the entire parallel communication library to
the user. Some of the efforts currently underway fall somewhere in between—
for example, providing an interface to a shared-memory programming model on
distributed memory clusters [5, 16].

An alternative approach to providing parallel environment within matlab is
to treat matlab as a sequential development environment and have advanced
parallelizing compilers lower the language level as well as parallelize the programs
for maximal performance. A large amount of knowledge base exists for automatic
parallelization, in general. After some of the past effort in parallelizing compilers



for matlab, mentioned earlier, there has been a renewed interest lately in this
direction. Clearly, it is a difficult problem to solve, but with potentially high
gains.

6 Conclusions and Future Work

In this paper we have studied two popular libraries that provide the mpi in-
terface to matlab (and Octave)—matlabmpi and mpi-tb. These two libraries
take two different approaches to implementing the Message Passing Interface.
While mpi-tb builds upon the existing mpi implementations, matlabmpi uses a
filesystem-based communication mechanism. Even though there are clear perfor-
mance advantages to using existing highly tuned mpi implementations, a simple
filesystem-based system offers higher usability and easier learning curve. In cases
where its performance is acceptable the simpler system may be more approach-
able to the general users. On the other hand, expert library developers can
greatly benefit from the availability of full-fledged mpi on matlab and Octave.

There is clearly a need for a parallel system that appeals to the end-users of
high-level languages and also delivers the performance. Several tradeoff points
are possible. This paper has studied and attempted to characterize two such
points.

Several future extensions to this work are possible:

– Comparing other parallel execution strategies: e.g., relying on parallel li-
braries such as ScaLAPACK instead of providing mpi access directly from
within matlab [17]. Matlab*p takes a similar approach.

– Using a wider variety of macro-benchmarks and interconnection networks,
such as Myrinet and Infiniband.

– Studying other communication mechanisms, such as Global Arrays [16]. Mpi

may be too low-level for most people who like using matlab. Such users may
be willing to give up some amount of parallel efficiency if that allows an easier
to use shared-memory-like programming model. It would be interesting to
study what performance penalties, if any, are involved.
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