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Abstract—Residential and small business customers often
have need for high instantaneous download throughput for
their Internet transactions which can exceed the through-
put provided by the customer’s Internet Service Provider
(ISP). At the same time, these peak demand periods are
relatively brief and may constitute only a few hours a
day. During the non-peak periods, these customers have
an unused Internet capacity that could be used by others.

In this work, we propose and evaluate a bandwidth
aggregation system for wireless routers. This system allows
neighboring users to form bandwidth pools from the users’
connections to their ISPs, allowing users to achieve aggre-
gated instantaneous bandwidth. By transparently segment-
ing large Web requests, our approach avoids changes to the
users’ machines, ISPs, or remote servers. We implement
and evaluate such a system and discuss related issues.

I. INTRODUCTION

Internet users have need for high instantaneous down-

load bandwidth for services, such as streaming media.

However, to ensure they have the combined capacity

to meet the demands from all their customers, Internet

Service Providers (ISPs) regularly limit the instantaneous

bandwidth available to each customer. As a result, even

if the network is highly underutilized, a customer cannot

exceed the ISP’s limits. This rough-grain restriction

can actually exacerbate network congestion during peak

demand by slowing connections that otherwise could

have completed before peak demand begins. While these

restrictions may be suboptimal, they are relatively simple

for an ISP to implement and they provide thresholds

required for capacity planning.

Fortunately, end-users may be able to alleviate these

inefficiencies and achieve higher instantaneous through-

put through cooperative bandwidth pools. Unlike tra-

ditional bandwidth aggregation techniques, in which a

single customer simultaneously uses multiple network

connections, our approach would allow multiple au-

tonomous customers to share unused network capacity

with neighbors in exchange for additional capacity in

the future. Accordingly, a user can achieve higher in-

stantaneous bandwidth if there is spare capacity in the

cooperative pool. If there is no additional pool capacity,

the user will be limited to the capacity available via the

user’s direct ISP connection.

To create such cooperative pools, users must have

a communication channel that allows them to share

their connections with others. In urban and suburban

settings, users are often within WiFi range of other users.

Accordingly, cooperative WiFi routers may communicate

with each other to share capacity.

In this work, we propose and explore using co-

operative WiFi routers to aggregate bandwidth across

independent ISP customers. In doing so, we make the

following contributions:

• Router aggregation software and protocol: We

create a transparent proxy server that intercepts

HTTP requests at a wireless router and, if the

server’s response indicates a large content stream,

the proxy server divides the stream into chunks and

issues requests via cooperative routers.

• Performance evaluation of aggregation ap-

proach: Using a VM environment, we evaluate

the approach on a variety of file sizes and chunk

sizes to determine the optimal settings. We find that

with well chosen settings, our aggregation imple-

mentation achieves around 90% of the theoretical

throughput maximum.

• Discussion of obstacles and potential solutions:

Security and liability, particularly non-repudiation,

play a significant factor in the practical adoption of

the aggregation approach. We discuss these issues

and describe approaches that can overcome these

concerns.

II. BACKGROUND AND RELATED WORK

Bandwidth aggregation has a rich history in the net-

working community. While space constraints limit our

ability to be comprehensive, we highlight the most

relevant background and related work.

Several different layers in the ISO network stack have

been used for link aggregation. The IEEE 802.3-2000

standard made the first attempt to unite the existing

proprietary link aggregation protocols [1]. The result was

the Link Aggregation Control Protocol (LACP), which

was officially designated as 802.3ad (and later moved

to 802.1ax). LACP uses the datalink layer to perform

aggregation within a LAN [2].

Other work has aggregated across different physical

and datalink layers. Ramaboli et al. present a compre-

hensive review of the current climate of bandwidth ag-

gregation in heterogeneous wireless networks [3]. They



focus on issues such as packet reordering, which has

a significant impact in bandwidth aggregation. In RFC

5236, Jayasumana et al. suggest the Reorder Density

(RD) and Reorder Buffer-occupancy Density (RBD)

metrics for evaluating the degree of packet reordering.

At the application layer, bandwidth aggregation can

divide content into chunks and simultaneously transfer

these chunks in parallel. While this notion of parallel

sockets is similar to our own strategy [4], [5], our

approach differs by specifically leveraging different net-

work paths to the same content provider to achieve

aggregation. The MuniSockets approach, by Mohamed et

al. [6], does use separate physical interfaces, it is not

responsive to changing network conditions such as delay.

Further, the MuniSockets approach requires alterations at

both the client and server end-hosts.

At the transport layer, Multipath TCP (MPTCP) has

been defined by the IETF in 2011 to support multi-

homed systems. A Linux kernel implementation is being

explored [7] while Apple has implemented MPTCP in

their iOS7 software for use in the Siri service. MPTCP

uses a kernel stack to glue together separate TCP flows

into a single socket for the application, providing support

for any applications already using TCP [8].

Another transport layer protocol, Stream Control

Transmission Protocol (SCTP), has multi-homing sup-

port build in. The SCTP stack on the end hosts handles

packet reordering and enforces congestion control [9].

Although SCTP was not designed around multi-homing

specifically, it provides a framework for experimental

work. Many SCTP variants achieve bandwidth aggrega-

tion, some of which are described in our overview of

adaptive bandwidth aggregation solutions.

Network layer bandwidth aggregation solutions pro-

vide transparency to upper layers. Unfortunately, they are

prone to out of sequence arrivals, which must be han-

dled while consuming as little buffer space as possible.

Round-robin packet scheduling works well when packet

sizes and transmission rates are homogeneous. However,

this is rarely the case in practice and such scheduling

could lead to the effective bandwidth of the slowest path.

Kim et al. proposed a bandwidth aggregation scheme

which employs two metrics for scheduling: bandwidth

estimation and packet partition scheduling [10]. The

former determines the amount of bytes that can safely

be transmitted across a link without triggering conges-

tion. The latter decides how packets can be assigned

to different paths in order to effectively balance load.

A partition counter is assigned to each path, which

is used to determine whether the associated path can

accommodate a new packet.

Evensen et al. introduced a method that uses network

stripping, a process which splits traffic over multiple

different links, in order to aggregate bandwidth for multi-

homed clients [11]. In order to minimize reordering at

the client, they employ a smart proxy to buffer out

of order deliveries, and delegate packets to different

interfaces. The proxy acts as both a scheduler and delay

equalizer. It decides which links to send traffic through

based off of observed throughput. The delay equalizer

is used to mitigate client side reordering, by delaying

packet retransmission.

Telefonica has proposed a wireless aggregation so-

lution, BeWifi [12], that uses a mesh-like network to

provide aggregation, similar to our approach. However,

since the approach is considered proprietary, no technical

details on the approach are publicly available.

While each of these approaches have their benefits,

they have limitations that hinder their deployment, such

as modifications at client and server systems. Instead, we

have implemented a cross-layer approach at the user’s

wireless router that acts as a proxy and uses separate

physical connections to aggregate bandwidth. To our

knowledge, this approach is unique in the literature.

III. APPROACH

To provide bandwidth aggregation, we design an ap-

proach that allows routers to cooperate. When a router’s

directly attached user is requesting a resource, that

router assumes the coordinator role. A coordinator router

is ultimately responsible for completing the network

transaction. If the coordinator believes the request could

be easily parallelized, the coordinator may solicit ad-

ditional routers to request assistance with the request.

These solicited routers, called helpers, may optionally

choose to provide a portion of their own locally attached

bandwidth to aid the coordinator. Since each router will

be handling multiple network requests for multiple users,

these routers will often act as both a coordinator for

its own users and a helper for others simultaneously.

However, once a router begins requesting help from other

routers to increase its available instantaneous bandwidth,

it will naturally reduce the assistance it provides to other

routers until it has mets its user’s demand. An example

of such a network is shown in Figure 1.

Client

Coordinator

Router

Helper

Router1

Helper

Router2

Content Provider

Web Server

ISP Link

30mbps ISP Link

30mbps

ISP Link

30mbps

WiFi Link

54mbps

WiFi Link

54mbps

Ethernet Link

1gbps

Fig. 1. Example network of cooperative routers.



To initiate a cooperative session, the coordinator

broadcasts a request to all neighboring routers with

the URL to be retrieved and, ideally, an estimate of

the transfer size. The routers receiving the broadcast

then independently choose whether to participate in the

session or not. If the recipient wishes to participate,

it sends an ACCEPT response with an estimate of the

instantaneous bandwidth that it can provide. At this

point, the recipient formally becomes a helper. If the

recipient chooses not to participate, it sends a DECLINE

response with an explanation, such as indicating the

router is itself too busy, if the coordinator is untrusted,

or if the coordinator has accumulated too high of an

assistance debt (i.e., the coordinator has not helped the

recipient enough with the recipient’s own requests in the

past). Further, a helper engaged in a transmission may

discontinue its involvement by sending a DROP message.

Once the coordinator receives responses from each

neighboring router, it knows which routers can help and

roughly what bandwidth is available. The coordinator

must then segment the request into a series of chunks in

order to transfer the file effectively.

While intuitive, our approach faces non-trivial chal-

lenges in determining when aggregation will be useful

for a given transfer, segmenting requests to achieve

optimal performance, and the management of security

and liability. We now describe our approach to address

each of these challenges in greater detail.

A. Determining When Aggregation is Beneficial

Many Web transactions are small and not worth the

coordination overhead associated with the aggregation

process. Accordingly, the coordinator must determine

when aggregation is worthwhile. Fortunately, many Web

server responses will include a HTTP content-length

header containing the size of the response in bytes.

For responses above a given threshold, the coordinator

may abort the on-going Web transfer and request assis-

tance from helper routers. Based on the responses from

helpers, the coordinator can divide the request into seg-

ments and request helper routers to issue HTTP requests

for each of these segments. In particular, the coordinator

specifies that each helper router should issue an HTTP

request to the indicate URL while including a speci-

fied HTTP Range header. By issuing non-overlapping

ranges, the coordinator can obtain and combine these

segments from each router.

The optimal threshold associated with determining

when to parallelize will vary based on the latency in

communicating with helpers along with the estimated

bandwidth and latency of each participant. While it may

be challenging to determine the exact optimal value in

each circumstance, we explore such a threshold via em-

pirical measurements to help determine potential values.

B. Segmenting Requests for Optimal Performance

A naı̈ve approach for segmenting would be to simply

divide a file download into N pieces, where N repre-

sents the number of routers involved in the transaction,

including the coordinator. The coordinator could then

order each helper to provide the indicated range. While

straightforward, this approach is unappealing in practice.

It may require the coordinating router to buffer large

amounts of data. Buffering will occur when segments

latter in the file finish downloading before the former

segments. In the worst case scenario, the router with

the slowest network connection would receive the first

segment and the coordinating router would be required to

buffer the content from the 2...(N−1) segments until the

first segment is fully available. On resource constrained

routers, this overhead can be significant and essentially

infeasible. Accordingly, we consider other methods for

dividing chunks between cooperating routers.

As an alternative, we employ a round-robin slicing

model where each participating router is assigned a small

chunk of data starting at the beginning of the file. The

coordinator essentially creates a queue of total size

chunk size

chunks that it will issue as requests. Once a participating

router completes an assigned chunk, it receives another

chunk in a similar fashion from the coordinator. This

approach allows rapid parallelization while the smaller

chunk size allows the coordinating router to quickly

remove buffered data and transmit it to the user. This

reduces memory and storage requirements at the router.

There is tradeoff in selecting the chunk size. A smaller

chunk size will reduce buffering requirements, but it

does so at the cost of additional communication and

coordination overhead between participating routers and

the coordinator. We explore this tradeoff empirically to

determine feasible values.

C. Management of Security and Liability

When a helper router acts on behalf of another party,

it may be directed to perform an illegal act, such as

downloading contraband or participating in a denial-of-

service attack. From a liability perspective, it is essential

that the helper router be able to provably demonstrate

that it was acting on behalf of another party. Essentially,

the helper router wants a non-repudiation guarantee from

the coordinating router: the helper can attribute the

request to the coordinating router and that coordinating

router cannot plausibly dispute the attribution.

To ensure non-repudiation, we use a digital signatures

approach using a trusted third party. The third party

essentially acts as a notary, allowing the helper to gain

an independent witness that the coordinator requested a

particular network transaction.

We note that when requesting assistance from other

helper routers, the coordinator must sacrifice some con-



fidentiality. In particular, by placing these helpers on

the path between the user and the content provider,

the coordinator informs the helpers about the content

the user is requesting and enables the helpers to obtain

a copy of the material being transmitted. Further, if

the content is non-public, any credentials required to

authenticate to the provider, such as cookie values, must

also be shared as part of the transaction. This may be

acceptable for popular open video sharing or streaming

Web sites, but such disclosure would be inappropriate for

any sensitive or non-public content. With server support

or proxying services, like the Tor network, users can

create an encrypted tunnel to the content provider.

Helper routers may also attempt to modify the com-

munication received from the server to introduce errors

or malicious data. However, we can use an independent

verification technique to combat this risk. In such a

scenario, there are two parties: a prover (the helper

router) and a verifier (the coordinator). The helper pro-

vides data purportedly from the content provider. The

coordinator can then choose a random, small section

of bytes within the range of the segment returned by

the helper. The coordinator independently downloads

the small section of bytes and compares it with the

value returned by the helper. If the values differ, the

coordinator knows the helper provided false information

or that the content provider responded inconsistently. If

the helper is detected as providing false information, the

coordinator will discontinue using the helper and may

refuse any future aid to the helper. Since a malicious

peer cannot know the byte range that will be verified by

the coordinator, any substantial alterations have a high

probability of being detected.

IV. IMPLEMENTATION

To ensure our approach is compatible with routers

used in residential and small business deployments,

we examined the low-end commercial router offerings

and third-party firmware available. In particular, the

OpenWRT [13] project was appealing since it can be

installed onto a large variety of commercially available

routers that have been adopted widely. The firmware

provides package management and the installation and

execution of executables in lower-level languages, such

as C, and higher level languages, like Python. While

we kept this deployment target in mind, we created our

implementation on a set of traditional Linux machines

with the intention of writing software that could fit

within the resource constraints of low-end routers and

the OpenWRT firmware.

Rather than attempt to perform raw packet operations,

such as using a packet capture library and manipulation

tool, we instead focused on Web traffic and the use of

a proxy server. We used the Twisted Web Framework,

an event-driven networking framework for Python [14].

This framework allowed us to add event handlers to

segment Web requests for parallel downloads.

To reuse code efficiently, we also used simple Web

requests for inter-router communication for the coordi-

nator and helpers. We digitally sign each request using

the Python cryptography library, Pycrypto [15]. This

library provides RSA cryptographic support, allowing

us to create and verify digital signatures. Upon signing

the request, the coordinator broadcasts the message to

helpers using an INIT request. The helpers respond to

the coordinator via HTTP with either an ACCEPT or

DECLINE response. We overload this communication

into the HTTP protocol using a custom URL format:

[protocol]://[IP]:[port]/[REQUEST

TYPE], where the protocol is typically HTTP, the IP

address reflects the recipient (which is either the helper

or coordinator router), the port is a globally-defined con-

stant for this protocol, and the request type corresponds

to the INIT, ACCEPT, DECLINE, or DROP messages

associated with the coordination protocol.

To ensure non-repudiation, the coordinator router

sends a copy of the request to the helper to an in-

dependent third-party router that acts as a notary. The

coordinator transmits the IP addresses of the coordinator

and the indicated requestor, along with a copy of the

URL and HTTP ranges to be retrieved. The notary adds

a timestamp and signs the entire message using its own

private key. This notary returns this information to the

coordinator, who then passes it to the helper router.

Upon verifying the notary’s signature, the helper router

can then fetch the requested URL while knowing it has

cryptographic evidence to minimize liability.

V. EVALUATION

We evaluated our approach in a virtualized envi-

ronment hosted on a server with 12 cores at 2.8GHz

and 64GBytes of RAM. We created two guest virtual

machines (VMs) running Ubuntu 13.10 and provisioned

each with 2GBytes of RAM. Each VM had two network

interfaces, one for communication with other routers

(simulating a wireless link) and one for communicating

with the content provider Web server (simulating a

link with an ISP). The ISP link was rate-limited to

10 mbps using the Linux tc utility while the wireless

link was rate-limited to 54 mbps, which is the limit

of the ubiquitous 802.11g standard. To further ensure

the rate limiting at the content provider Web server, we

also implemented application-layer rate-limiting. We did

not rate-limit the transmissions between the coordinating

router and its user, emulating a client connected via a

high speed link, such as a gigabit Ethernet connection.

For testing, we a 40 MByte test file which we divided

into 1 MByte chunks at the coordinating router.



The results of this experiment are promising. The total

download speed realized by the client of 18 mbps was

close to to the theoretical maximum of 20 mbps. When

we used a significantly smaller test file of 7 MBytes,

the client realized download speed was 17.3 mbps.

These results suggest that the small overhead induced

by our aggregation techniques is diminished with larger

file sizes. In additional trials of other file sizes in this

environment, we see that the realized bandwidth of the

client is roughly 90% of the theoretical maximum.

A. Impact of Segment Size on Performance

The size of segments allocated to the helper routers

has an important role. We empirically examine the

impact of the segment size by varying it in our VM envi-

ronment. Given that the target environment of resource-

constrained routers, we set a segment limit to be 2
MBytes since larger chunk sizes would quickly exhaust

the router memory. We introduced a third VM router to

the previous scenario and set the ISP bandwidth of each

at 30mbps leading to a combined bandwidth pool of 30

mbps. This network is shown in Figure 1.
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We present the results of this experiment in Figure 2.

We note that the bandwidth increased dramatically be-

tween chunk sizes of 1KByte through 1 MByte, though

performance gains moderated after 1 MByte. At the

minimum chunk size of 1 KByte, the resulting bandwidth

was much lower than using a single router. At that

extreme, the realized bandwidth was less than a tenth

of a percent of the total theoretical bandwidth available

in the pool. At a chunk size of 10 KBytes, the client

still received less than 10% of the total theoretical

bandwidth. At 100 KByte chunks, the client achieved

a combined bandwidth that was roughly 50% of the

theoretical offered bandwidth of the participating routers.

This milestone is important since many routers have ex-

cess RAM capacity that could accommodate 100 KByte

chunks. The performance continues to grow dramatically

up to chunk sizes around 600 KBytes, which achieves

roughly 70mbps. As the chunk sizes near 2 MBytes, the

throughput grows modestly to 76.6mbps. Accordingly,

we believe the increased buffering requirements beyond

600 KBytes are not offset by sufficient performance

gains. For many applications, the optimal chunk range

will be between 200 KBytes and 600 KBytes.

VI. CONCLUSION

In this work, we propose a bandwidth aggregation

approach that could be used in commodity wireless

routers for residential and small business use. We have

created a test implementation of the approach and have

empirically shown that it can achieve up to 90% of the

theoretical maximum bandwidth available in a pool. We

further discussed solutions for liability and security.
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