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Abstract—Residential networks are home to increasingly di-
verse devices, including embedded devices that are part of the
Internet of Things phenomenon, leading to new management and
security challenges. However, current residential solutions that
rely on customer premises equipment (CPE), which often remains
deployed in homes for years without updates or maintenance, are
not evolving to keep up with these emerging demands. Recently,
researchers have proposed to outsource the tasks of managing
and securing residential networks to cloud-based security services
by leveraging software-defined networking (SDN). However, the
use of cloud-based infrastructure may have performance impli-
cations.

In this paper, we measure the performance impact and
perception of a residential SDN using a cloud-based controller
through two measurement studies. First, we recruit 270 residen-
tial users located across the United States to measure residential
latency to cloud providers. Our measurements suggest the cloud
controller architecture provides 90% of end-users with acceptable
performance with judiciously selected public cloud locations.
When evaluating web page loading times of popular domains,
which are particularly latency-sensitive, we found an increase
of a few seconds at the median. However, optimizations could
reduce this overhead for top websites in practice.

I. INTRODUCTION

The task of managing and securing residential networks is
inherently challenging. These networks are operated by end-
users who often lack technical backgrounds and knowledge
about how to administer their networks. In addition, the extent
of these administration tasks are fundamentally limited by
residential consumer-grade routers, that are often deployed for
years, with little in the way of maintenance or upgrades [1].

Residential networks are increasingly home to diverse
Internet-capable devices, such as gaming consoles, media
centers, and Internet of Things (IoT) devices that have sen-
sor and actuation capabilities. While these devices provide
useful capabilities for residential users, they also highlight
longstanding limitations in residential networks. In particular,
these devices exhibit significant vulnerabilities and patching
difficulties [2] and have increasingly been harnessed for use
in massive Internet attacks [3]. These residential networks
typically offer little resistance to attack due to their lack of
security resources and limited administration.

Some researchers have proposed to address these limita-
tions in residential networks by installing a new type of
hardware device, called virtual customer premises equipment
(vCPE) [4], in place of existing residential routers. These
vCPE devices are designed to work with support from the

user’s Internet Service Provider (ISP), which must create and
manage the appropriate middleboxes to offer management ser-
vices and security protections. Unfortunately, the deployment
of vCPE solutions are limited and residential users rarely
have multiple broadband ISP options in the United States [5],
leaving most residential users without access to these services.

Other approaches, including our own prior work [6], [7],
have examined the feasibility of a residential software-defined
network (SDN) approach. In those approaches, a cloud-
hosted virtual machine acts as an OpenFlow [8] controller for
commodity home routers. The controller can vet new flows
and drop, modify, or approve packet forwarding out specific
interfaces or tunnels. The controller can further tunnel traffic
through the appropriate network function virtualization (NFV)
system (generically called a middlebox) for analysis.

SDN and NFV applications can vary widely, yet the details
of how these techniques are used can have profound impacts
on the viability of the approaches. We examine different SDN
and NFV application types, determine their inherent character-
istics for new flows and analyze the impact such applications
would have on users given different network characteristics.
Specifically, our key contributions are as follows:
• We investigate the impact of controller latency on user-

perceived performance. We focus on latency-sensitive
web browsing traffic that dominates residential traffic.
When considering top websites, we see a 2 second
increase in webpage loading times for the 50th percentile
of sites when using a controller at a round-trip time of
50 ms. Our results provide an upper bound on the impact
on webpage loading time and could be reduced with
proactive controller policies.

• We evaluate the latency impacts of cloud-hosted Open-
Flow controllers on real-world residential connections.
We find that roughly 90% of residential users have at
least two public cloud location for a potential OpenFlow
controller within a 50 millisecond round trip time (RTT).

II. BACKGROUND

Software-defined networking (SDN) is a networking
paradigm that allows logically centralized control of network
communication by enabling switches to request forwarding
information from a controller. Traditionally, controllers are
placed within the same local area network (LAN) as the switch
to reduce latency. Our work seeks to understand the feasibility
and impact of deploying the SDN controller in the cloud. We
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Fig. 1. System diagram for residential SDN and middlebox solutions. These approaches use a SDN-capable router within the home, a cloud-based
OpenFlow controller, and a number of cloud-hosted middleboxes for NFV support. Paths labeled as 2.a, 2.b and 3.a use pre-established tunnels.

target the most popular SDN protocol, OpenFlow [8], in our
analysis.

Before we can analyze the performance impacts of cloud-
based OpenFlow controllers and middleboxes on residential
networks, we must first identify how these systems are effec-
tively used in practice. We have identified four broad classes
of modules that may run on the controller. These modules
characterize how SDNs and middleboxes can be used to
manage and protect residential networks. Classes 1 and 2
are distinct, while classes 3 and 4 are extensions to class 2
modules. They are as follows:

• Class 1: Proactive Flow Control Modules: Using proac-
tive rules, controllers can push flows to switches that will
allow forwarding decisions to be made locally without
consulting a controller or middlebox.

• Class 2: Controller-Centric Modules: For these mod-
ules, the controller only needs to see the initial packet in
one or both directions of a new network connection. Such
modules include stateless firewalls, DNS blacklists, and
connection loggers. These modules can be implemented
at an OpenFlow controller without requiring a separate
middlebox that would analyze subsequent packets in the
flow. The network traffic for these modules are depicted
using the dashed OpenFlow traffic and the solid direct
traffic lines in Figure 1.

• Class 3: Partial Connection Middlebox Modules:
These modules must consume a relatively small portion
of a connection’s actual payload to function correctly, but
do not need to be involved in the full connection. Such
modules include deep-packet traffic classification tools or
security tools that validate the initial handshaking process
of a connection, such as our own TLSDeputy [7] module.
These modules can use a “loopback” approach, as shown
in lines 2.a and 2.b in Figure 1, in which the OpenFlow
switch essentially temporarily redirects communication
for the connection through a tunnel to a middlebox before
receiving it again and delivering it to the destination, as
shown in line 2.c. The tunneling allows the middlebox to
inspect the payload. Once the middlebox has finished ana-

lyzing the connection, it then informs the SDN controller
to remove the indirect looping process. Accordingly, the
remainder of the connection proceeds directly between
the end-hosts without middlebox involvement, as shown
by line 2.c in Figure 1.

• Class 4: Full Connection Middlebox Modules: This
class of modules require that all packets in the flow, in
both directions, be inspected by the middlebox module
for the life of the connection. Example modules include
intrusion detection systems (IDSes) and anonymizing
proxies, since any packets that bypass the middlebox
would undermine the module’s mission. The traffic pat-
tern for this approach is shown with lines 3.a and 3.b in
Figure 1.

A. Performance Implications for Module Classes

With this basic classification of modules, we can begin to
discuss the key performance characteristics of each. Class 1
modules are independent of latency and bandwidth since they
are proactively pushed and not actively involved with new
flows. Class 2 and Class 3 modules are primarily concerned
with latency: they must be involved with each new connection,
but initial handshakes are typically low bandwidth. Class 4
modules affect the entire communication and are thus con-
cerned with all the traditional network performance properties,
including latency, bandwidth, jitter, and packet loss.

Network latency is also a key consideration for web com-
munication since web page retrievals often involve many short
network connections to load HTML files, images, scripts,
stylesheets, and other elements from many servers. These
retrievals can also have dependency chains; for example, a
web browser will not start a connection to load an image until
it retrieves an HTML document that indicates the address of
the image to load. As a result, the latency with the controller
must be incurred with each of these dependent connections.

While web traffic is the biggest traffic type in residential
networks [9], controller applications may optimize for pop-
ular web destinations. When considering a web request for
example.com, the controller may have a pre-existing record



of content providers associated with example.com and push
appropriate rules to the residential router to avoid the need
for future controller elevations for those requests. However,
it is unlikely that a controller would have such records for
less popular destinations and cumulative latency would be a
concern.

Controller applications must also be careful about installing
flow rules to minimize performance implications while achiev-
ing certain security goals. For example, a controller may push
a rule indicating that all DNS queries can be sent directly
without controller involvement, but that all responses must
be vetted by the controller. Since DNS responses contain
the entire query, a DNS blacklisting module, for example,
could perform its work by suppressing or altering the response
without needing to consult the original query. This strategic
minimization of controller elevations is particularly important
as the latency between the router and controller grows. We
discuss controller policy decisions in more detail in Section IV.

B. Measurement Objectives

Class 1 modules essentially have the same performance
overheads as traditional networks since only proactive rules are
used. However, Classes 2, 3, and 4 each have latency concerns
and thus are concerned with the same research question: What
latency impacts will an OpenFlow controller running in the
public cloud incur? We discuss this problem in detail in
Section III.

Class 4 modules are concerned with characteristics such as
throughput, packet loss, and jitter and essentially represents
the middlebox placement problem. Fortunately, the middlebox
placement problem allows more flexibility: as long as the mid-
dlebox has a reliable, high-throughput path to the residence,
the placement is geographically independent. Further, cloud
providers are routinely used to host sites and resources that
consume high throughput and demand reliable connections,
such as video streaming providers or VPN endpoints. Since
existing systems already meet these requirements, we focus
our efforts on latency concerns.

III. THE CLOUD CONTROLLER PLACEMENT PROBLEM

The placement of an OpenFlow controller with respect to
its controlled switches has previously been recognized as an
important problem [10]. Latency is the primary consideration
when placing the controller. In enterprise or data center
networks, the controller can be placed in the same LAN.
Unfortunately, such in-network placement is often infeasi-
ble for residential network settings. We are thus interested
in understanding the feasibility of deploying a cloud-based
controller for residential users.

A. Measurement Methodology

We now detail our methodology for measuring and under-
standing the feasibility of outsourcing an OpenFlow controller
to a cloud server given the current residential network con-
nectivity present in the continental United States (US). We
focus on the continental US given its broad geographic region,
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Fig. 2. Geographic map of Mechanical Turk users and our cloud measurement
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diverse last-mile network connectivity, and its mixture of urban
and rural residences. We leverage four popular public cloud
platforms: Amazon EC2, Google Cloud Platform, Microsoft
Azure, and Digital Ocean. Using these services, we host a total
of 12 measurement servers inside virtual machines (VMs).
In addition, we also include a server running in a VM at
our university. These servers are geographically spread across
US, as shown in Figure 2. We then recruit residential users
to perform connections to each measurement server using
Javascript from their own computer as shown in Figure 3. We
collect network-level data using packet captures and use the
packet captures for measuring latency. This collection occurred
during a two-week period in August 2016.

Using Amazon’s Mechanical Turk service [11] we recruited
participants and provided them with modest compensation to
visit a speed testing website 1 that we hosted at our institution.
Through that service, we initially recruited a total of 497
unique participants. However, we had to exclude users that
did not meet our eligibility criteria, namely that the user
is located in the United States and is using a residential
network connection (which excludes VPNs, cellular connec-
tions, and corporate networks). We used a combination of
reverse DNS, IP geolocation databases, and an examination
of the IP address’s associated network provider, we filtered
our participants to a total of 270 eligible participants.

1Available at http://speedtest.wpi.edu/.
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Fig. 4. RTT measurements and the resulting page loading time (PLT) analysis based on those RTT measurements. We compare the PLTs by fetching top
Alexa 100 websites at different controller latencies on our consumer-grade TP-Link switch from a residential network and observe how PLT is affected.
Finally, we compare our consumer-grade switch to an enterprise-grade HP switch in that same residential network to determine the hardware’s impact.

During the speed test, the residential user’s browser first
downloads a JavaScript file that contains URLs that can be
used to access our distributed cloud VMs. The browser then
runs the script to establish HTTP connections to all our VM
servers. We calculate the round trip time (RTT) between the
residential user and all cloud servers using packet captures
collected at the VM servers.

B. Round Trip Times to Cloud Controllers

Figure 4(a) shows the network latency performance for US
residential users with the current cloud infrastructure. We find
that more than 70% of Mechanical Turk users are within a 25
ms RTT and roughly 90% are within a 50 ms RTT to two or
more of our cloud servers. Our latency measurement results
indicate the promise of hosting OpenFlow controllers such that
a large fraction of the US-based users can be within a small
RTT of at least one cloud-based controller.

C. Quantifying Performance Impact with Page Load Time

To put the controller RTT into perspective, we examine web-
related traffic which is often composed of many short network
flows, which are the worst-case scenario for controller latency
since the latency cannot be amortized over the length of a
longer connection. Further, web traffic is an important category
that dominates residential traffic [9]. We quantify the latency’s
impact on web browsing by measuring the page load time
(PLT) of popular domains from a residential network.

When performing this study, we use an unoptimized Class
2 controller module as an example. In other words, each con-
nection to fetch remote resources, from DNS, website servers,
CDN servers or advertisement networks, needs to be approved
by the Floodlight SDN controller [12] twice: once for the
first packet in each direction of a flow (e.g., both the TCP
SYN packet and the matching SYN+ACK packet). Thus every
PLT measurement requires every new flow to be independently
approved by the Floodlight OpenFlow controller and results in
an additional entry in the flow table.

The PLT is defined as the time interval between the start
of the first connection and when the browser signals the on-
load event, which we capture using events triggered in the
Chrome browser as discussed by Bell et al. [13]. Intuitively,
assuming the residential user’s request to a domain is fulfilled
by the same set of end resources, PLT can be impacted by (1)

the network latency between residential SDN router and the
OpenFlow controller, (2) the maximum length of dependent
network connections, and (3) the residential router’s inherent
ability to process OpenFlow traffic.

From a residential network, we measure PLT for the top
100 Alexa US domains. To measure the PLT of a particular
domain, we modified a popular open source Chrome exten-
sion [14] to record the time it takes for the page load event
to occur [13], [15]. We repeat the PLT measurement 25 times
for each site, each time with a clean browser cache. We then
report the median PLT for that site.

To study the impact of RTTs on our residential SDN
architecture, we used an in-LAN controller and artificially
added latency to the controller’s reply, allowing us to explore
the impact of a network RTT ranging from roughly 0 ms to
50 ms. Based on our results (shown in Figure 4(a)), 90% of
users can reach a cloud-based controller within a 50 ms RTT.
Therefore, we believe the performance degradation observed
with a 50 ms RTT is a reasonable upper bound for our
experiments. In Figure 4(b), we plot the median PLT for all
top 100 Alexa domains. Our results show that redirecting all
new connections to an OpenFlow controller increases the PLT
from approximately 4 seconds without OpenFlow to 6 seconds
with OpenFlow at the 50th percentile of Alexa sites. In all,
we conclude that the performance degradation in the form
of median PLTs is mostly attributed to the existence of the
controller and the flow elevation process.

Importantly, this exploration focuses on an unoptimized
controller module. With optimizations, such as only examining
a single direction in the flow or by proactively allowing traffic
to known content providers, the PLT could be dramatically
reduced. We discuss this in greater detail in Section IV.

D. Impact of Router Hardware on Page Load Time

We also investigated whether the hardware of consumer-
grade routers would be a factor for this approach. We com-
pared an enterprise-grade HP 2920-24G OpenFlow switch with
a consumer-grade TP-Link Archer C7 router running Open
vSwitch. As one might expect, the enterprise switch nearly
always outperforms the consumer router in the 0 ms and 50
ms latency environments, as shown in Figure 4(c). The HP
switch has multiple advantages, including more memory and
hardware flow tables. However, our measurement process also



gives the HP switch a built-in advantage: the TP-Link router
supports TLS and was enabled in our experiments, since a
practical deployment requires TLS for the OpenFlow connec-
tion. Since the HP switch does not support TLS connections, it
was not responsible for the inherent encryption and decryption
operations for each message. The overheads associated with
TLS are unclear without further experimentation.

E. Controller Latency Summary

Our measurement results indicate there is a 2 second
increase in median PLTs in the worse case scenario when
using a cloud-hosted controller at a 50 ms RTT. As the cloud
becomes more distributed, we expect the median PLTs to
drop proportionally to the minimal cloud latency. Further, as
consumer router hardware improves, the overall latency may
also improve.

IV. DISCUSSION

When considering the deployment of cloud-based Open-
Flow controllers, there are a few different possibilities for
improving performance in residential networks. First, there is
the possibility to deploy more cloud data centers in order to
reduce latency to homes but potentially at higher computing
and infrastructure costs. Second, we could consider improving
the hardware deployed in the home as we have shown a
commodity router’s ability to process OpenFlow packets is
limited. Finally, a more immediately and practical approach
to improving residential SDN performance would be to fine-
tune policy at the controller to limit switch requests while also
meeting security goals. We now expand more on controller
policy considerations.

OpenFlow controllers can be configured with different types
of policy and rule creation strategies which directly affect
the number of elevations required for a new connection. One
type of policy, using coarse-grain rules, employs wildcards
for network addresses or transport layer ports. With such
wildcarding, it is possible for multiple network connections to
use the same policy rule. This allows the OpenFlow switch,
such as a residential router, to manage subsequent connection
matching the policy rule without an additional elevation. In
our analysis, we focused on fine-grained flow control policies,
in which no wildcards are used for network addresses or ports.
This means each new connection requires an elevation to
the controller. As a result, our analysis essentially captures
the most conservative estimate of the impact of a cloud-
hosted OpenFlow controller. The performance of coarse-grain
rules would essentially blend our analysis with that of direct
connections, with cache hits incurring no additional latency
and cache misses having latency similar to our observations.

OpenFlow controllers may choose how they install rules
in the OpenFlow switch. Upon receiving an elevation for
the first packet in a new flow, the OpenFlow controller may
choose to proactively approve the flow bi-directionally or only
uni-directionally (essentially, just approving the connection
initiator to reach the responder). If the controller installs only
a uni-directional rule, any response would also be elevated

to the controller, incurring a second round of latency to
the controller. In our experiments, our controller installed
rules uni-directionally and thus required two elevations to
the controller for each new connection (e.g., both the SYN
packet and for the SYN+ACK packets in the TCP handshake).
Accordingly, our results are again conservative. A controller
installing bidirectional rules would essentially incur half the
number of elevations and could be twice as far away while
obtaining reasonable performance. Such controllers may be
usable for over 90% of residential users since they are less
latency sensitive.

V. RELATED WORK

Project BISmark [16] is the most well-known body of
work in residential networks. Project BISmark extends Feam-
ster’s [17] position paper on outsourcing home network secu-
rity to third-party experts who can better manage the home
networks. BISmark has been used for extensive performance
characteristics of residential network ISP’s [18] and wireless
performance [19]. However, BISmark has not examined con-
nectivity to public cloud infrastructure or the implications of
hosting a cloud-based controller or NFV middleboxes. Instead,
the approach measures connections to M-Lab servers, which
are often hosted at academic institutions and may not be
representative of commercial clouds. BISmark’s core system
uses locally installed applications on the router rather than
using OpenFlow. A BISmark extension [20] does use a remote
OpenFlow controller, but not for actively managing individual
flows. Instead, that project queries a set of static rules on
the OpenFlow router to gather statistics to help users enforce
network usage caps.

Additional research has focused on deploying SDN within
the home. The Homework project [21] uses a PC acting as
a router running an OpenFlow controller within the LAN
to understand HCI aspects of LAN network management.
Yiakoumis et al. [22] proposed using the FlowVisor [23] tool
to allow an ISP to facilitate the management of certain home
devices by outside service providers, such as utility companies.
They measured the impact of an OpenFlow controller that was
within 16ms of 7 homes. Their limited study does not provide
enough data on viability for nation-wide deployments of SDN
and NFV solutions. HomeVisor [24] considers the variation
in packet delay when slicing home networks. Lee et al. [25]
suggest using cloud-based SDNs for auto-configuration and
identification of devices, but only considers the overhead of
the configuration and identification protocol rather than all
network traffic. Finally, our past work of a whole-home proxy
solution [6] and a cloud TLS verification and revocation
approach for the home [7] did not explore the performance
of the approaches on a broad scale.

In enterprise networks, researchers have considered out-
sourcing network functionality through cloud or third-party
services [26], [27]. However, enterprise networks differ greatly
from home networks, including far different network connec-
tivity [18], leaving unresolved questions about the feasibility
of such an approach in residential networks. One large scale



attempt to outsource in the enterprise is APLOMB [28].
APLOMB outsources network functionality to the cloud using
a specialized network gateway. Further, this approach requires
DNS modifications to support redirection to cloud MBes from
clients. This strategy that is not applicable to most residential
networks as they do not host services that require DNS.

Finally, Persico et al. [29] explored the intra-cloud through-
put performance of virtual machines at the Amazon EC2 cloud
provider. Their experiments showed high throughput for VMs,
confirming the cloud has adequate networking resources. Our
work focuses on communication between cloud VMs and
residential networks, exploring potential bottlenecks between
clouds and their home users.

VI. CONCLUSION

In this work, we characterize residential network connec-
tions to cloud infrastructure. Using Amazon’s Mechanical
Turk, we recruit 270 participants across the United States and
use in-browser instrumentation to direct participants to connect
to various cloud instances hosted by 4 major providers in dif-
ferent geographical location. We characterize the connections
using packet captures on the servers we controlled. With this
data, we examine the OpenFlow controller placement problem
for residential SDNs and found that 90% of users were within
50 ms of a cloud instance. While this latency is most likely
to affect the web browsing experience, due to its interde-
pendent objects and connection characteristics, optimizations
can reduce this effect. With these results, we conclude that
residential SDN and middleboxes are feasible for roughly
90% of US users even when limited to publicly available
cloud VMs. In order to improve residential SDN performance
in the future, we can consider multiple avenues including:
(1) more data center deployments to provide lower latency
connections to homes, (2) higher performance hardware in
residential routers, or (3) fine-tune OpenFlow controller policy
to reduce flow requests to the controller while maintaining
operational control of network communication.
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