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Abstract—Network operators can better understand their net-
works when armed with a detailed understanding of the network
traffic and host activities. Software-defined networking (SDN)
techniques have the potential to improve enterprise security, but
the current techniques have well-known data plane scalability
concerns and limited visibility into the host’s operating context.

In this work, we provide both detailed host-based context and
fine-grained control of network flows by shifting the SDN agent
functionality from the network infrastructure into the end-hosts.
We allow network operators to write detailed network policy
that can discriminate based on user and program information
associated with network flows. In doing so, we find our approach
scales far beyond the capabilities of OpenFlow switching hard-
ware, allowing each host to create over 25 new flows per second
with no practical bound on the number of established flows in
the network.

I. INTRODUCTION

By fully understanding the network activity from end-

systems, network operators can mitigate security risks, such

as data exfiltration, the spread of malware or system compro-

mises. In traditional systems, network operators are typically

blind to intra-subnet traffic, since hosts directly forward the

traffic without traversing security enforcement and monitoring

devices. Recent innovations, such as the software-defined

networking (SDN) paradigm, hold the potential to partially

address the problem: with appropriately crafted fine-grained

flows, the OpenFlow protocol [27], a widespread standard in

the SDN community, allows a centralized controller to learn

each time a new network flow is created.

While SDN approaches hold promise, they face two sig-

nificant challenges: 1) fine-grained flows in OpenFlow’s data

plane controls do not scale to large networks [11] and 2)

OpenFlow is inherently blind to end-host activities, since

it operates in switches and routers. Studies on OpenFlow-

compatible switches show that some switches are only able

to handle 150 new flows per second while others handle

750 flows per second [40]. Other work has found that some

commonly-used switches have high-speed TCAM memory

limits of 2000-4000 entries and that, in some cases, memory

swapping between TCAM and slower-speed memory can

reduce the switch’s new flow capacity to only 12 flows per

second [24]. These switch limitations can induce performance

bottlenecks and denial-of-service conditions even with benign

traffic; in adversarial conditions, adversaries can easily induce

switch thrashing to create network outages [36].

Beyond scalability concerns, OpenFlow does not provide

network operators with detailed visibility into the end-hosts

operating on the network. The OpenFlow standard creates

matches based on network headers, but this information may

not be semantically meaningful. As an example, a popular

video conferencing application uses ports 80 and 443 for

communication [29], even though these ports are intended for

HTTP or HTTPS traffic. Without application layer proxies or

deep packet inspection tools, operators cannot determine the

actual origin or destination of the traffic or correctly determine

if the traffic is communication between a Web browser and

Web server. Even more concerning, malware can take a similar

approach to create connections that look like Web requests

while actually communicating to exfiltrate information or for

command and control [8]. Network operators need details

about the host context surrounding the network request to

make informed access control decisions.

In this work, we ask two research questions: 1) How can we

scalably obtain flow-level information for all network traffic?

and 2) How can we provide network operators with detailed

context surrounding each network flow?

To answer these questions, we embrace the “dumb network,

smart hosts” stance. We take the OpenFlow agent function-

ality out of network switches and routers and instead place

equivalent functionality in the end-hosts themselves, as shown

in Figure 1. In doing so, we create an SDN approach that

provides detailed host context and can scale to large networks

while still yielding high performance.

Our contributions are the following:

• Host context for all network flows: We allow opera-

tors to craft detailed policies for flow authorization that

include information about the applications creating the

traffic. The approach is modular and allows the commu-

nication of arbitrary context. As an example, we created

a policy that tracked applications and users and allowed

only root-installed programs to access the network. We

found that even this simple policy would successfully

block multiple malware attack vectors while introducing

low performance overheads.

• Scalable, fine-grained flow-based access control: We

address the “southbound” or data-plane scalability con-

cerns in OpenFlow by leveraging the distributed com-

puting power of the end-hosts to apply the rules that

hardware switches would otherwise be required to man-

age. This allows the hosts to apply fine-grain rules

while allowing the hardware to apply coarse-grain rules,

providing scalable, detailed network understanding. Even



in our unoptimized setup, we found that hosts could

create 25 new flows per second and established flows

introduced no new constraints on the hosts, scaling far

beyond the capacity of TCAMs in modern OpenFlow

hardware. Further, the approach introduced only 38 ms

of delay to flow establishment.
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Fig. 1: Integrating SDN functionality in host-based agents

allows use of legacy switch infrastructure.

In creating this approach, we note that it can be deployed

immediately and inexpensively using standard enterprise soft-

ware deployment tools [30]. This allows organizations to

incrementally adopt the approach with minimal effort and no

capital costs.

II. RELATED WORK

We briefly describe OpenFlow, work related to fine-grained

flow scalability, and research surrounding host-context in

SDNs.

A. OpenFlow Fine-Grained Flow Scalability

OpenFlow allows the specification of fine-grained match-

ing criteria, but the use of fine-grained matching introduces

considerable scalability concerns. Curtis et al. [11] found

that commodity OpenFlow switches are not built to handle

the number of fine-grained flows organizations see today. As

a result, they encourage aggressive use of broad, wild-carded

OpenFlow rules when possible. This choice trades network

visibility and control benefits for performance and scalability.

Other work has shown that some OpenFlow switches can

support between 750 and 2,000 flows, with an unspecified

number of flows being stored in software tables [22]. Even top-

end OpenFlow switches, such as the IBM RackSwitch G8264

switch [20], have a maximum of 97,000 OpenFlow rules [16].

The inability to handle fine-grained flows scalability makes

OpenFlow switches a target for denial of service attacks [36].

Wang et al. [40] noted the poor performance of OpenFlow

hardware switches with fine-grained flows. They proposed a

tunneling solution that redirected traffic to distributed virtual

switches (called Open vSwitch) running in computing hy-

pervisors. Our approach is similar in that it also uses SDN

agents in host software to achieve scalability. However, our

approach differs in that our SDN agent runs within the host

operating system itself, rather than in a hypervisor. This

distinction allows us to 1) obtain detailed context about the

host’s environment and 2) support end-hosts that do not use

virtualization, such as client machines.

B. Extracting Context from End-Hosts

Ethane [9], an early SDN implementation, sought to en-

hance network security by allowing network operators to write

detailed security policy that could include named entities such

as users, end-host machines, and access points. Unfortunately,

Ethane is a switch-based SDN approach, like OpenFlow, and it

lacks information from the end-hosts that is needed to enforce

the policy about users. Our work embraces the ideals of Ethane

and augments it by instrumenting end-hosts and providing

controls that allow policy enforcement using named entities,

such as users and applications.

HoNe [14] provides process attribution by correlating net-

work traffic to processes. The approach lacks centralized coor-

dination and does not support arbitrary host context or embrace

the SDN paradigm. Dixon et al. [12] use virtual machines

and TPMs to allow network administrators to securely push

network management to the end-hosts themselves but they

lack situational awareness inherent to OpenFlow based SDNs.

Parno et al. [34] present an approach called Assayer that uses

end-host TPM capabilities to explore performance and security

aspects of networks where the end-host verifies state already

being maintained locally (e.g., number of packets sent) rather

than requiring another device to determine the state manually.

Participating systems push policies to off-path verifiers that

supply clients with tokens to allow continual communication.

Assayer’s approach does not follow the OpenFlow SDN

model, is reactive, and does not scale when attestation is

required on a per packet basis.

Naous et al. [32] proposed a revision to the ident [21]

protocol to allow a remote system to query for details about

the application and other information associated with a flow.

The authors designed ident++ to work under the OpenFlow

protocol to allow network operators to delegate administration

of end-hosts from a centralized operator to local operators

in the network. Our work shares the goal of fusing end-host

information with network control with ident++. However,

ident++ does not describe or evaluate an implementation of

the approach nor does it indicate how it would overcome the

inherent scalability concerns of fine-grained flows in a switch-

centric SDN architecture. In our approach, we take a host-

based approach to address scalability. We then create and eval-

uate an implementation of the approach, both using a native

OS solution and using a bump-in-the-wire implementation.

Other approaches have focused more on the context avail-

able on an end-host and how to extract this information for

automated systems to better understand a user’s workflow.

These works can augment our approach and range from col-

lecting mouse-clicks and keyboard presses [10] to application-

specific implementations such as the user’s interaction with a

web browser [26], [41]. Each of these approaches can be used

to inform the host-based agents in our architecture, providing

more context on the system’s operation and enable stronger

policies to be written.



III. THREAT MODEL: USER-LEVEL ADVERSARY

We deliberately scope our threat model to yield tangible

results to many organizations in common scenarios while

describing avenues to relax the stronger assumptions. In our

threat model, we consider an external adversary that has

compromised a user-level account on a system inside the

defending organization’s perimeter. The following are our two

key assumptions.

• Trusted Operating System: Most host-based defenses,

including anti-virus software, software firewalls, and host

intrusion detection software assume that a system com-

promise only occurs at the regular user level, consistent

with the best practice of “least user privilege” [35], [38].

We share this assumption, but note it may be relaxed

using techniques such as trusted computing hardware

or virtualization with trusted hypervisors. Even without

such innovations, our approach can directly address many

common user-level compromise attacks.

• No Physical Attacks: We focus on an adversary that

lacks a physical presence inside the organization; other-

wise, an adversary could sabotage systems and or use

custom hardware to bypass our implementation. While

we may address physical attackers in the future, we note

that many attacks are launched remotely.

Since our approach instruments end-hosts, we focus on

devices that can be modified by an organization’s IT staff.

For legacy devices (e.g., network printers) or “bring your own

device” equipment, organizations can use individual VLANs

to isolate the devices and proxy all the device traffic through a

trusted network forwarding system. This approach allows full

flow-management compatibility for these devices, albeit with

a performance overhead.

IV. APPROACH: SDN VIA HOST AGENTS

Given OpenFlow’s scalability concerns and lack of host

context, we instead take a host-based approach. We push all

of the fine-grained rule matching and control to system-level

software agents running on each of the hosts. The network

infrastructure may continue using coarse-grain rules, whether

in a legacy enterprise network or in a network using OpenFlow.

The approach only minimally affects end-host performance

and scalability because these end-hosts already manage per-

flow state to manage the connection, as in TCP connections.

In describing our approach, we provide details of our refer-

ence implementation on the Ubuntu Linux operating system.

While the details of the approach will vary across operating

systems, the concepts are consistent and similar functionality

may be available. To enable communication between agents

and the controller, we used asynchronous messaging with

the Twisted framework [39]. These components were not

optimized for performance and thus are conservative estimates

of what would be possible in a production implementation.

While the approach is intuitive, it achieves powerful out-

comes. Our system not only replicates the elevation and

caching paradigm of traditional OpenFlow, it further supports

actions analogous to the “actions” in OpenFlow [2]. Some

details of the behaviors may differ slightly as OpenFlow

resides within network switches capable of controlling the

datalink layer. Being a host-based implementation, our ap-

proach natively works at the network layer and above, though

we do have the ability to influence datalink layer actions. We

note that in addition to replicating the OpenFlow functionality,

our approach scales even to extremely large networks as

the end-hosts only store entries for their own flows and the

logically centralized controller can be physically implemented

using distributed controllers [37].

In addition to flow-based controls and context, our approach

has the following features:

• A capability to arbitrarily route traffic through proxies,

IDSes, and other middleboxes,

• A modular design allowing arbitrary plug-ins to enable

additional host context on demand,

• Explicit notification to network controllers when a flow

ends, allowing accurate real-time network flow insight,

• Optimal traffic filtering at the source host to avoid net-

work overheads, and

• Avoids the need for kernel or application modifications

by using established kernel features.

We now describe how we achieve each of these outcomes.

A. Host Agent: Intercepting Packets

Our host agent does not require special kernel or application

modifications. However, the agent does run with administrator

privileges, allowing it to manage the system’s configuration

and operation. Similar agent-based system administration tools

are popular in large enterprises [30] and the agent software can

be installed as a system service using traditional enterprise

software deployment mechanisms. As a result, organizations

can quickly and easily deploy the technology across parts or

all of the enterprise network.

In our implementation, we leverage the connection marking

feature of the iptables firewall: when a flow has been

vetted, we update the marking value stored in the kernel’s

connection tracking table. We then use the Linux kernel’s

netfilter_queue library to tell the kernel that it should

intercept any unmarked packets and send them to an agent

running on the host. We further update iptables to create

a special “drop mark” that can be used to discard all packets in

connections that have that marking. Therefore, if the controller

ever decides to disallow a network flow, it may command

the sending host’s agent to set the drop mark on the flow,

causing all packets in the flow to be dropped (either silently or

with an ICMP error to the sending application) before entering

the network. Accordingly, a controller can squelch malicious

behaviors efficiently, with no overhead or state in the network.

This allows the controller to easily mitigate traffic floods.

In Figure 2, we provide an overview of how the SDN

agent manages an end-host. When two communicating parties

are using our approach, the process shown in Figure 2 is

completed by both participants. In this process, the initial

packet transmitted will not match any existing approved kernel
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Fig. 2: Overview of kernel and agent communication. Dashed

lines represent network traffic while solid lines represent

intra-system communication. The bold, blue letters indicate

measurement points for the performance evaluation in Table I.

flow, which is specified using the network layer addresses,

transport protocol, and transport layer ports. Accordingly,

while the packet is queued for transmission in the OS kernel,

our SDN agent will extract the packet from the kernel queue.

Once the agent has intercepted the application’s packet, it

analyzes it and determines the context for the communication

(Figure 2, steps 3 and 4). The agent is extensible and can en-

code and transmit arbitrary host context from any data source

on the end-host. As an example, the agent may determine the

owner and executable path associated with the process and

provide this context. The agent then transmits a message to

the SDN controller (Figure 2, step 5), which contains the flow

tuple and the extracted host context, and requests instructions

from the controller and, if desired, the packet payload as well.

Once the host agent receives a response from the SDN

controller, the host agent will install appropriate NAT, fire-

wall, routing and forwarding rules supplied by the controller

(Figure 2, step 7). The agent then indicates the flow should

not be diverted to the agent in the future. In our Linux imple-

mentation, we use a temporary iptables rule to update the

marking for the flow to indicate the flow is authorized. The

agent then signals netfilter_queue to release the packet,

providing the altered version if requested by the controller.

Unlike in OpenFlow, where the controller does not directly

learn when a connection ends, the host agent can inform the

controller about connection terminations. In our implementa-

tion, we intercept the CONNTRACK_DESTROY kernel event

using the netfilter-conntrack library and alert the

controller. OpenFlow instead uses timeouts to approximate

when a connection ends, causing the flow to be re-elevated

to the controller if it continues. In our implementation, we

use the netfilter-cttimeout library to re-create this

functionality. Our approach allows the controller to have real-

time knowledge of the network, rather than relying upon

timeouts to approximate the network activity.

Normally, the controller will allow the host to forward

packets using its default routing table. However, the controller

may choose to specify an arbitrary next hop for the flow

instead. This can be used to proxy traffic through a third-

party, such as an IDS or application-layer firewall. To do so,

the controller orders the host-agent to create a unique routing

table for each available next hop. The table contains a single

entry: a default route to the controller’s desired next hop. The

controller can then use policy routing to specify which flows

should use the alternate routing table. In our implementation,

we use the Linux ip-rule command to manage the routing

policy database (RPDB). We create a policy rule indicating

that the connection marking from the controller should be re-

used to determine which routing table to use. This allows the

controller to specify the default routing table or an arbitrary

secondary routing table, dictating the connection’s next hop

behavior. Next hop hosts, and by extension the connection

marks associated with each, can be reused across connections.

The alternate routing tables can forward to a host inside the

subnet, specify a host outside the subnet, or even indicate

that traffic should be tunneled via a specified waypoint. At

any time, the controller may alter or remove the forwarding

instructions without interrupting the flow.

Since the host agent runs on both the initiator and responder

systems, the controller will have the ability to control all

network flows as long as one of the participating end-host

deploys the agent. Accordingly, the approach grants operators

full access control and at least partial host context for the

communication. If both hosts deploy, the controller can fuse

the context on the initiating and responding systems for a

comprehensive view of the system.

B. Host Agent: Extracting Operating Context

Given the administrator privileges of the host agent, it

can gather arbitrary information from the host and transmit

it to the controller. The agent can be modified to gather

whatever information is needed for the network operator to

write effective policy. Accordingly, in our implementation,

we used a modular design that can include any number of

arbitrary plugins to provide context from the host to the

controller. In our initial implementation, we built a plugin

to provide information about the process associated with a

specified network flow along with the owner and user group

associated with the process.

Starting in v3.18, the Linux kernel’s netfilter_queue

library allows the agent to determine the user name and group

associated with the extracted packet. To gather data about

the process using the socket, we use an approach similar to

lsof. Once we obtain the process ID associated with the

socket, we extract additional details from /proc, including

the executable path associated with the process and the com-

mand line arguments used when the executable was launched.

We examine the executable path and indicate whether any

directory or file in the directory path is owned or writeable by a

non-root user. We further collect similar information about all



the process’s ancestors (e.g., parent process). We also collect

whether a given ancestor is a shell or a GUI coordinator (such

as a window manager).

Future plugins could easily extract context about the con-

nection’s flow rate and number of bytes transferred or other

system features, such as resource activity (e.g., CPU load,

memory consumption, disk I/O) or integrate with SELinux

policy and containers.

C. SDN Controller

While our work focuses on modifying end-hosts to provide

greater context to the network controller, the controller itself

is an important consideration. In the future, we plan to make

implementation enhancements for improving performance.

However, our current implementation is a Python controller

that interprets fairly simple policy and pushes rules to the host

agents.

V. SECURITY ENHANCEMENTS: CONTEXTUAL POLICIES

The increased visibility and control inherent in the fine-

grained flows we enable can directly empower security sys-

tems [15], [17], [23]. Further, our approach enables new

network security policies. We now describe such policies and

their potential.

Network operators can use a variety of contextual lan-

guages, such as POL-ETH [9], Flow-based Security Language

(FSL) [18], and Flow-based Management Language [19], to

specify the high-level policies for a network. While these

policies are amenable to formal analysis, their current instan-

tiations are unable to distinguish among multiple users on a

system. While prior work proposed such differentiation in the

future [32], to our knowledge, our effort is the first to actually

do so. Further, our approach provides additional contextual

information from the end-host that was not considered in some

of these prior efforts.

To illustrate the power and simplicity of the policies avail-

able, we provide an example for a Linux environment that was

not possible to enforce in prior work and highlight the power

associated with it. We express the policy in English, while

noting the policy can be easily translated into programmatic

conditions. The policy is written with the intention that it

would be considered in order and in a short-circuited manner

(i.e., the first applicable grant or deny decision is used and

processing aborts without considering subsequent steps).

1) Allow Administrative Processes: If the process request-

ing network access is owned by user ID 0 through 999,

grant access.

2) Deny All User-Installed Programs: If the process re-

questing network access, or any of the process’s ancestors

(e.g., such as its parent process), was started from an

executable that was not installed by an administrator (i.e.,

one or more files or directories in the program’s path are

owned or writable by a regular user), deny access.

3) Default Allow: Allow network access by default.

This policy allows administrative background and daemon

processes to run (rule 1) and ensures that only process from

trusted, administrator-installed sources can use the network

(rule 2).

This policy can act as a template that can be tailored

to additional organization constraints. For example, standard

network firewall policies could be inserted at the beginning

of the chain, since they do not require knowledge of the host

context. Application-specific constraints, such as only allowing

certain Web browsers or applications with specified command-

line parameters (e.g., options to disable Javascript), can be

inserted between rules 2 and 3.

While this work focuses on policy incorporating host con-

text, policy enforcement is flexible and can also contain more

traditional network policies such as connection rate limiting

and network isolation between hosts.

VI. EVALUATION

To demonstrate and evaluate our approach, we create an

implementation in a small network of virtual machines (VMs).

These VMs run on a single server with 16 cores operating at

2.8 GHz and 64 GBytes running a KVM hypervisor. Each

client system is allocated a single core and 512 MBytes of

RAM. The network controller is allocated two cores and 2048

MBytes of RAM. All machines use Ubuntu 14.04 Server as the

host operating system. For timing analysis, each host runs an

NTP client and the VM server’s host operating system runs an

NTP server to keep the VM clocks synchronized. Each host

has iptables preinstalled and we load the conntrack

kernel module to allow fine-grained manipulation. The hosts

are configured to ignore ICMP redirect messages, which can

be generated when an intermediate hop is specified for a

connection between hosts in the same subnet. Though enabled

by default, ignoring such ICMP messages is a good security

practice [7], [25].

To evaluate the approach, we consider the performance

of the agent instrumentation, the data plane and controller

scalability across the network, and the effectiveness of the

security policy.

A. Host Agent Performance

When considering an SDN system, the performance of the

SDN agent (the data plane) and controller (the control plane)

are the key considerations. While we perform basic perfor-

mance measurements of our unoptimized SDN controller, our

primary contribution is enhancing the data plane. Prior work

that focuses on SDN controller scalability [37] can likewise

be leveraged in our approach.

The host SDN agents, and the kernel components the agents

manipulate, have little impact on memory consumption, CPU,

and network bandwidth (which we verified empirically). The

approach does not introduce any new additional per-flow state,

nor does it involve any computationally-intense operations.

While bandwidth may initially seem to be a concern, the host-

agent interception process is only involved at the beginning of

a connection and only for a single round-trip. Accordingly,

once the connection is established, the traffic incurs no addi-

tional bandwidth or latency overheads.



The key performance metric for our approach, and that of

traditional OpenFlow, is the latency overhead associated with

elevating a new flow to the controller for consideration. In

our approach, we also query plug-ins for host context, which

may introduce additional latency. To characterize the latency

overhead, we rapidly spawn new flows on the host agents and

compare the results to those in traditional OpenFlow.

For this experiment, the host context gathered consists of

the user ID, primary group ID, application path, application

arguments, if the process and all ancestor processes are from

administrator-installed paths, and details about the environ-

ment (e.g. displayed in the foreground or run in a shell).

In Table I, we show the latency introduced by each step

of the process. We see that our SDN agent incurrs a median

of just under 17 milliseconds, with a significant portion of

that time being devoted to gathering the host context such as

the application path as discussed above. Further, this overhead

is only incurred at the beginning of the network connection

and thus may have little impact on actual applications since

it is during the traditional connection build-up phase (in, for

example, TCP’s slow start).

Fig. 2 Steps Median Std. Dev.
Component Description Start End (ms) (ms)

Initial Interception A B 0.088 0.105
Obtain Host Context B C 6.803 1.435
Elevation to Controller C F 3.535 1.688
Controller Decision D E 0.005 0.002
Marking F G 3.976 0.487
Re-queuing G H 0.022 0.005

Overall End-to-End A H 16.72 1.403

TABLE I: Component-wise characterization of latency over-

heads over 1,000 TCP connections. Columns 2 and 3 corre-

spond to the bold, blue letters in Figure 2.

To better understand the performance overheads, we per-

formed high resolution timing on the hosts. We recorded the

clock timestamp at each of the locations of the elevation

process indicated by the bold, blue letters in Figure 2. We

performed these timings on one of the hosts and the con-

troller using ovs-benchmark’s [3] batch mode to create

1, 000 sequential connections. For each connection, the policy

presented in Section V was enforced based on the context

gathered on the end-host. To avoid introducing inaccuracies

from nested timings, we conducted additional trials for the

timings of the overall end-to-end timings with all intermediate

timing samples disabled. We present the results of the timing

experiment in Table I.

From the timing experiment, we can see that the

communication between the kernel and our agent via

netfilter_queue takes minimal time, as does the de-

cision on the controller. Only three steps caused more than

100 microseconds of delay: the gathering of host context,

the round-trip to the controller, and the packet marking

approach. Fortunately, there is significant room to optimize

each of these components. The host context collection can

be parallelized, the communication protocol can be greatly

simplified, and the packet marking can use a more efficient

netfilter-conntrack call rather than forking a process

to invoke the iptables executable. Further, the use of a

compiled language rather than Python would likely greatly

improve performance.

Num. Hosts New Flows/s Median RTT (ms) Std. Dev. (ms)

2 27.4 34 9.48

4 26.7 36 7.46

6 26.0 38 5.52

8 25.5 39 5.86

10 25.1 39 6.09

12 24.6 40 6.67

14 23.2 41 8.26

28 12.4 78 19.93

TABLE II: Round trip times with each host transmitting 1,000

packets.

B. Scalability of the Controller and Agents

In a second set of experiments, we explore the scalability

of our approach with the rapid creation of new flows. In these

experiments, we vary the number of communicating hosts

from two machines up to fourteen, adding two machines each

trial, and run one additional experiment using 28 hosts. Us-

ing ovs-benchmark’s batch mode, each host sequentially

creates 1, 000 new TCP flows to another host. Each hosts

sends and receives the same number of requests to ensure no

host is more overburdened than another. The host receiving a

connection request is not configured to listen for connections

and responds with a TCP+RST to allow the sender to quickly

calculate the RTT. Both the TCP request and response are

elevated to the controller for approval as previously described.

We record the number of new flows per second that a single

host could create. We run an additional experiment with 28

hosts to confirm that our testing infrastructure is limited by

the number of cores on the hosting server. For all experiments,

each host was pinned to a single core.

We present the results of our scalability tests in Table II.

As expected, the median RTT numbers are roughly double the

end-to-end results from Table I because both the initiator and

the responder must contact the controller for approval of the

flow. In the case of 28 hosts, the over-subscribing of the CPU

cores did indeed introduce timing artifacts. When considering

traditional OpenFlow using an Open vSwitch to connect two

hosts, the flows per second are 243.3 and the median latency

is roughly 4 milliseconds. While Open vSwitch has years of

development and is built using a compiled language, thus

achieving better performance, it is unable to provide the

context we can provide in our approach. With further optimiza-

tions, our approach may yield more competitive performance.

In our scalability tests, we induced roughly 350 flows per

second (14 hosts) with each host creating approximately 25

new flows per second. This new flow rate greatly exceeds the

rate in Ethane [9], which induced less than three new flows

per second in the worst case. Importantly, unlike OpenFlow

or other hardware switch-based SDN implementations, all the

data plane flow state is stored at the hosts themselves, elimi-

nating any network constraints on the number of established



flows. In essence, the number of flows created per second and

the total number of flows a host may have are limited only

by the computational resources on the host and the amount of

time to vet the request at the controller. Our timing results

show that our controller can handle around 200,000 new

flows per second by spending around 5 µs on each packet

as shown in Table 2. In practice, the connection processing

overheads may decrease this value. The POX controller, which

is also implemented in Python, can only handle around 35,000

packets per second [13]. Accordingly, we do not expect the

examination of host context in our approach will significantly

degrade the controller’s scalability.

C. Evaluating Policy Enhancements on Security

In Section V, we provided an example policy for the

network controller. In it, the controller will only allow regular

users to create network connections if the process was created

from a root-installed program (e.g., /usr/bin/). We now

evaluate whether such a policy would be able to thwart

persistent user-level malware.

We first perform an experiment using a simulated Linux

malware called n00bRAT [5]. The executable provides an

adversary with the ability to connect to a compromised

machine and run preconfigured commands such as grabbing

/etc/passwd and exfiltrating it. We modified the malware’s

source to run on a non-privileged port to match our threat

model of user-level compromises. Accordingly, any commands

preconfigured in the malware that require root access will be

denied by the OS when attempting execution. The malware

can be delivered through multiple vectors, including as an

attachment in a phishing message or as a drive-by download

on a vulnerable Web browser. In evaluating our policy, we test

a case where a user on a host (that implements our approach)

receives and runs the malware from an email attachment. We

also perform a browser-based attack using Metasploit [4] and

launch the malware using the compromised browser. In both

cases, the malware is denied network access using our simple

policy.

When executed as an attachment in a popular email appli-

cation, the malware begins running as a separate process from

the mail reader’s attachment folder. Because the process was

created by a regular user executing a user-installed program,

our policy denies any connections, preventing the malware

from being able to receive connections and commands from

an attacker. That is, connections both originating from and

destined to the malware will be denied regardless of whether

the remote host is inside or outside of the protected network.

The drive-by download case is more interesting. Using

Metasploit, we use the CVE-2013-1710 vulnerability in Fire-

fox to allow a remote shell to be established with an attacker.

The vulnerability allows the adversary to run arbitrary code

within a new thread in the Web browser. Our policy will

allow the adversary to establish a connection to download

the n00bRAT malware to the user’s machine, since the

Firefox process is root-installed. However, if the adversary

then launches the n00bRAT malware, our policy denies the

malware any network access since it is not root installed. As

a result, the adversary can only have connectivity with the

targeted machine for the duration that Firefox executes. Other

persistence strategies, such as cron-jobs or start-up scripts, will

also fail since the executed malware comes from an untrusted

source.

These results show that even simple network policies at the

controller can significantly affect the spread of malware. With

application-specific policies and greater context, defenders

may be able to detect and prevent the spread of even advanced

malware.

VII. DISCUSSION

We now consider how the approach would be deployed

within an organization and the functionality of hosts when

remote to the organizational network.

A. Partial Deployment

By using software on end-hosts, our approach allows orga-

nizations to use standard software deployment tools to ensure

each of the hosts at the organization deploy the software.

At the same time, organizations may choose to deploy the

approach in a piecemeal fashion, deploying to subsets of

the organization by function (e.g., starting with information

technology staff) or based on machine role (e.g., administrative

systems before development systems). Organizations may also

be constrained by the presence of user-owned devices, such as

in the “bring your own device” (BYOD) approach. As we will

discuss, our approach can interact well with legacy devices and

embedded devices that cannot be altered.

When an organization is in a partial deployment, there are

three scenarios that can arise: both hosts deploy, neither host

deploys, and a mixed case where only one host deploys. The

first case is the focus of the rest of the paper and can be

considered equivalent to full deployment. In the case where

neither host deploys, we degrade to the limitations of a tradi-

tional network infrastructure and lack insight into the traffic

between the hosts. Finally, having a single host participating

in a flow is analogous to an external host communicating to

an internal host. In this scenario, the implementing host can

still enforce any policies set forth by the controller.

Organizations may have a set of hosts that will never

deploy the approach, such as network printers or embedded

devices. To protect these assets, organizations may place each

in an isolated VLAN containing only the single asset and a

proxying device that employs the flow-level access control

of an implementing host. This approach does require the

proxying device to be trusted by the organization and multiple

physical proxies may be required to avoid bottlenecks. Further,

the approach does not gain context inside the host. While

imperfect, this proxying approach does allow a deployment

option to accommodate legacy and BYOD equipment with-

out needing client-side modifications. Organizations may also

consider virtualization techniques where hosts are required to

use virtual infrastructure for policy enforcement [31]. Since



virtualization resides outside the host, these techniques will

also lack host context.

Our ability to support partial deployment means an enter-

prise can strategically choose what hosts they want deploy

the agent on. This is in stark contrast to OpenFlow, which

requires hosts to be physically connected to the same switch

and restricts the deployability process.

B. Compatibility with Non-Linux Hosts

Our initial implementation uses the Linux kernel, but it

can be applied natively on other operating systems, such as

Apple’s Mac OS X and Microsoft’s Windows OS. Mac OS

X’s built-in firewall, pf, is based upon OpenBSD’s firewall

implementation by the same name [33]. BSD systems provide

a special socket interface, called divert sockets, which can be

used to intercept packets for the host agent. Such systems

provide additional support for packet tagging rules and policy

based routing, which are the remaining features needed for

the host agent. In Microsoft Windows, the Windows Filtering

Platform [28] may provide the needed support for host agents,

but further exploration is needed for conclusive results.

Some other devices or operating systems may be unable

to support a native host agent. To support these devices, we

created a bump-in-the-wire solution using a Raspberry Pi 1

Model B+. The device provides all the network control fea-

tures of our approach. We used the device’s built-in Ethernet

card along with a USB NIC to forward and control traffic

between a connected host and the rest of the network. We

tested the device on a host running Mac OS X Yosemite

and a host running Windows XP and confirmed our ability

to control the traffic flows identically to a native solution.

This approach allows for a plug-and-play style deployment

for new devices. However, the approach only supports the

network control functionality; it does not gain host context. A

smaller host-based agent could be used on partially supported

operating systems to gather limited host context and inform

the Pi during connections.

C. Potential for Network Security Policy

In a 2013 study of vulnerabilities on the Windows platform,

researchers found that 96% of the critical Windows vulnera-

bilities and 100% of the Internet Explorer could be eliminated

by removing administrator rights from the user’s account [1].

Further, malware that injects itself into processes, such as the

Zeus botnet [8], will be unable to inject into long-lived system

processes as a user. Instead, the malware would only be able to

inject less persistent user-level processes. While browsers are

an attractive target, since they typically have regular authorized

access to the network, other exploits, such as malicious code

in PDF or word processor documents, may be more easily

thwarted by policy since those applications rarely engage in

network connectivity. Even in Web browsers, policies pre-

venting certain traffic, such as SMTP communication, can

constrain the abilities of injected malware. Simply having

insight into the responsible application can greatly enhance

organizational network policy.

Our system also enables policies for the graceful degra-

dation of mission-critical systems faced with a user-level

compromise. Organizations must make strategic choices about

dealing with compromised hosts on their networks. From a

security perspective, it may be appealing to immediately re-

mediate any compromised systems and restore from backups.

This can compete with the desire to preserve forensics for

prosecution or for counter-intelligence [6]. In other cases,

organizations may have practical constraints that hinder reme-

diation efforts, such as running mission-critical services on the

machine, essential on-going data collection, or even a simply

constrained support staff for the organization. Unfortunately,

in traditional networks, the choices can be rather limited: 1)

isolate the host or 2) allow the host to communicate arbitrarily.

The former approach may hinder mission continuity while

the latter approach may introduce unacceptable risks for an

organization.

In our approach, we enable fine-grained policies with host

context by default, allowing organizations to have flexibility

in responding to a compromise. Rather than fully isolate the

system, an organization may choose to only allow a known

client application on the machine to talk to a whitelisted set

of applications on specific servers in the organization. This

policy would be enforced on the compromised system and

all other hosts in the network. This provides robust control,

including intra-subnet traffic, with minimal disruption to the

network and systems while tightly constraining access. Such a

specific policy can yield tighter controls than approaches such

as OpenFlow or network firewalls, with less risk of collateral

damage, by leveraging host-specific context.

VIII. CONCLUDING REMARKS

Our novel SDN agent approach provides scalable flow-

based monitoring for enterprise networks. With it, organi-

zations can reuse their existing network infrastructure and

incrementally deploy the approach. With logically-centralized

access controllers, operators can understand the context of the

network request, such as the application being used and the

username of the user. This enables richer and more powerful

organizational network policy.

We created a prototype implementation and evaluated in a

real physical network with diverse systems. We evaluated the

approach at a higher scale using a virtual network. In doing

so, we found that our approach incurred minimal overheads.

Our work provides a foundation for potential future work. We

will explore proxying solutions, both physical and virtual, for

legacy devices or assets not owned by the organization. We

will also examine bursty network traffic and how virtualization

and trusted computing technology can be leveraged to relax

some requirements in our trust model. Finally, we will explore

the policy potential for enterprise network systems and how

such policy may be complemented using SDN hardware.
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