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Abstract—Enterprises have difficulty gaining insight into the
steps preceding anomalous activity in end-user machines. En-
terprises may log events to later reconstruct anomalies to gain
insight and determine their causes. Unfortunately, most logs
are low-level and lack contextual information, making manual
inspection arduous. Accordingly, enterprises may fail to promptly
respond to anomalies, leading to outages or security breaches.

To help these enterprises, we monitor and log each user’s
interactions with the machine’s user interface (UI) and link
them to the resulting network flows. We design, implement, and
evaluate an SDN system, called HARBINGER, for the Microsoft
Windows OS that provides user activity context for flows.

Enterprises can use the context we gather to complement
traditional analysis. We explore how HARBINGER can help
differentiate normal and abnormal network traffic. While IP or
DNS host name profiling can have error rates between 29%-
38% for URL-based traffic, UI-aware sensors can reduce such
errors to 0.2%. We further find that with the help of user action
tracking, we can detect errant network traffic 99.1% of the time
in our tests. HARBINGERhas good performance, introducing less
than 6 milliseconds of delay in 95% of new network flows.

I. INTRODUCTION

When an end user’s machine exhibits anomalous behavior,
enterprises often use log files to understand the issue. They
try to understand the causal chain of events that lead to
anomalous behavior. Log files are essential for IT system
management and monitoring and can help expedite problem
diagnosis and reduce resource usage and infrastructure costs.
They can also reveal the early stages of potential security
breaches. Unfortunately, these log files tend to be low-level
and can overwhelm individuals with unrelated data. As a
result, enterprises may lack the clarity needed for effective
response.

Given these challenges, we seek to improve log utility by
contextualizing it and linking it to end-user behaviors. We ask
the following research questions: To what extent can UI data
and user actions be fused with low-level resource requests?
What impact can such context have in isolating anomalous
network behavior? Can such data reveal malicious activity?

To give enterprises more in-depth insight, we monitor the
user interface (UI). We provide instrumentation that correlates
fine-grained UI data with network traffic without requiring
application-specific instrumentation. We design and build the
HARBINGER software-defined network (SDN) system to
acquire context that signals forthcoming network connections

to detect abnormal behavior that could identify potential
configuration errors, failing components, or malicious acts.

Our approach is to link the host operating context with
the resulting network flows to enable dynamic network traffic
profiling. HARBINGER fuses traditional network knowledge,
such as a flow header, with information about the applica-
tion, such as the account username running the program and
its executable path. To understand human behavior, which
is a significant source of non-determinism in a system,
HARBINGER further collects and links end-user interactions
via keystrokes and mouse clicks with graphical user interface
(UI) context, such as buttons, windows, and other UI widgets.
By doing so, HARBINGER allows organizations to distinguish
what events are user-driven from those that are automated.

With HARBINGER, we explore the feasibility of designing
and building a universal fine-grained UI monitor with limited
application-specific instrumentation. We then explore the ex-
tent to which the acquired UI information can improve profil-
ing network traffic and the system’s utility in an enterprise. Our
novelty lies in the use of fine-grained instrumentation that is
tightly linked to low-level resource requests in an application-
agnostic manner. In doing so, we contribute the following:

• UI Data Acquisition Design Challenges: We describe
our design goals and challenges in implementing such
a design (Section III). We create a trace formalism to
associate UI precursors with network actions.

• System Design and Implementation: We design and
build HARBINGER, for the Microsoft Windows operating
system, which fuses UI data with network traffic. We de-
scribe and implement HARBINGER’s UI data acquisition
and use software-defined networking (SDN) to share data
with a centralized SDN controller (Section IV).

• Evaluation of UI Data Application in Profiling Net-
work Traffic: We compare traditional profiling with
that enabled by UI sensors (Section V). We find that
UI sensors can reduce misclassification in URL-based
workflows while also identifying errant traffic that went
undetected by the IP and DNS sensors.

• Evaluation of Performance: We evaluate the perfor-
mance of HARBINGER (Section VI) and find it affects
only the first exchange in each flow and adds an end-to-
end delay of less than 6ms.



II. BACKGROUND AND RELATED WORK

Suneetha et al. [1] used web log filing of user behavior to
improve the experience. UI logging may offer similar value.

System logs and system call analysis have been used to
reconstruct a user’s actions based on low-level events that
result from that action [2], [3]. A higher-level event, such
as opening a word processing application, may produce a
set of low-level features (log or system call entries). Such
techniques may incur high overhead and have limitations with
interleaved events [4]. Csight [5] focused on mining existing
concurrent systems execution logs to infer a concise and
accurate model of a system’s behavior for debugging purposes.
Yu et al. [6] developed CloudSeer for workflow monitoring
to detect deviations from normal behavior in cloud services.
CloudSeer runs in cloud infrastructure to build automaton
based on normal executions logs. Du et al. [7] developed
DeepLog, which models system logs as a natural language
sequence with deep neural modeling to detect anomalies. We
can aid these techniques by capturing user actions, which
constitute a significant source of non-determinism in a system,
relating them to the low-level activities these systems use.

Log files can be used for security purposes, such as intrusion
detection. Handigol et al. [8] developed NetSight, a packet
capture utility, to buid a network debugger and profiler. They
argue that packet history can reveal the root cause of network
failures. Our approach provides the historical activity of UI
workflows that may provide insight into an application’s
abnormal behavior from a higher-level historical perspective.

BINDER [9] observes that malware often avoids user in-
teraction, so BINDER allows all of an application’s network
traffic if it immediately follows a user input. Since BINDER
does not link traffic destinations to specific user interactions,
its broad authorization enables mimicry attacks [10] in which
malware times its traffic to evade detection. Kwon et al. [11]
used more detailed user activity instrumentation to detect
botnet applications, but the approach is still vulnerable to
mimicry attacks due to limited understanding of an appli-
cation’s interface. HoNe [12] correlates network traffic with
metadata processes but lacks visibility into user actions. In
Gyrus [13], a VM hypervisor inserts a secure text overlay over
untrusted applications and ensures entered data matches what
is subsequently transmitted on the network. In contrast to these
approaches, our tool can link user actions to specific network
destinations, limiting adversaries’ opportunities to blend in.

Bhukya et al. [14] profiles user typing and clicking behavior
to detect when one end-user attempts to impersonate another.
Others have used custom user interfaces to tighten file access
control [15], [16]. Shirley et al. [17] track file creation
provenance and user behavior to determine when applications
interact with files from other applications. However, they are
application-specific and do not examine network traffic.

Our work extends the literature by 1) constructing a system
that fuses detailed UI events with network flows and 2)
incorporating this data in profiling network traffic.

III. UI DATA ACQUISITION AND FORMALISM

A UI-aware system collects the user’s interaction with each
application’s graphical UI on the monitored host. The collected
information must be precise (i.e., fine-grained and specific to
the user’s goals) and accurate. It can be challenging to link
a user’s UI actions to lower-level application behavior, such
as a particular network request. While application-specific
instrumentation may reveal causal links, such efforts are
time-consuming and arduous. Instead, we explore the use of
temporal correlations to infer causal links.

A. UI and Network Connection Formalism

To represent the union of UI workflow events and a set of
resulting network connections, we define a trace formalism.
We denote a trace based on the application, UI control flow
elements, a set of inputs, and corresponding connections.
A trace can be denoted as: {Application1, (a,
b, c, d), inputs} → { connection1:time1,
connection2:time2 }. In this example, a given
application has a sequence of connected UI widgets (a, b, c,
d) that are predictive of a set of network connections that
occur within a specified amount of time. This trace represents
a UI workflow and its ensuing network connection.

Figure 1 shows a HARBINGER trace where an end-
user types and clicks a hyperlink in Microsoft Word. The
user types a 34 character string, which included the text
“https://example.com,” which Microsoft Word automatically
converts into a hyperlink. The trace includes user inputs in
terms of keystrokes and mouse clicks, the structure of the GUI
hierarchy (including the Word title bar), information about the
application path to the process executable, the user running
the application, and details about the network connection,
including addresses, ports, and transport protocol fields. The
record shows the destination host name based on a prior DNS
response that had an A record matching the destination IP
address. This trace shows the origin of the network flow.

Traces may be self-referential, which is key to network
profiling. When a user navigates via a URL, the URL itself will
appear in the trace. The host name or IP address in the URL
can thus be associated with the resulting network connection’s
destination. The policy rule in Figure 2 matches the request in
Figure 1. This rule’s trace uses regular expression and memory
parenthesis notation to indicate that it matches a destination
host name that appears as a hyperlink in the UI. The entry
matches users clicking a hyperlink in Microsoft Word.

The trace formalism can support known automated behavior,
such as activity based on timers, made to pre-programmed
destinations (e.g., application update servers) or organization-
configured destinations (e.g., email servers). In these cases,
the set of UI events or user inputs may be omitted.

The trace formalism also supports variances in the resulting
network behavior. For example, application layer caching may
result in fewer network connections in some instances than
others. Further, computational load or process activity may
result in actions being delayed by hundreds of milliseconds.
The time ranges can accommodate fluctuations when profiling.



Date: Sept. 10, 2018 at 9:54:17am
Source: [ANONYMIZED IP], port 49795

Host Name: [ANONYMIZED]
Destination: 93.184.216.34, port 443

Host Name: example.com
Protocol: TCP [SYN flag set]
Application: C:\Program Files (x86)\Microsoft

Office\root\Office16\WINWORD.EXE
User: [ANONYMIZED_DOMAIN]\[ANONYMIZED USER]
Keystrokes (5 s, 15 s, 60 s, 3 m, 5 m):

0, 34, 34, 34, 34
Mouse Click (5 s, 15 s, 60 s, 3 m, 5 m):

5, 5, 6, 8, 8

User Interface (last event 231ms ago):
Name: Document1 - Word, Class: OpusApp,
| Control: window
| Name: [none], Class: _WwF, Control: pane
| | Name: Document1, Class: _WwB,
| | | Control: pane
| | | Name: Document1, Class: _WwG,
| | | | Control: document
| | | | Name: Page 1, Control: page
| | | | | Name: Page 1 content, Control: edit
| | | | | | Name: https://example.com,
| | | | | | | Control: hyperlink

Fig. 1. Example trace from the HARBINGER system while using the Microsoft
Word application. Keyboard and mouse inputs are binned by cumulative
time intervals for the last 5 seconds, 15 seconds, 60 seconds, 3 minutes,
and 5 minutes. The user interface entries begin with the relative number of
milliseconds ago the element was created or refreshed in the GUI, followed
by any label associated with the GUI element, an application-generated class
for the GUI element, and a control type that describes the type of widget.
The trace was formatted and annotated for readability.

Destination IP: *,
Destination Host: $1,
Destination Port: 443,
Protocol: TCP [SYN flag],
Application Path: C:\Program Files (x86)\
Microsoft Office\root\Office16\WINWORD.EXE,
Mouse Clicks/Keystrokes: 1+ in last 5 seconds,
GUI: .*https://([a-zA-Z0-9\-]+)/\s*, Control:

hyperlink.*,
Action: Allow, label as ’normal’

Fig. 2. A profiling rule that matches the traffic from the trace in Figure 1.
The GUI string is a regular expression and the destination host is the string
extracted from the expression’s memory parentheses in the GUI text.

IV. LINKING THE UI TO NETWORK FLOWS

Our goal with HARBINGER is to differentiate between
normal and abnormal network traffic. This can help analysts
identify the cause of anomalies in an enterprise environment,
which may be associated with failures, misconfigurations,
and attacks. We assume all traffic caused by known his-
toric processes (e.g., software updates) and end-user actions
to be normal. Analysts may still use other tools such as
anomaly detection or intrusion detection systems, in addition
to HARBINGER, to detect and analyze abnormal traffic.

To effectively unite network activity with end-user actions,
we need a mechanism that monitors the application itself
and a mechanism that monitors the network. In Figure 3,
we depict these application and network monitors and how
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Fig. 3. System Overview. The dashed regions indicate the components
introduced by HARBINGER. The numbered actions are described in Sec-
tions IV-A and IV-B.

they record user behavior and control network activity. We
fuse this information and then log it off-system to support
other profiling tools and incident response. The application
and network monitors reside on the client machine and must
be tailored specifically to the client OS. The policy engine can
be run remotely on a centralized network controller to service
multiple clients and operating systems.

The HARBINGER system is designed to enhance adminis-
trator understanding of a system and network. This may be
used for security purposes (e.g., malware detection). To scope
this work, we focus on the system’s utility and defer formal
security analyses to future work.

A. Application Monitor

In conjunction with kernel I/O monitoring, the application
monitor captures all interactions between the user and the
applications on the system. The monitor records 1) what UI
element (e.g., a button) the user accessed and 2) the mouse or
keyboard action that actuated that element.

The application monitor uses existing automation frame-
works integrated into popular UI libraries and toolkits to
gain visibility across applications without per-application cus-
tomizations or source code access. Microsoft’s .NET frame-
work includes the Windows Presentation Foundation (WPF),
which automatically includes support for accessibility. A re-
cent survey of 41,760 software developer about the “most
used non-web framework” found 37.1% selected .NET and
35.26% selected the .NET core [18]. Accordingly, a substantial
portion of development is occurring in a framework that
supports our automation technique. These tools provide an API
into each application during compilation that allows external
applications to query UI elements and receive notifications
when the interface changes. Given the dominant market share
of Windows and the popularity of the .NET platform and
WPF, we focus on this platform and technology but recognize
the same principles would apply to other similar tools. With
just the that library’s accessibility support, we can instrument
elements of many popular applications, including Microsoft
Office products, Google Chrome, and Mozilla Firefox.

Our application monitor leverages two mechanisms for
collecting UI activity: event handlers and function hooking.
The application monitor registers a global event handler for



focus changes, which includes any event that changes which
UI element has the current focus for actuation, that occur in
the user interface. This event handler runs asynchronously with
the application receiving the focus change events, so it does
not interfere with the user experience. However, because the
handler is asynchronous, it is possible the handler will not
finish execution before the network connection is initiated,
making it more challenging for us to link the UI interaction
to the network flow it precipitated. To address this, the
application monitor additionally uses the Microsoft Windows
SetWindowsHookEx function to hook all mouse clicks and
keystrokes (represented by the lines from the mouse and
keyboard to the application monitor in Figure 3). We record
the element activated by each mouse click before the event is
actually delivered to the recipient application.

Any time an event handler or hook function activates, the
application monitor records which elements in the UI were
accessed and how they were displayed in the application. In
each case, the monitor uses the UIAutomation library to obtain
the widget, or UI element, that was activated or focused on by
the event (represented by lines 1 and 2 in Figure 3). The
UIAutomation library represents the UI as a tree, providing
information about the element’s ancestors in the tree and a
route from the activate element up to the root tree node, which
is the Desktop element in Windows.

A final function in the application monitor queries for the
most recent UI actions associated with a process. Each time
an element is activated, we store its record in a global vector.
When requested by the network monitor (line 5 in Figure 3),
the application monitor service iterates through the vector,
from the most recent event to the oldest, searching for entries
associated with the requested process ID of the application. It
then encodes this information into a text string for transmission
to the network monitor (line 6 in Figure 3). To avoid
redundancy, if two or more UI elements share ancestors, we
denote the shared ancestor and omit the common ancestors
above it. The application monitor reports up to three records.

We use kernel drivers to verify user inputs and the ad-
ministrative service can verify UIAutomation is loaded and
no untrusted DLLs are present. This allows HARBINGER to
differentiate between software and hardware inputs.

B. Network Monitor

The network monitor serves two primary functions. First, it
intercepts all new network connections. Second, it coordinates
the application monitor and logging system. The network
monitor is implemented as a kernel-mode Windows driver.
The driver uses the Windows Application Layer Enforcement
(ALE) portion of the Windows Filtering Platform (WFP) to
monitor all socket operations, including the creation of TCP
and UDP connections (lines 3 and 4 in Figure 3). The ALE
module monitors traffic at a per-flow granularity.

When the network monitor identifies a new network flow
for a process, it queries the application monitor for the UI
interactions that preceded the new flow. Specifically, the net-
work monitor uses the inverted call model to send a message

to the application monitor (lines 5 and 6 in Fig. 3). This call
includes the process ID of the application making the network
call, which is provided by the ALE classifier functions. The
network monitor then packages the contextual information,
along with the packet that created the new flow, and transmits
the data to the logging system and awaits acknowledgement
(lines 7 and 8 ). While awaiting a response, the driver
queues the packets in the flow. Upon acknowledgement (lines
9 and 10 ), the driver marks the flow as approved in the

WFP framework and re-injects all locally queued packets for
transmission to the destination (lines 11 , 12 , and 13 ).

The network monitor communicates with a centralized
network controller that manages the logging system. We use
a subset of the OpenFlow 1.0 protocol between the network
monitor and policy engine to encourage use in the software-
defined networking (SDN) community. Prior SDN research
and deployments show that OpenFlow’s latency is acceptable
for production use. We fit the elevated packet and context
within a 1500 byte MTU to avoid packet division.

C. Network Monitor Module for Web Traffic

Web traffic is unique in that a remote server provides a
browser with instructions on new network connections to
form without requiring user involvement. To support this
dynamic, we extend the network monitor to add a module
that intercepts all packets on common HTTP and HTTPS
ports to enable detailed analysis for these protocols. An ideal
implementation of this module would extract the session key
logged by the browser, decrypt the traffic in the kernel, parse
the payload for URLs, and record those entries. Given the
required engineering, our proof-of-concept uses a third-party
tool.

In our approach, the network module holds the packet and
sends a copy to our administrative service for processing.
Within the administrator user account, we use the tshark
tool to decrypt and decompress the HTTP/HTTPS traffic. We
then examine the output from tshark to extract links and the
IP addresses and hosts inside the URLs. We combine this data
with the originally requested URL provided by the Application
Monitor, allowing us to associate the original request with
the subsequent traffic from the browser to any dependent or
linked resources. This approach allows us to log what traffic
is specifically associated with user interactions.

We store the decrypted links and associated host names
and IP addresses in a local database for the browser appli-
cation. This allows us to fully process the packet within the
context of HARBINGERand dynamically determine the user-
driven page load’s content. Importantly, this only associates
access to destinations specified by the remote web server.
This would not allow malware or malicious extensions in the
browser to simply introduce URLs to the browser’s DOM
locally to have them associated with a user action. Further,
if malware prevents the proper session key from reaching the
administrative service, it will effectively block the association
of legitimate destinations in the system rather than creating
false associations that could mask malware activity.



V. HOW CAN UI DATA HELP IN PRACTICE?

User interaction context may help analysts in myriad ways.
While we cannot anticipate them all, we explore a particular
application, network profiling, to demonstrate the concept. We
explore methods to handle automated background activity and
user initiated traffic. We show that UI information can be
linked to network actions, demonstrate such links in practice
with real programs, and illustrate the context’s utility.

Our experiments are completed in a lab study without
human subjects. However, a study with human subjects would
require approval from an Institutional Review Board (IRB) and
user privacy and risks would be a key IRB consideration. To
scope this work, we defer a full analysis of privacy risks and
controls. Instead, we note the HARBINGER tool could gather
information and apply policies locally and redact UI sensor
data when reporting to an SDN controller. Such techniques
may enable more powerful policies while reducing the privacy
risks to those of traditional network profiling.

A. Network Profiling: Accuracy, Precision, and the UI’s Role

Application developers frequently use concurrency in user-
facing applications. Parallel threads of execution will be
dedicated to different tasks, such as checking for updates,
rendering output, or waiting for end-user input. Some of
these tasks may use the network. When performing detailed
network profiling, the goal is to accurately (i.e., correctly) and
precisely (i.e., exactly) relate network activity to the associated
application task. While simple tools can give accurate but
imprecise results, such as indicating traffic came from a
given system, both high precision and accuracy are needed
to distinguish user and automated behavior.

Network connections in response to user actions can be
more precisely described as actions taken with 1) a fixed
remote destination or 2) an end-user influenced destination.
For example, a user clicking a “refresh” button in a weather
application implicitly requests a network interaction, but del-
egates server addressing to the program (and to the entity that
developed or configured the software). In contrast, a user’s
URL specifies the protocol and destination to use.

B. Distinguishing Atypical Communication in Microsoft Office

The Microsoft Corporation announced over 1.2 billion peo-
ple use its Microsoft Office suite1. Given its popularity, we
explore how well different sensor types can profile traffic.

In our testing, we create a set of workflows in Microsoft Ex-
cel, Microsoft OneNote, Microsoft PowerPoint, and Microsoft
Word. We initially start these programs and leave them idle,
classifying any network connections that result during the idle
period as automated background traffic. We then manually
created workflows, some of which trigger network traffic while
others do not. We encode these workflows into scripts using
the Sikuli framework [19]. While our kernel drivers would
detect the Sikuli actions as software-originated rather than

1https://www.zdnet.com/article/microsoft-by-the-numbers-2015-700k-
windows-store-apps-1-2bn-office-users/

TABLE I
ACCURACY OF SENSORS WITH FIXED REMOTE DESTINATIONS WITH NO

MALICIOUS TRAFFIC (I.E., ALL INACCURACY IS A FALSE POSITIVE)

Idle Period Training Testing Sensor Accuracy
Application Samples Samples Samples IP DNS UI
Excel 4,173 3,425 2,490 99.0% 100.0% 99.9%
OneNote 1,764 1,690 1,645 99.8% 100.0% 100.0%
PowerPoint 2,366 792 1,671 94.1% 99.9% 99.9%
Word 3,826 2,809 2,095 96.5% 100.0% 99.8%

hardware originated, we deactivate them for this study to
mimic actual human use. Sikuli lets us direct the software
to enter mouse clicks and keystrokes to interact with specific
UI elements. These workflows use fixed remote destinations.

We collect workflow UI and network activity during an
initial training phase in which the Sikuli workflows run. We
then later repeat those same workflows during a second testing
phase to see if the sensors could recognize the behaviors. We
used three sensors with varying degrees of precision:

1) An IP header sensor, which reports a match if a subset
of IP header fields (i.e., a match rule of (IPdest AND
transport protocol AND portdest)) appeared together in
either the idle period or the training phase,

2) A DNS-aware sensor, relaxes the above matching by
allowing different IP addresses corresponding to the
same host name to result in a match (i.e., a match rule
of ((hostdest OR IPdest) AND transport protocol AND
portdest)) that appears in either the idle period or the
training data, and

3) A UI-aware sensor, which reports a match if either:
a) the DNS match rule appears strictly in the idle

period (i.e., background traffic), or
b) the DNS match rule appears in the training period

with UI context in common (i.e., the same catalyst
user action must occur)2, or

c) the IP address or host name of the destination
appears in the UI context data (e.g., in a URL).

In Table I, we show the accuracy of the different sensors
across the four applications. We see that the IP sensor was
94.1% to 99.8% accurate, the DNS sensor was 99.9% to
100.0% accurate, and the UI sensor was 99.8% to 100.0%
accurate. The IP sensor was the least accurate largely due to
IP load balancing: the remote server had the same DNS host
name, but used different IP addresses than those observed in
the training and idle phases. The DNS sensor was the most
accurate, since it could accommodate IP load balancing, with
the fewest requirements (i.e., least precision). The UI-aware
system was almost as accurate as the DNS sensor, but failed
to match 6 connections. We determined that some background
traffic did not appear in the idle period, but did occur during
the training phase, causing it to be misidentified by the UI-
aware system but accurate in the less precise DNS sensor.

To gauge each sensor’s sensitivity, we introduced anomalous
traffic. We use the dynamically-linked library (DLL) injection
technique, which is commonly used by malicious attackers, to

2We also cache IP addresses associated with host names to combat DNS
pinning effects, but abstract those details to simplify the explanation.



TABLE II
ACCURACY OF SENSORS WITH FAUX-MALICIOUS DLL TRAFFIC

(ACCURACY DIFFERENCE FROM TABLE I IS FROM FALSE NEGATIVES).

Idle Period Training Testing Sensor Accuracy
Application Samples Samples Samples IP DNS UI
Excel 4,173 3,425 3,446 71.5% 72.2% 99.4%
OneNote 1,764 1,690 2,439 67.3% 67.4% 100.0%
PowerPoint 2,366 792 2,392 65.8% 69.8% 99.2%
Word 3,826 2,809 2,655 76.2% 78.9% 99.1%

create threads that randomly connect to servers observed dur-
ing the idle and training periods. This replicates the scenario
in which advanced malware burrows in legitimate software
and attempts to propagate among an organization’s systems.
The injected thread runs within each of the tested Office
applications and waits a random interval, averaging around
15 seconds, between network connection attempts. The thread
logs its activities as ground-truth data.

In Table II, we show the accuracy of the different sensors
across the four applications when this faux-malicious traffic
is present. We see that the IP sensor was 65.8% to 76.2%
accurate, the DNS sensor was 67.4% to 78.9% accurate,
and the UI sensor was 99.1% to 100.0% accurate. Each of
the sensors retained their false positives rates from before,
but both the IP and DNS sensors failed to detect the faux-
malicious traffic. The UI-aware sensor did better, but it missed
55 faux-malicious connections simply because the thread’s
timing aligned with Sikuli’s interaction with a UI element
that allowed such traffic in the training phase. Naturally, the
attacker DLL could evolve to monitor user behavior similar
to HARBINGERand time attempts to match the UI behavior.
However, other techniques focus on detecting manipulation
such as DLL injection and future stateful, connection-counting
list enforcement systems could detect anomalies.

Finally, we explore the impact of user-supplied destinations
on the sensors. We modify the Sikuli workflows so that the
emulated user randomly selects a URL from a database of
the top half-million Quantcast websites [20], types that URL
(which is automatically transformed into a hyperlink by these
applications), and then activates the hyperlink. Sikuli activated
240–420 URLs per application in the training phase and 149–
390 URLs during the testing phase.

In Table III, we show the accuracy of the different sensors
across the four applications when the emulated user proceeds
to the user-supplied destination. The accuracy of the IP and
DNS sensors decreases substantially for Excel, PowerPoint,
and Word (between 61.7% and 70.4%) simply because the
sensors misclassify user-supplied destinations (since the train-
ing data did not include all the URLs selected by the emulated
user). The UI sensor recognizes the URLs and correctly
classifies them in those applications, resulting in 99.8% to
100.0% accuracy. The accuracy of the IP and DNS sensors
would have been worse if not for the fact that the applications
pair each network request with a connection to a Microsoft
service that appeared in the training data. The OneNote results
differed because it delegated URL retrieval to a browser.

TABLE III
ACCURACY OF SENSORS WITH URL ENDPOINTS.

Idle Period Training Testing Sensor Accuracy
Application Samples Samples Samples IP DNS UI
Excel 5,419 3,733 1,958 69.3% 70.4% 99.8%
OneNote 1,913 1,929 1,025 97.8% 99.8% 99.8%
PowerPoint 4,427 1,249 1,652 62.7% 63.6% 99.8%
Word 6,002 4,273 1,486 61.7% 62.2% 100.0%

C. Exploring Web Browser Traffic

Web browsers and encryption pose an additional challenge
because the content of a given website cannot be predicted
in advance. To determine whether our approach is effective at
linking user browser activity to network flows with dynamic
content, we use a custom-built extension for the Chrome
web browser that can extract all links from a web page.
This extension runs after the web page is fully loaded, and
Javascript has executed, allowing us to obtain URLs that are
generated by executing client-side code. We consider this data
to be the “ground truth” of the links a user could access when
visiting a page and compare it with HARBINGER’s server list.

We collect our data by running a Chrome web extension
that allows us to load web pages sequentially. We download
the top seven most popular websites from the Alexa ranking
website [21]. Each time the Chrome browser finishes load-
ing a target page and its dependencies, the extension then
retrieves the next URL listed in the database. During this
experiment, we run the link extraction Chrome extension and
HARBINGER’s web browser module to obtain the packet data
and write it to a packet capture file. After retrieving each page,
we use the tshark tool and our extracted TLS symmetric key
database to decrypt and decompress each logged packet and
extract the links3. We then compared the ground truth and
HARBINGER’s data set to determine classification accuracy.

We found the seven page loads resulted in 407 host names
and IP addresses within those links in our ground truth data
set. Those same page loads resulted in 406 host names and
IP addresses in HARBINGER, a match of 99.5%. Accordingly,
the websites would have only rare misclassifications.

D. Automatically Profiling Applications

While our analysis in Section V-B shows the impact of
specific scenarios in four popular applications, we now explore
whether the approach generalizes to other software and other
workflows. In particular, we explore whether UI action can be
reliably associated with network traffic. To do so, construct a
“guided UI fuzzer” tool that essentially traverses each node
in an application’s UI tree, activating elements (e.g., buttons,
menus items) to explore the tree. We add basic form field
capabilities (e.g., entering URLs in text boxes next to labels
containing “URL”) and heuristics to avoid unfruitful paths
(e.g., file selection dialog boxes in workflows such as opening
or saving files). As in Section V-B, we treat the script’s actions
as if they were created by end user behavior.

3Section VI-A shows this can be done in real-time, but we separate the
data collection and analysis here for simplicity.



TABLE IV
NETWORK CONNECTIONS REVEALED WITH OUR UI FUZZER TOOL.

Unique Fuzzer Policies Generated
Items Explored Back- UI Dest. Type

Application UI Flows Total ground Fixed Dyn.
Audible 304 19,092 69 45 24 0
Bing Dictionary 145 989 17 16 1 0
FileZilla 343 0 0 0 0 0
Notepad++ 307 0 0 0 0 0
PowerPoint 96 3,899 37 34 3 0
Putty 743 4 1 0 0 1
VLC 96 20 2 2 0 0
Word 189 5,410 31 28 3 0

While running the HARBINGER system, we use our fuzzer
on a set of 8 applications, as shown in Table IV, two of
which overlap with Section V-B. We explore at least 96 unique
UI elements in each program, resulting in 0-19,092 network
flows in each. We generate policies from these, distinguishing
background and UI-based flows. In one case, for Putty’s
connection window, the policy identifies a user-supplied field
(the host name) as correlated with the network connection.
In three other programs, FileZilla, Notepad++, and VLC, the
fuzzer’s UI data reveals one or more element likely to produce
a network flow, but without actuating it. This happens in cases
where the fuzzer does not know how to supply data for a field
or due to the UI sensor privacy controls (e.g., avoiding certain
editable field types), such as the video stream source for VLC.
We note a policy could be created to cover such behavior.

In Audible, the fuzzer plays a variety of audio books. While
the policies largely shared UI data, variances in titles produce
different policies. A regular expression wildcarding the title
can reduce the policy count while retaining effectiveness.
The fuzzing process also reveals some application nuances.
Both Notepad++ and FileZilla offload network activity to a
separate process. While fuzzer enhancements may improve
data collection, some manual review may still be required.

We find this fuzzing can automatically explore the UI.
However, deployers could simply use a prolonged training
phase to collect and analyze organizational data.

E. Summary of Network Profiling Results

The UI sensor’s precision can reveal abnormal traffic while
improving accuracy in traffic to end-user influenced destina-
tions (e.g., via URLs). The technique works across popular
applications and web browsers (even with TLS encryption).

VI. PERFORMANCE EVALUATION

We examine the end-to-end latency of classifying network
flows in HARBINGER. The median delay is less than 3ms and
it was less than 6ms for 95% of trials.

The Application Layer Enforcement (ALE) layer in Mi-
crosoft’s Windows Filtering Platform (WFP) supports effi-
cient flow classification decisions by exposing a kernel-mode
interface for drivers. ALE intercepts all packets in a flow
until the flow is approved. Once approved, all subsequent
packets in a flow are approved and bypass the flow classifier.
HARBINGERelevates each packet in the flow to a network
controller’s policy engine for a decision and then locally
enforces filtering decisions in the host’s ALE classifier. With
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Fig. 4. CDF of end-to-end delay introduced by HARBINGERon new flows.
There were 765 traces (with 34 outliers removed) that did not have UI output
present (“UI Empty”) and there were 743 traces (with 43 outliers removed)
that the UI information populated (“UI Present”).

ALE, the only overheads are associated with the first packet
in the flow, which triggers the query to the policy engine. This
behavior is similar to reactive flow processing in the OpenFlow
protocol.

We first examine the end-to-end delay associated with
processing new flows in HARBINGER. We used two virtual
machines running on separate physical VM hosting servers.
The policy engine and controller ran in an Ubuntu 16.04 VM
that was allocated 1 core and 2GBytes of RAM on a 12-core
2.6GHz VM server with 64 GBytes of RAM. The Windows
7 end-user machine ran in a VM allocated 2 cores and 4
GBytes of RAM on a 20-core 3.1GHz VM server with 128
GBytes of RAM. The two VM servers were connected via a 1
Gbps Ethernet connection to the same Ethernet switch on our
organization’s production network. We did not see noticeable
changes in CPU or memory usage on these systems. Our
tests explored Google Chrome, Internet Explorer, Microsoft
Excel, Microsoft OneNote, Microsoft PowerPoint, Microsoft
Word, Microsoft Visual Studio, Mozilla Firefox, PyCharm (a
software IDE), Slack, and Skype.

We use the KeQueryPerformanceCounter kernel-
mode routine to measure end-to-end delay with a 0.1 microsec-
ond (µs) resolution. We measure from when the first packet
of a flow reaches HARBINGER’s network monitor to the time
when HARBINGERdenies the flow or re-injects the packet(s).

In Figure 4, we plot the cumulative distribution function
(CDF) of the results of these experiments. The end-to-end
delay for both cases where a UI was present and when it
was empty for the majority of connections is less than 3
milliseconds. All the traces with an empty UI trace (excluding
outliers) completed in less than 6 milliseconds while 95% of
the traces with a UI finished in less than 6 milliseconds.

To measure the computation requirements at the network
controller and policy engine, we measured the processing time
across a total of 653,189 trials and 31 policies. The average
controller running time was roughly 835 µs with the biggest
contributing components being the encryption of the response
(290 µs), decryption of the query (159 µs), the parsing of the
UI context (117 µs), and the evaluation of the flow verses the
existing policy rules (76 µs). The network controller and policy
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engine can sequentially process thousands of flows a second.
In a subsequent experiment, we ran a controller in a VM on
our 20-core 3.1GHz VM server and found that each each core
allocated to the VM was able to process between 1,350 and
1,500 new flow requests per second. A four-core VM was able
to handle around 5,450 new flows per second without building
a queue. With parallelism, a multi-core controller may service
tens of thousands of new flows per second.

A. Web Traffic Module Performance

As mentioned in Section IV-C, our proof-of-concept imple-
mentation includes inter-process communication, kernel/user
mode transitions, and other overheads that would not be
present in kernel mode implementation. Our results are thus
an upper bound for the web traffic performance costs.

We use a script to launch the Chrome browser in incognito
mode to avoid caching effects. The script specifies a page that
Chrome should load. We obtain an overall page load time
using a Chrome extension that measures the amount of time
to load each web page and its dependencies. We measure the
amount of time required to load a set of pages 1) without
HARBINGER running, 2) with HARBINGERbut without the
web browser module, and 3) with our complete system.

From our experiments on 45 page loads selected from the
Alexa top 45 web sites, we found that the median page load
time was around 4.5 seconds when HARBINGER was not
loaded. The median page load time was around 4.6 seconds
when HARBINGER was loaded without the web module, which
includes the time required to seek approval from the SDN
controller. When the HARBINGER web module was loaded,
this increased to around 5.1 seconds. We show the cumulative
distribution functions of these page load times across these
three experiments in Figure 5. These results show that the
web module adds about 10% of the page load time for many
page loads. This delay may affect the user experience in
some instances, but may not affect other applications. With
additional engineering efforts, we expect that time to decrease.

VII. CONCLUDING REMARKS

We show that UI sensors can help analysts in tasks such as
network profiling. Those sensors can monitor UI interactions
efficiently and universally without significant application-
specific instrumentation or overhead. It was deployed across

a variety of desktop applications, including a web browser
using TLS. The sensors have accuracy of at least 99.1% in
experiments and is sensitive enough to detect anomalous and
malicious traffic. Such UI context may further help analysts
with other tasks, such as reconstructing errors or auditing.
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