
IPSec: Performance Analysis and Enhancements
Craig A. Shue, Minaxi Gupta
Computer Science Department

Indiana University
{cshue, minaxi}@cs.indiana.edu

Steven A. Myers
Department of Informatics

Indiana University
samyers@indiana.edu

Abstract— Internet Protocol Security (IPSec) is a widely de-
ployed mechanism for implementing Virtual Private Networks
(VPNs). In previous work, we examined the overheads incurred
by an IPSec server in a single client setting. In this paper, we
extend that work by examining the scaling of a VPN server in a
multiple client environment and by evaluating the effectiveness
of connection credential caching. Motivated by the potential
benefits of caching, we also propose a cryptographically secure
cache resumption protocol for IPSec connections to reduce the
connection establishment overheads.

I. I NTRODUCTION

IP packets do not have any inherent security. As a result,
there is no guarantee that a received IP packet: 1) is from the
claimed sender, 2) contains the original data that the sender put
in it, or 3) was not sniffed during transit.IPSec[1], [2] (short
for IP Security) provides a method to protect IP datagrams
and is commonly used in Virtual Private Networks (VPNs).
It defines a method for specifying the traffic to protect, how
that traffic is to be protected, and to whom the traffic is sent.
For both IPv4 and IPv6, it offers the choice of two protocols:
Encapsulating Security Payload (ESP) [3] or Authentication
Header (AH) [4]. In order to establish and periodically re-
fresh the necessary cryptographic parameters for both these
protocols, IPSec uses another protocol called the InternetKey
Exchange (IKE) [5] protocol.

While the performance of IPSec has been well studied, less
attention has been devoted to enhancing it. Further, most of
the work has focused only on ESP. Consequently, the current
enhancements involve the selection of hashing and encryption
algorithms that yield better performance for the given system
(in our previous study, AES computations were quicker than
3DES in ESP) and using cryptographic hardware support to
expedite ESP operations.

In this paper, we focus on enhancing the performance of
IPSec by optimizing IKE. As conventional wisdom indicates,
and as our previous work confirmed [6], the public key
operations in IKE take three orders of magnitude more time
than the operations in ESP. This implies that short connections
are dominated by the IKE overheads and provides incentive
for optimization. Thus, the contributions of this paper are
three-fold: 1) we further examine the overheads of an IPSec
server when multiple clients connect to it simultaneously,2)
we analyze 30 days of IPSec VPN usage logs to determine
the utility of using caching techniques at the VPN server in
order to optimize IKE, and 3) we propose a cryptographically
secure cache resumption protocol for the VPN server in

order to minimize IKE overheads. Our results for VPN server
performance in a multiple client setting using Openswan [7],
an open source implementation of IPSec, show that the IPSec
overheads increase more rapidly than the corresponding over-
heads for native TCP/IP implementations. This indicates that,
as expected, the server becomes computationally bounded with
IPSec load, but not with an equivalent volume of unprotected
traffic. Our investigation of caching strategies produces en-
couraging results: caching can cut the number of required
IKE exchanges by50 − 80%. Finally, the cache resumption
protocol we propose can be implemented by using just six
hash operations, making it at least three orders of magnitude
faster than performing an IKE exchange.

The rest of the paper is organized as follows. Section II
briefly describes the relevant IPSec components. Section III
describes the methodology and the results of the multiple
client analysis. We describe the caching-based enhancements
to IPSec in Section IV. In Section V, we present a protocol
to resume connections without requiring IKE. Finally, Sec-
tions VI and VII present the related work and some concluding
remarks.

II. THE IPSEC PROTOCOL

IPSec integrates security at the IP layer. In order to provide
higher layer services that are IPSec oblivious, such as VPNs,
it defines two new protocols,Encapsulating Security Payload
(ESP) and Authentication Header (AH). Both ESP and AH
protocols encapsulate IP packets using ESP and AH headers
respectively.

Both ESP and AH protocols can be used in eithertunnelor
in transport mode. The transport mode leaves the original IP
header untouched and is used to protect only the upper-layer
protocols. As a result, it can only be used between two end-
hosts that are also cryptographic end points. The tunnel mode
protects the entire IP datagram by use of encapsulation and
can be used to protect traffic between two end-hosts, or two
gateways (e.g. routers, firewalls), or between an end-host and
a gateway. Since most VPN deployments use the tunnel mode
due to its flexibility, we focus on it in this paper.

The choice between ESP and AH protocols depends on
the desired level of protection for the IP datagrams. The AH
protocol offers data integrity, anti-replay protection, and data
source authentication but does not offer data privacy. The ESP
protocol offers data privacy in addition to all the features
offered by the AH protocol and is the protocol of choice
for VPN deployment. Consequently, this paper focuses on the

ESP protocol used for forming VPNs, even though much of
it applies to AH as well.

The selection of a cryptographic mechanism is required be-
fore any IP data can be encrypted using the ESP protocol. The
available primitives include using a symmetric key betweenthe
two cryptographic end points or the public keys of the end
points. Since using public key encryption is computationally
expensive, IPSec uses symmetric keys. But, before IPSec can
use symmetric keys to encrypt data, the symmetric keys must
be exchanged. To accomplish this goal, IPSec defines the
Internet Key Exchange (IKE) protocol.

Sections II-A and II-B describe the IKE and ESP protocols
respectively. Due to space constraints, these descriptions are
high-level summaries of the protocols. We encourage the
reader to consult [2] and [6]for more detailed discussion of
the protocols.

A. IKE Protocol

The goal of the IKE protocol1 is to establish and maintain
shared security parameters and authenticated keys betweenthe
two IPSec end points. It uses a series of messages contained
in UDP datagrams, typically directed to port 500.

The IKE protocol consists of two distinct phases. The first
phase establishes a symmetric IKE key between theinitiator
(typically, VPN client) and theresponder (typically, VPN
server). This key is used in the second phase to establish a
symmetric IPSec key for use during ESP or AH encapsulation.

The IKE Security Association (SA)defines the manner in
which two end points communicate; for example, this involves
agreeing on the algorithm used to encrypt traffic, the hash
algorithm, and the mechanism to authenticate the other end
point. IKE defines3 categories of authentication methods (with
4 individual methods) for phase one: the first method uses pre-
shared keys, the next method uses digital signatures (using
RSA or other digital signatures algorithms), and the last two
methods use public key encryption. In both phases, the Diffie-
Hellman protocol is performed in order to exchange the keys.

For better security during longer VPN sessions, IPSec
provides a mechanism to periodically refresh both IKE and
IPSec keys. Refreshing the IKE key entails running both IKE
phases but refreshing the IPSec key only requires running the
second phase again.

B. ESP Protocol

We now describe the processing of IP packets when ESP
protocol is used in tunnel mode in IPSec VPNs. For processing
any outbound packets, the transport layer forwards data to the
IP layer which has been enhanced with the IPSec functionality.
The IP layer consults a locally maintained Security Policy
Database (SPD) that defines the security services afforded to
the packet. The output of the SPD dictates whether the IP
layer drops the packet, bypasses security, or applies security.

1We focus on IKEv1 here due to the availability of an open source
implementation of it. No open source implementation for IKEv2 [8] is
currently available.

If security is to be applied, the appropriate IPSec Security
Association (SA) is consulted by looking up the SA database
(SADB) and the entire IP packet is encrypted and placed inside
another IP packet. To facilitate the processing of the packet at
the other end, an ESP header containing SA mapping infor-
mation and a sequence number (to prevent replay attacks) is
inserted between the new IP header and the original encrypted
IP packet. An ESP trailer containing an Integrity Check Value
(ICV) is also inserted at the end of the new IP packet before
sending it out.

III. PERFORMANCEANALYSIS OF IPSEC VPN SERVERS

In our previous study [6] using Openswan [7], an
open source implementation of IPSec (based on the earlier
FreeS/WAN project [9]), we focused on the overheads for
individual security operations for IPSec protocols in a sin-
gle client setting. We utilized two methods to analyze the
performance impact of the ESP protocol, the IKE protocol,
various encryption algorithms, and various cryptographickey
sizes: 1) measuring run-times for individual security operations
and 2) replacing various IPSec components with no-ops and
recording the speed-up in the run-time of various IPSec phases.
We found that 1) the overheads of the IKE protocol at the VPN
server are three orders of magnitude higher than those incurred
by ESP for processing a single packet, 2) cryptographic
operations contribute23 − 55% of the overheads for IKE
protocol and34−55% for ESP, 3) digital signature generation
and Diffie-Hellman computations are, as expected, the largest
contributors of overheads during the IKE process and little
overhead can be attributed to the symmetric key encryption
and hashing, and 4) symmetric key encryption is the most
expensive operation during the ESP process.

In this section, we extend our previous work by analyzing
the performance of an IPSec VPN server when multiple clients
connect to it simultaneously. The goal was to compare the
difference between a native TCP/IP implementation and when
IPSec is in use. We measured how the file transfer time
changed as the number of concurrent VPN client connec-
tions increased from one to six. Specifically, each client in
our experiments downloaded a56.47MB file from the VPN
server using thewget utility. We choose128-bit AES with
MD5 hashing for these experiments because this configuration
exhibited the least overhead in our previous study. Further, any
IKE or ESP key refreshments are prevented while conducting
the file transfer to avoid causing variations in the results.We
conducted 25 trials for each client configuration. We now
discuss the details of the experimental environment and the
results obtained.

A. Experimental Environment

To conduct our experiments, we used ten x86 Dell Optiplex
GX Pentium IV machines (see Table I for their individual
specifications). They were connected to each another through
1Gbps and100Mbps Ethernet switches. The first machine was
used as the server and ran Debian Linux [10] with a2.6.8

kernel. We disabled the native IPSec support and instead used

CPU/RAM NIC Kernel IPSec
1 1.66GHz/512MB 100Mbps 2.6.8 KLIPS

2-4 1.6GHz/512MB 100Mbps 2.6.14 Native
5-7 1.8GHz/512MB 1Gbps 2.6.14 Native
8-10 2.8GHz/1GB 1Gbps 2.6.14 Native

TABLE I

SPECIFICATIONS OF EXPERIMENTAL MACHINES.

Kernel Level Internet Protocol Security (KLIPS), the shim
provided by Openswan version2.3.1dr3 for IPSec support.
The rest of the machines were used as clients and had Gentoo
Linux [11] with a 2.6.14 kernel. We retained the native IPSec
kernel support for these machines.

B. Experimental Results

We used machine1 as the VPN server and machines2 −
7 as clients for the IPSec case, since these tests were not
bandwidth bound. However, for the native TCP/IP tests, we
had to move to machines5− 10 since bandwidth became the
bottleneck in these tests and machines2−4 had slower NICs.
Figure 1 shows the result of this experiment when the number
of simultaneous clients varied from1−6. Each line in Figure 1
represents the total file transfer time overhttp when IPSec is
in use and when native TCP/IP is used. The observed transfer
time includes the overheads due to the ESP processing during
the VPN connection as well as actual file transfer time over
the network using thewget utility. The results indicate that
the IPSec overheads increase more rapidly than that of native
TCP/IP, because they are computationally bound.

Fig. 1. File transfer time for concurrent transfers (56.47MBfile transferred
25 times to each client using thewget utility).

The average client throughput in Figure 1 is close to
single client throughput

number of clients . Using this approximation, we project
the average throughput under a larger number of clients. This
projection indicates that for as few as25 simultaneously
connected clients, the throughput falls off to about88KB/s
while at 6 clients, it was close to375KB/s.

IV. OPTIMIZING IKE THROUGH CACHING

As we previously noted, the IKE overheads are significant
in comparison to ESP overheads for very short, low traffic

connections. While ESP overheads may dwarf the IKE over-
heads on high traffic connections, VPN servers may have dif-
ferent traffic patterns. This section investigates caching-based
enhancements to IKE. We begin by analyzing empirical data in
Section IV-A. In Section IV-B, we evaluate the effectiveness
of various caching strategies to reduce the number of IKE
exchanges in which the VPN server participates.

While the notion of caching credentials may seem to run
counter to the re-keying present in IPSec, a further examina-
tion of the security goals shows they are not necessarily in
opposition. Re-keying allows IPSec to ensure Perfect Forward
Security, which may be desirable in some instances, but not
required in others; it also guards against weaknesses in ESP
protocols that might become weak when large amounts of
encrypted data are exposed to an adversary. We note that for
ESP protocols based on modern ciphers,such as AES, there is
little concern that weaknesses in ESP will result in security
issues for relatively small amounts of traffic. Further, caching
and re-keying can be used in conjunction to perform re-keying
only when it is actually necessary, rather than being dictated
by possibly intermittent network connectivity.

A. VPN Workload Characterization

We analyzed several 30-day snapshots of logs from the VPN
servers deployed at Indiana University’s Bloomington campus.
Due to space constraints, only the results of the latest snapshot
are presented here. The logs contained all the disconnection
and connection times for a30-day window, from August19

to September18, 2006 for wired and wireless VPN clients
respectively2. Additionally, the logs contained: connection
date and time, disconnection date and time, an anonymized
username, a session identifier, and the total amount of data
downloaded and uploaded by each client.

Wireless Remote
Total Connections 149564 241291
Total Bytes In (in GB) 452.1 2008.2

Average (in MB) 3.09 8.52
Total Bytes Out (in GB) 1010.45 4907.79

Average (in MB) 6.91 20.82
Total Connection Length (in days) 6577.83 31628.64

Average (in hours) 1.05 3.14
Total Unique Users 11250 15579

TABLE II

LOG CHARACTERISTICS

Table II contains the details about the total number of
connections, data transmitted, connection durations, andtotal
number of unique users. In addition to this information,
Figures 2, 3, and 4 show the daily number of connections,
the number of connections lasting various time periods, and
the amount of data transferred to and from the VPN servers
respectively for both wired and wireless data sets.

Figures 2, 3, 4, and 5 contain several interesting pieces of
information: 1) the VPN servers see a wide variation in the

2Our campus’s wireless LAN deployment requires the users to useVPN.
The wired VPN clients are connected remotely.

Fig. 2. Total number of connections per day.

Fig. 3. Duration of connections.

number of daily requests and this variation is slightly more
pronounced for wireless VPN clients, 2) most connections
transferred 1Mbyte of data or less and wireless clients tend
to transfer less data than the wired clients, and 3) while a
significant number of connections lasted< 5 minutes, most
connections lived for10 minutes to3 hours and the wireless
clients tended to establish shorter VPN connections in general.

B. Caching Strategies

As Table II shows, the number of unique users is at least an
order of magnitude less than the total number of connections.

Fig. 4. Volume of data transferred to and from the VPN servers.

We further examined this by binning the number of times each
user returns. Figure 5 shows the number of visits per user.
We conclude that the vast majority of users connected more
than once during our data collection period. This indicatesthat
techniques to cache Security Association information may be
worthwhile.

Fig. 5. Number of visits per user.

The two-phased IKE protocol helps establish two sets of
secret keys: the IKE keys, which are used only during the
second phase of the IKE protocol, and the IPSec keys, which
are used by the ESP protocol. Caching both sets of helps avoid
both phases of the IKE protocol while caching the IKE keys
only helps avoid running the first phase of the IKE protocol.
We assume in the subsequent discussion that both the IKE and
IPSec key sets are cached.

Next, we utilized the log files to determine how many IKE
phase 1 and phase 2 exchanges would occur under various
caching strategies. In particular, we tested three cachingstrate-
gies, the description of which is presented below:

1) Clocked Lifetime:This strategy allows a client to resume
using cached credentials only if the actual time elapsed since
the last IKE exchange is less than the configured value (the
resumption “lifetime”). For example, for a clocked lifetime of
8 hours, a connection could initially last two hours, disconnect,
and resume three hours later without having to perform
IKE. However, given the same lifetime, a client would be
unable to resume if it initially connected for two hours and
returned seven hours later. Figure 6 shows the number of IKE
operations that would be required for different IKE lifetimes
in the VPN logs under this method. In comparison with the
241, 291 (149, 564) connections in the actual wired (wireless)
logs, this strategy cuts down the number of IKE exchanges to
less than50% for a configured clocked lifetime of

2) Established Lifetime:This strategy only counts the ac-
tual duration a connection is established towards the lifetime.
As an example of this technique, for an8 hour IKE lifetime,
a connection could initially last2 hours and resume20 hours
later without having to perform an IKE operation. This strategy
cuts down the number of IKE exchanges to less than20% of
the current value for a configured established lifetime of2

hours. The detailed results have been omitted due to space
constraints.

Fig. 6. Number of IKE exchanges required under clocked lifetime
caching strategy.

3) Data Lifetime: Under this strategy, the lifetime of a
connection is based on the amount of data transferred. Con-
nections would be allowed to resume without requiring an IKE
exchange only if the amount of data transferred is less than
the configured lifetime. This strategy cuts down the number
of IKE exchanges to about25% of the current value for a
configured data lifetime of20MBytes in the wireless case
and for a data lifetime of50MBytes in the remote case.
The detailed results have again been omitted due to space
constraints.

Though a direct comparison across the caching strategies
tested is difficult due to the differences in potential security
implications,we conclude that caching can significantly re-
duce the number of IKE exchanges required.

V. PROTOCOL TORESUME FROM CACHED STATE

To facilitate the resumption of previously cached connec-
tions, IPSec clients and servers must be modified. Both need
to store the negotiated IPSec symmetric keying information
upon connection termination in order to use it for connection
resumption. Additionally, a protocol must be created to negoti-
ate the resumption. There is precedent for attempts to optimize
IPSec connections. In particular, the IETF has developed a
protocol for using Kerberos authentication to optimize IPSec
connection establishment [12]. Here, we propose a slight
modification of the SKID3 protocol [13] that resumes cached
IPSec connections in a secure way.

The first issue to address in such a protocol is that of storing
credentials. The issue is trivially addressed for connections
that terminate in an orderly fashion since both parties can
deactivate and store the credentials upon transmission/receipt
of the connection termination messages. For connections that
end abruptly, a strategy similar to that used by Openswan,
dead peer detection, in which keep-alive messages are used
to detect connection terminations, can be used. Upon such
detection, the credentials can be stored.

Our protocol for resuming a session is depicted in Figure 7.
This protocol would work with both IKE version 1 and 2.
The process begins when one of the parties involved in a
previous IPSec connection issues a request to re-establish
the connection. In this request, the initiator must provideits

identity so the responder knows what connection is being
resumed as well as a nonce value to prove liveness.

ResponderInitiator
Re−establishment Request

Re−establishment Acknowledgement

Liveness Proof

SKR R
Header + ID + N + MAC (ID + N + N)

R RI

Header + ID + N
II

SKI II
Header + ID + MAC (ID + N + N)

R

Fig. 7. The protocol for resuming a cached connection.

The responder must determine if it has a valid record
(connection information, symmetric authentication key, etc.)
of the connection that the initiator is requesting to resume.
If not, the responder replies with a negative acknowledgment,
refusing to grant the resumption. This can happen because
either party can expunge records of connections that are over
a certain age or when it is faced with storage constraints. The
initiator is then required to under-go the IKE process in order
to communicate via IPSec.

If the responder has a valid record of the previous con-
nection, it can use the credentials from the previous IPSec
session. It then replies with an acknowledgment including its
own ID, the initiator’s nonce, its own nonce, and a keyed
message authentication code (MAC) of the ID and nonces.
This MAC is keyed with the IPSec authentication key from
the previous IPSec connection3 (i.e., the IPSec authentication
key is included as input to the MAC).

Upon receiving the recipient’s message, the initiator verifies
the MAC was constructed correctly. If the MAC and its own
nonce value are correct, the initiator is assured the responder
is authentic. It then replies with its ID and a keyed MAC of
the nonce values and its own ID. The responder can verify the
MAC. If it is correct, the responder is assured the initiatoris
authentic. Upon completion of the re-establishment process,
both sides of the connection can use IPSec with the keying
information from the previous connection.

The cryptographic overhead of the proposed re-
establishment protocol is that of four MAC constructions at
both the initiator and responder (two to create the MACs and
two to verify the other party’s MACs). These operations are
three to four orders of magnitude faster than the public key
or Diffie-Hellman operations required in IKE, providing a
significant performance savings.

There are security implications of caching credentials. If
either end point is compromised, its credentials would be lost,
allowing an attacker to use them to establish connections.
However, these risks are similar to storing private keys and
pre-shared secrets. Therefore, we do not regard key caching
to be an increased security risk.

3The keying information for actual payload packets is negotiated in the
second phase of IKE. This information is used to generate an authentication
key for IPSec packets. This authentication key is cached andused in this
protocol to authenticate resumption.

We note that the storage requirements for the credential
cache are reasonably small. Each cached entry would need to
store the identity of the remote party and keying information.
The ID field used in IKE has an 8 byte header, followed by
the identifier payload. If IPv4 addresses are used, the identifier
would be 12 bytes. The record would also require the storage
of symmetric authentication, encryption keys, and security
association information. If we assume two 256 bit keys, this
information could reasonably be encoded in under 100 bytes.
Therefore, a server caching 50,000 unique records would thus
require less than5 megabytes for storage, which is easily
accommodated with modern DRAM capacity.

VI. RELATED WORK

IPSec was the focus of work in [14], where the authors
examined the ESP and AH encapsulation overheads. However,
a comprehensive picture of IPSec overheads was not presented
because the performance penalty associated with the IKE
process was not examined. Further, the difference in overheads
due to different encryption algorithms and key sizes was
not investigated. In [6], we presented work complementary
to the current paper, focusing on the timing measurements
of IKE and ESP using MD5 for hashing. In this paper, we
extend that work by performing concurrent transfer analysis
and examining approaches to cache IPSec keys.

The work in [15] introduces a new protocol for key ex-
changes. In doing so, the authors examined various aspects of
IKE, including the complexity of the implementation, the role
of re-keying, and susceptibility to denial-of-service attacks.
In [12], the authors propose a method for using Kerberos to
authenticate a key exchange for IKE while reusing the second
mode, quick mode. This work demonstrates that alterations to
IKE can boost performance without sacrificing security.

The work in [16] analyzed IPSec using a macroscopic
approach. The authors examined the performance of IPSec
with and without hardware acceleration by examining the
throughput and transfer times of sample files. In [17], the
authors discuss the affect of hardware acceleration on AES
implementations when used for IPSec, specifically regard-
ing rapid symmetric key switches. Work in [18] provides
general discussion on hardware acceleration in IPSec and
mentions existing commercial accelerators. These works are
complementary to our work and can be utilized for additional
performance enhancement.

VII. CONCLUSION

In this paper, we evaluated the performance of IPSec-based
VPN servers in a multiple client setting and found that IPSec
does not scale as well as the native TCP/IP implementations.
This analysis makes a strong case for performance optimiza-
tion. Since IKE overheads can be a significant percentage of
the overheads, especially for the VPN connections that lastfor
a short duration, we focus on optimizing IKE in this paper.
In order to reduce the connection establishment overheads,
we investigated various caching strategies for connection-
related information using30−day VPN traces. Our analysis

concluded that caching can be an effective strategy to reduce
the connection overheads. The choice of caching strategy
and duration depends on the perceived vulnerabilities in any
environment. We also proposed a cryptographically secure
cache resumption protocol.

Our work in this paper focused primarily on IKE optimiza-
tion. Though ESP takes very little computational overhead
per packet, when a large number of packets are processed
in a connection, ESP overheads can dominate the IKE over-
heads. As our previous work revealed, hashing and encryption
play a significant role in the time required for ESP packet
processing. The choice of an optimal hashing algorithm,
encryption algorithm, and cipher size can significantly improve
ESP performance. Additionally, as shown in [16], hardware
accelerators can be used to further boost performance.

ACKNOWLEDGMENTS

We would like to thank Tom Zeller for insights on deployed
VPNs and for providing VPN logs from Indiana University’s
VPN deployment. We would also like to thank Rob Henderson
for his technical assistance in conducting the experiments.

REFERENCES

[1] S. Kent and R. Atkinson, “Security architecture for the internet protocol,”
RFC 2401 (Proposed Standard), Internet Engineering Task Force, Nov.
1998, updated by RFC 3168.

[2] N. Doraswamy and D. Harkins,IPSec: the new security standard for
the Internet, intranets, and virtual private networks, 1st ed. Prentice
Hall, 1993.

[3] S. Kent and R. Atkinson, “IP encapsulating security payload,” RFC 2406
(Proposed Standard), Internet Engineering Task Force, Nov. 1998.

[4] ——, “IP authentication header,” RFC 2402 (Proposed Standard), Inter-
net Engineering Task Force, Nov. 1998.

[5] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE),” RFC
2409 (Proposed Standard), Internet Engineering Task Force, Nov. 1998.

[6] C. Shue, Y. Shin, M. Gupta, and J. Y. Choi, “Analysis of IPSec overheads
for VPN servers,” IEEE ICNP’s NPSec Workshop, 2005.

[7] X. Corporation, “Openswan Web-site,” 2004, http://www.openswan.org/.
[8] C. Kaufman, “Internet Key Exchange (IKEv2) protocol,” Draft IKEv2,

Internet Engineering Task Force, September 2004.
[9] J. Gilmore, H. Daniel, R. Briggs, H. Redelmeier, C. Schmeing, and

S. Sgro, “FreeS/WAN Project Web-site,” http://www.freeswan.org/.
[10] “Debian Linux Project Web-site,” http://www.debian.org/.
[11] “Gentoo Linux Project Web-site,” http://www.gentoo.org/.
[12] S. Sakane, K. Kamada, M. Thomas, and J. Vilhuber, “Kerberized internet

negotiation of keys (KINK),” RFC 4430 (Proposed Standard),Internet
Engineering Task Force, mar 2006.

[13] B. Schneier,Applied Cryptography, Protocols, Algorithms, and Source
Code in C. John Wiley and Sons, Inc., 1996.

[14] G. C. Hadjichristophi, N. J. Davis IV, and S. F. Midkiff,“IPSec overhead
in wireline and wireless networks for web and email applications,” in
22nd IEEE International Performance, Computing, and Communications
Conference, Phoenix, Arizona, April 2003.

[15] W. Aiello, S. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. Keromytis,
and O. Reingold, “Efficient, DoS-resistant, secure key exchange for
internet protocols,” inACM Computer and Communications Security
(CCS) Conference, November 2002.

[16] S. Miltchev, S. Ioannidis, and A. Keromytis, “A study of the relative
costs of network security protocols,” USENIX, 2002.

[17] D. Whiting, B. Schneier, and S. Bellovin, “AES key agility issues
in high-speed IPSec implementations,” Counterplane Internet Security,
May 2000.

[18] I. Andoni, P. Chodowiec, and J. Radzikowski, “Hardwareimplementa-
tion of IPSec cryptographic transformations,” 2001, http://ece.gmu.edu/
courses/ECE636/project/reports/IAnPChJRa.pdf.

