
A Deployable SCADA Authentication Technique

for Modern Power Grids

Curtis R. Taylor 1, Craig A. Shue 2, Nathanael R. Paul 3

1,2 Computer Science Department, Worcester Polytechnic Institute

100 Institute Rd., Worcester, MA 01609, USA
1
crtaylor@cs.wpi.edu
2
cshue@cs.wpi.edu

3 University of South Florida

4202 E. Fowler Avenue, Tampa, FL 33620, USA
3
pauln@cse.usf.edu

Abstract—The modern power grid makes extensive use of
automated data collection and control. These supervisory control
and data acquisition (SCADA) systems often use communication
protocols that were developed for isolated networks. However,
the underlying SCADA systems often use the Internet for data
transit, exposing these SCADA devices to remote, malicious
adversaries. Unfortunately, these protocols are often vulnerable
to impersonation attacks, and the devices can be susceptible to
cryptographic key compromise. This allows adversaries to pollute
the protocols with misinformation. In this paper, we propose an
approach to authenticate the underlying SCADA protocols that
combines a different approach to data authenticity and hardware-
protected key distribution approach. Unlike prior work, our
approach does not require modification to the SCADA end-points
themselves, allowing the technique to be combined with legacy
devices.

Keywords-Security, SCADA, Authentication

I. INTRODUCTION

The modern power grid requires automation. Automated

systems can rapidly respond to changing events, yielding

increased reliability and efficiency. The adoption of the smart

grid, will only accelerate this need for automation [1]. The

smart grid will have dynamic loads due to renewable power

sources, which have volatile generation patterns, and the in-

creased usage of electric vehicles, which can result in volatile

load on the system.

Supervisory control and data acquisition (SCADA) systems

provide the automation in today’s power systems. These sys-

tems control infrastructures such as the electric grid, water

supplies, and pipelines, and provide monitoring throughout

the grid at substations through a series of measurement units.

The importance of SCADA makes it an attractive target

for attackers. By disrupting the proper operation of SCADA

systems, attackers could cause events such as over-dosing or

under-dosing of chemicals in water supplies [2] or altogether

stopping production of electricity [3].

SCADA systems now make extensive use of the Internet

to transit communication between operators and measurement

and actuation devices. This exposes SCADA systems to remote

attackers seeking to provide misinformation to operators. Un-

fortunately, SCADA systems are unable to apply many of the

best practices associated with modern computer systems. In

particular, SCADA devices are often installed with an expected

operating lifetime measured at the decade granularity [4].

These systems are expected to operate without hardware or

software upgrades. Accordingly, the modern patch and upgrade

approaches used in commodity computers are often not viable

for SCADA systems [5].

The balance between practical SCADA operations and

security is no more apparent than in the DNP3 (Distributed

Network Protocol 3.0) protocol [6]. DNP3 does not provide

any authentication between the communicating parties, allow-

ing adversaries to trivially alter messages between the parties

or impersonate one of the parties. This authenticity problem

has been recognized for years, with updates to DNP3 in

both DNP3 Secure Authentication Version 5 (SAv5) [7] and

DNP3Sec [8]. However, neither of these protocols have gained

much traction for the following two reasons: 1) many vendors

do not have support for these protocols yet and 2) they would

require software or hardware modification in existing systems

to be deployed. These limitations threaten to slow adoption.

In this paper, we propose a proxy approach for SCADA

communication. This approach has several important proper-

ties that are required for practical application: 1) it does not in-

troduce discernible latency, 2) it does not require modifications

to the SCADA devices themselves, 3) it is protocol-agnostic,

making it compatible with multiple SCADA protocols, and

4) it can be partially deployed between communicating pairs,

providing incremental security improvements as it is rolled

out. In designing this approach, we use keyed cryptographic

operations that ensure a message is authentic. We also present

a novel approach for sharing these keys while providing both

forward and backward key secrecy.

To evaluate our proposed approach, we used the DNP3

protocol as an example SCADA case. We evaluate the latency

and performance characteristics associated with our protocol

and the computational loads that would be required. We find

that we could provide authenticity and integrity to SCADA

traffic without expensive computer hardware and without

modifications or performance degradation at SCADA devices.

II. RELATED WORK

The security of SCADA systems has been previously ex-

plored by researchers. Hadbah et al. [9] explored security

vulnerabilities introduced as a result of common-place pro-

tocols used in SCADA for the power grid. Kang et al. [10]

also considered cyber security threats SCADA systems faced

as a result of becoming a part of the Internet rather than

traditional closed-loop substations. The community has also

examined the security issues associated with the Smart Grid.

Work by Khurana et al. [11] broadly introduces security and

privacy concerns about the Smart Grid including existing

authentication and encryption solutions for SCADA networks

while presenting concerns on resource constrained devices.

Simmhan et al. [12] reiterated similar concerns on security

and privacy of the Smart Grid but considered issues from a

cloud setting due to the cloud’s elastic resource capabilities

and shared resources that SCADA systems could leverage.

While power security is a broad area, we focus on SCADA

security and the DNP3 protocol in particular. DNP3 [6] is a

popular SCADA protocol with significant adoption in power

systems. Accordingly, securing this protocol is essential for

power grid security. Two prior approaches have attempted

to address the security vulnerabilities associated with DNP3:

1) DNP3 Secure Authentication Version 5 (SAv5) [7] and

2) DNP3Sec [8]. DNP3 SAv5 is the more popular security

approach, with the ability to provide authentication, integrity,

and replay protection but does not provide confidentiality. The

approach in DNP3Sec makes significant revisions to the orig-

inal DNP3 specification, adding confidentiality, integrity and

authentication, but requires major modifications to the protocol

making adoption more challenging. While both approaches are

viable from a security standpoint, they require modifications

to the DNP3 devices, slowing adoption.

Although our research focuses on DNP3, our approach can

be applied to various other SCADA protocols. In this way,

our work resembles “bump-in-the-wire” (BITW) approaches

to securing SCADA protocols such as [13] and [4]. These

approaches attempt to retrofit security by inserting hardware

devices in between the source and destination. In particular [4]

focused on allowing data authenticity, freshness, low cost,

and low latency, with the option of adding encryption for

confidentiality. Their approach involves an overhead upwards

of 18 bytes per frame. To achieve lower latency than other

BITW solutions, the authors take advantage of AES stream

ciphering to avoid having to buffer data before computing the

cipher text to send to the destination. While our work is similar

in the overall goal of authenticity, freshness to avoid replay

attacks, and low latency, we believe our research differs in

several ways.

The distinguishing features of our approach are that we are

more flexible than BITW solutions because we can support

partial deployment and unmodified legacy software. Our ap-

proach is lower cost because we do not require additional

hardware. Using “after-the-fact authentication”, we introduce

no added latency to the existing infrastructure, and depending

on the rate at which the authentication is occurring, we have

the potential to have lower bandwidth usage than existing solu-

tions. Unlike BITW approaches, we do not provide encryption

for confidentiality. However, we note that existing security

solutions have considered encryption to be an optional feature.

III. BACKGROUND: THE DNP3 PROTOCOL

The DNP3 protocol allows a controlling device, often sim-

ply called the “master” system, to query SCADA devices at

remote locations. These queried devices, called simply “outsta-

tions” or “Remote Terminal Units,” provide their readings to

the master on demand. Accordingly, a simple data acquisition

workflow is initiated when the master system sends a “read”

request to an outstation with a particular “class” to indicate

the type of data requested. The outstation then accesses its

own local database, acquires the relevant data, and sends it to

the master in a response packet. This simple query design has

led to a highly reliable communication protocol.

To minimize costs, grid operators often use commodity

communication providers to provide connectivity between the

master and outstation devices, often over a standard Internet

connection. However, by using the Internet for transport, the

DNP3 devices are now potentially exposed to attacks from the

broader Internet [8]. These attacks can try to corrupt informa-

tion in communication, such as altering requests or responses,

or try to forge messages that impersonate one communicating

party when speaking to another. These impersonations can

be designed to cause malfunctions on the devices or simply

preoccupy the devices to deny services to legitimate users

(such as the authorized master system). Simply put, a DNP3

device will process any query it receives without trying to

validate the request’s authenticity.

The major security goals for DNP3 are authenticity, in-

tegrity, and availability. However, confidentiality is not itself a

security concern: the data transported over the protocol does

not need to be kept secret to ensure the protocol’s mission

objectives. We will only focus on authenticity, integrity, and

availability in this work.

While these security goals are important, SCADA com-

munication can often be sensitive to latency [14] [15]. Any

approach to meet these security goals must not dramatically

increase latency in the communication channel.

IV. OUT-OF-BAND AUTHENTICITY FOR DNP3

Rather than modify the existing DNP3 protocol or the

devices using DNP3, we propose an out-of-band technique to

authenticate the messages transmitted by the DNP3 devices.

This authentication protocol runs in parallel to the existing

protocol, providing flexibility in deployment. Simply put, the

devices running DNP3 can be modified to run our protocol, if

desired, or a proxy device may be installed between the DNP3

device and its upstream network connection. This proxy does

not delay packet processing by using in-line cryptographic

operations. Instead, it allows packets to pass without alteration,

much like a network router. However, it then provides a

separate message afterward attesting to the authenticity of the

packet. This approach allows the parties to verify a packet was

valid, after the fact, while avoiding interference with latency-

sensitive operations.

In designing our approach, we remain protocol agnostic.

While our discussion centers around DNP3 due to its ubiquity,

the approach is applicable to any bi-directional protocol.

Even in power systems that use other protocols, we can add

authenticity and integrity feedback to grid operators.

We describe two different modes of operation for the

approach. In the first, we provide one-way protection, allowing

the master to authenticate the responses it receives from

the outstation. In our second mode, we add the ability for

the master to authenticate not only the response from the

outstation but also the request the outstation is responding

to. This second mode incidentally provides cryptographic

assurance that the outstation is responding to the specific

request the master made (and not simply a legitimate answer

from the outstation responding to a query from a machine

impersonating the master). Our one-way protection approach

is simpler and we introduce it first and later discuss the bi-

directional protection scheme.

A. Mode 1: Unidirectional Authenticity

We begin by describing an approach allowing the master

to authenticate responses from the outstation. In doing so,

our approach provides data integrity as an ancillary benefit:

if a bit has been corrupted, due to malice or network errors,

the message authentication will fail. We depict this process in

Figure 1.

OutstationMaster
1. Read Request

2. Read Response

Seqres + Datares 3. Enqueue(Seqres + Datares)

7. Authentication Packet

Hash1 + Seqres

6. Hash(SK + Seqres + Datares)

4. Enqueue(Seqres + Datares)

8. Hash1 ==

Hash(SK+ Seqres + Datares)

One-Way Protection Scheme

5. Authentication Event

Fig. 1. Protocol messages for DNP3 and unidirectional authenticity approach.

The approach does not modify the original DNP3 protocol

or the devices communicating over DNP3. Accordingly, the

DNP3 operation continues as it does today. However, an

application at the outstation (or on a proxy device in front

of the outstation) monitors all the communication that is sent

by the outstation to the master. Each time a DNP3 response is

seen, the monitoring application makes a copy of the packet.

After a designated number of packets have been copied, or

after a designated amount of time has elapsed, the monitoring

application will send an “authentication packet” to provide

cryptographic proof of authenticity and integrity to the master.

To create the authentication packet, the outstation obtains

each packet in its database and places them in a buffer

in order. The outstation then prepends this buffer with a

secret key known only to the master and the outstation. The

outstation then performs a hash-based message authentication

code (HMAC) of the buffer. The outstation takes the HMAC

output, plus the TCP sequence number from the packets1 and

places them in an authentication packet. It then transmits this

packet to the master. Full details of the implementation of this

approach are described in Section V.

The master system behaves similarly: it also monitors

incoming packets (responses from the outstation) to create a

database of responses. When the master receives an authentica-

tion packet, it uses the sequence numbers in the authentication

packet to order them into a buffer. It then prepends the

buffer with the secret key and performs an equivalent HMAC

operation. If the HMAC the master constructs matches the

HMAC in the authentication packet, the master knows the

packets it received were authentic and were not modified or

forged by an adversary.

B. Mode 2: Bidirectional Authenticity

The bidirectional protection is identical to the unidirectional

approach with one exception: it allows the master to verify the

request the outstation is answering. Without this modification,

the master has no way of knowing if the response received,

even if authenticated, is the answer to the question the master

asked. For example, the master could perform a “Class 0 Read”

operation, but an adversary could modify it to a “Class 1 Read”

before it reaches the outstation. The outstation would then

dutifully provide the results of a Class 1 Read and they would

be successfully authenticated. However, they would not be the

results the master requested and this fact may not be evident

to the master.

To address this limitation, the outstation monitor records

both incoming and outgoing DNP3 packets in separate

databases. When the outstation is required to craft an authenti-

cation packet to send to a given master, it again creates a buffer

of packets. However, it also includes the incoming packets

received from the indicated master system in the HMAC. It

then sends the packet to the master for consideration.

The master station, which also maintains a database of

outgoing queries and incoming responses, again consults the

authentication packet to create the input buffer and performs

an HMAC operation similar to the outstation. If the HMACs

match, the master knows the responses are authentic, but also

knows the results were in response to the query the master

issued.

V. IMPLEMENTING OUT-OF-BAND AUTHENTICITY

To evaluate our proposed approach, we created a prototype

implementation of the protocol that allows participating parties

to achieve three different security goals: 1) authentication, 2)

integrity and 3) replay attack protection. Our approach does

1The sequence numbers are provided as a convenience to the master. If
the master and outstation use a transport layer other than TCP, the sequence
numbers are omitted. Instead, the master must try several permutations of
the packets it receives and verify if any match the HMAC provided by the
outstation. For non-TCP communication, the number of packets, n, that are
included in a hash should be bounded to a small number, since otherwise
the computation could become intractable (since the number of possible
permutations is n!).

not require changes to existing systems. To achieve these se-

curity goals, we use pre-shared keys for HMAC computations

and the use of TCP sequence numbers and a nonce to prevent

replay attacks.

Our implementation was written in the C programming lan-

guage using libpcap [16], OpenSSL [17], and the OpenDNP3

(Automatak fork) library [18]. While we implemented both

schemes, we only mention the bidirectional authentication

scheme for brevity, since the unidirectional case is a subset

of the functionality.

In using OpenDNP3, we implemented a master and outsta-

tion. At the time of writing, the OpenDNP3 implementation

does not support the SA authentication extensions so we did

not test these cases. We set a probe interval of one probe

per second on the master. Each probe used a Class 0 Read

containing a single integer value. In this scenario, the master

station has no authentication or integrity guarantees.

We then use separate executables on the master and out-

station systems to implement our authentication protocol.

We use the libpcap library and set a filter to exclude

any traffic other than DNP3 communication. Each time the

executable detects a DNP3 packet, it examines the packet

headers to determine the TCP source and destination ports. It

uses these ports to distinguish incoming packets from outgoing

packets2. The executable then places each packet, including

the full DNP3 payload and the TCP sequence numbers, into a

database. We keep a separate list for requests and responses.

Periodically, our executables must create an authentication

packet. The authentication packets can be triggered at a set

temporal interval or when a certain number of DNP3 packets

have been received. If the database contains pending packets,

an authentication packet is created. If a trigger is received, but

the database is empty (such as when a timer elapses, but no

packets have been received), the authentication packet is not

sent.

A. Authentication Packet Generation

To create an authentication packets, we use a structure of

the following format.

typedef struct {

char hash[SHA256_LENGTH];

unsigned int seqInNums[MAX_SEQ];

unsigned int seqOutNums[MAX_SEQ];

unsigned int nonce;

} authStruct;

Each item in the authentication packet is as follows:

• hash: a SHA256 hash including the secret key, sequence

numbers, all packet data (incoming + outgoing), and the

nonce

• seqInNums: list of all incoming sequence numbers in-

cluded in the hash

• seqOutNums: list of all outgoing sequence numbers

included in the hash

2If non-standard DNP3 ports are used, the monitors would need to examine
the DNP3 function codes to distinguish a request and response.

• nonce: a randomly generated unsigned integer

In Figure 2, we depict the bidirectional authenticity pro-

tocol. In this protocol, we communicate the TCP sequence

numbers to allow the master to quickly reference the packets

being authenticated when independently verifying the com-

munication. Once the authentication packet stage is triggered,

either by a timer or a set number of packets, the outstation

constructs the HMAC and sends an authentication packet

carrying this information in a UDP packet.

OutstationMaster
1. Read Request

 Seqreq + Datareq

4. Read Response

 Seqres + Datares

3. Enqueue(Seqreq + Datareq)

9. Authentication Packet

Hash1 + Seqreq + Seqres

8. Hash(SK +

Seqreq + Datareq

Seqres + Datares)10. Hash1 ==

Hash(SK +

Seqreq + Datareq

Seqres + Datares)

Two-Way Protection Scheme

6. Enqueue(Seqres + Datares)

2. Enqueue(Seqreq + Datareq)

7. Authentication Event

5. Enqueue(Seqres + Datares)

Fig. 2. Protocol messages for DNP3 and bidirectional authenticity approach.

Like the outstation, the master maintains a list of requests

sent and responses received. Upon receiving an authentication

packet, the master independently generates a HMAC of the

relevant messages covered in the authentication packet. It

then compares the HMAC with the value received in the

authentication packet. Rather than trying to use all packets

in the list, the master uses the sequence numbers in the

authentication packet to determine which packets to use in

authenticating. After receiving all necessary data, the hash is

computed. In the case that both hashes are identical, the master

can continue to operate with the assurance that the requests

received by the outstation and the responses received from

the outstation have not been modified or retransmitted using a

replay attack. The replay protection is inherent in the fact that

a nonce is included in the HMAC as well as TCP sequence

numbers, which are incremental.

VI. VERIFYING SECURITY FUNCTIONALITY

To test the approach’s ability to accurately authenticate and

detect packet modification, we inserted a malicious router into

the communication path between the master and outstation.

This router was configured to falsify DNP3 data in transit to

determine if the master or outstation would detect malicious

activity. During this testing, no SA techniques were used. The

conditions that the master and outstation operated were iden-

tical to those discussed in section V; the master continually

sent a Class 0 read, which contained a single integer value.

In the experiment, the master’s request was allowed to be

transmitted unmodified. However, when the router noticed

an outstation’s response, the value of the integer, X, being

returned was altered, to Y, so that it no longer matched the

original value. Such modifications were trivial at the router: the

router altered the DNP3 packet contents and recalculated the

CRC checksum value using an existing library [19]. Naturally,

the master received the modified value and accepted it as valid

since it lacks any other mechanism for determining the data

authenticity.

After an authentication packet is sent by the outstation,

the master learns that the results were suspicious. When the

outstation constructed the HMAC in the authentication packet,

it used the DNP3 data containing X, but when the master

computes the same HMAC, it uses the data it received, which

contained Y. Since the HMACs did not match, the master

knows that the DNP3 results are untrustworthy and may be

fabricated.

VII. PERFORMANCE OVERHEADS

To quantify the performance overheads of the approach, we

used the same scenario as that in verifying our protocol’s

functionality. We created a master station and an outstation

in separate virtual machines (VMs). We also created a router

VM that connects the two machines. The machine hosting the

VMs has a 3GHz quad core processor and 16GB of RAM,

but both the master and outstation only each had 1 core and

512MB of RAM.

The master’s communication in the outstation resulted in

1
request

second
; naturally, the outstation gave 1

response

second
. We then

enabled two-way protection between the machines in order to

find an upper bound on the required resources needed for our

approach. While the authentication protocol ran, the outstation

was configured to authenticate the master every 5 seconds.

The experiment was then ran for a duration of 2 minutes. The

summary of the experiment is shown in Table I.

TABLE I
PERFORMANCE RESULT FOR TWO-WAY PROTECTION

Master Outstation

Base Memory (MB) 4.0 1.9
Temporary Memory (MB) 0.47 0.47

Total Memory (MB) 4.47 2.37
CPU Time (seconds) 0.30 0.38

CPU Cycles 9*108 1.14*109

Network Traffic Sent (MB) 0.234 0.238

The base memory is the memory required to load the

protocol application into the operating system’s memory. The

temporary memory represents the storage requirements for all

the incoming and outgoing packets that will be authenticated.

Because this variable is dependent on the data being transmit-

ted, we estimated this to be 2, 048 bytes, matching the IEEE

suggested maximum for DNP3 packets [6]. This approxima-

tion likely overestimates the network traffic transmitted and

memory used in practical application.

We note that our authentication protocol implementation

was not specially optimized and has many opportunities for

performance improvements. However, our performance anal-

ysis shows the protocol is extremely lightweight and can be

handled on commodity microcomputers or as an application

on existing infrastructure, as needed.

VIII. KEYING INFRASTRUCTURE

Prior approaches to authenticate SCADA messages assume

a reliable mechanism to share keys. However, these approaches

often do not discuss how such a keying system could be

implemented. In particular, the challenges of addressing a

compromise of a master or outstation system are simply not

discussed. Since we also require a use of a symmetric key

in our approach, we propose a keying system that provides

both forward and backward key secrecy. In our approach, if

a system is compromised from time t1 to t2, the adversary

learns nothing about keys in use from before t1 − ǫ or after

t2+ǫ, where ǫ represents a negligible amount of time (e.g., less

than 10 seconds). Accordingly, if a compromise is detected

and remediated, the same systems can be used without any

additional changes to the keying infrastructure. This yields a

system that is practical for deployers.

We now describe background in key infrastructure and then

discuss how our system could be implemented.

A. Background on Public and Shared Key Approaches

In many network security protocols, key distribution is often

tied to developing a Public Key Infrastructure (PKI) that will

allow the parties to learn the keys of other participants. Unfor-

tunately, a PKI requires greater computational load on devices,

which may not be practical on embedded systems. Further,

if a key is compromised, the re-keying process may require

visiting each device to update its keys. Other approaches, such

as using a TPM to isolate cryptographic keys may not be

available on systems that have been deployed.

A shared key infrastructure can avoid the computational

overheads of public key operations. Unfortunately, if the

shared key is compromised, the system may remain insecure

until the shared keys have been updated across a large number

of devices. As an example, in 2011, RSA revealed that it had

been compromised [20]. Soon after, RSA replaced many of

their authentication tokens, and it is believed that attackers

were able to compromise the shared secrets between the

authentication tokens and the RSA servers. Accordingly, RSA

was forced to reissue tokens since the secrets were exposed.

While both PKI and existing shared-key approaches have

drawbacks, we propose a shared-key infrastructure that uses

hardware to rate-limit secret exposure, allowing regular oper-

ation, but prevents an adversary from gaining all the keying

data if a system is compromised. We now describe the system,

key deployment, and the security properties that it has.

B. System Overview

To deploy the approach, the security device manufacturer

will create a central key server. Then, for each outstation

device, the manufacturer will create a random stream of bits

and encode both a copy on the device and on the key server.

These bits will then be used by both devices to obtain random

bits for deriving shared keys.

To derive a shared key, both the central key server and the

outstation device will consume the same random bit string

from the data they share. Given a shared data set of size M

bits, the data set can be divided into N groups of size M
N

.

These groups, denoted (b1, b2, ... bN), each provide bits of

random data that can be used as input to a suitable function, F,

to generate a master key. To construct shared secrets for com-

munication, the master key can be used with an incrementing

counter to generate a one-time authentication key. Periodically,

or upon discovery of a suspected key compromise, either party

may abandon the chain and generate a new master key using

the next random bits. Each party can verify the new hash chain

is valid and transition to the new hash chain [21].

We note that this approach does not rely upon the availabil-

ity of a TPM. Instead, we use a simple hardware device, such

as a USB device, that parcels out random bits on a specific

schedule. This device may emulate a USB disk, providing

support to a large variety of legacy systems. This device may

hold all M bits of shared data and expose only a small set

of bits at a time. This approach allows a key store to be

used for decades without onerous system requirements. As

an example, if we consider a device that exposes 256-bit key

at most once every 10 seconds, a device could provide keys

for 50 years with about 4.7GB of storage. USB devices with

far more memory can be obtained inexpensively today. Since

SCADA control systems send three to five packets a second, a

10 second seed refresh frequency would result in hash chains

of up to 50 iterations.

Others have used a similar approach. However, in these pre-

vious approaches, there is nothing to constrain the generation

of new key values; typically, without the use of complicated

trusted hardware (e.g., a TPM), an adversarial compromise of

key material will compromise all of the keys. In the event of a

compromise, a device will need to be given new secret keys.

To mitigate key compromise and support key recovery, we

simply use a hardware-enforced secret exposure interface to

prevent a remote adversary from compromising future target

keys.

C. Limiting Key Exposures

In Figure 3, we show a storage device and the control logic

it uses to manage key release. This algorithm releases keys

no faster than once per t seconds. If multiple requests are

issued in the same t second window, the same key value is

returned. If an attacker were to remotely compromise a device

that receives a key from a storage device implementing this

approach, the attacker can read a key every t time units.

However, the approach bounds the number of seed values

an attacker can learn. If the device is ever reset to a non-

compromised state, there is no need to reset the shared secret

data on the device. The device would continue generating

keys just as if a compromise never occurred, because a

remote adversary will not have had access to any future keys.

Therefore, the approach ensures an attacker can only learn

seed values while the adversary has the system compromised:

the attacker does not learn previous or future seed values.

If the deployer can determine when the system was first

compromised, limited key exposure may provide the de-

ployer with the ability to determine how long a system may

have been providing inaccurate information. Further, once

the system is recovered, it immediately regains authenticated

communication without updates to the keying infrastructure.

This dramatically reduces the maintenance and administrative

overheads associated with the system.

Init():
 last_time := now()
 t := TIME_TO_WAIT_FOR_NEW_KEY

 sleep (t + 1)

Get_Key():
 IF now() – last_time > t
 // new_key will contain bits i

 // to (i + (KEY_LENGTH – 1))
 copy_key (new_key, bits, i)
 old_key := new_key

 return new_key
 ELSE

 return old_key
 END_IF

!"#$%&'()*"$+,-.$

/"&0!"#12$

3"#$

4)-5$678$

Fig. 3. Key storage device servicing main CPU. The manufacturer distributes
a copy of the key bits to each key storage chip. Only the manufacturer and
the key storage chip has a copy of the shared keys.

This approach is robust against a remote adversary if the

secret data is distributed securely (e.g., by the manufacturer),

each device pair has a different secret and the hash function

is computationally difficult to reverse (such as using cryp-

tographically secure one-way hash functions). However, the

approach provides no protection against an adversary that can

physically alter the data storage device to read the secret

values. Accordingly, the device will require physical security

protections, as with traditional SCADA devices.

To ensure both devices use the same seed value, they must

have synchronized clocks and agree on a starting value. This

can be configured at device loading time. Importantly, the

outstation device must be able to maintain a clock even if

it is being transported to the outstation, necessitating a battery

to power the clock. To accommodate timer drift, the approach

may allow access to a small number of previous and future

keys, allowing the clocks to vary slightly while ensuring

continued operation.

D. Implementation Options

Since the key storage device we propose is simple to

implement, it can be integrated with SCADA devices in a

variety of ways. The device may be integrated as an embedded

device, either at the time of manufacture or as an after-market

modification. In other cases, the device may be external to

the system, attached via a serial interface (e.g., through a

serial communication port or a USB interface). This flexibility

allows the approach to be integrated with older computer hard-

ware, while providing future-proofing assurances as computer

systems evolve.

The operating system may need a driver to interact with the

device. In the case of a device attached through a serial com-

munication port, a driver would need to be added to request

key values. However, the driver would be extremely simple

to implement since the interface is minimal. A custom driver

could also be created for a USB-attached device; however,

such a device may also be able to reuse existing drivers and

present itself as a hard disk3 This disk would simply present

a single file that contained a key value that could be read.

Each time the device updated the value, the contents of the

file would change, allowing a program to access the values

simply by monitoring the file.

The simplicity of the device and its interface with the system

provides significant flexibility in deployment.

IX. DISCUSSION

Our implementation is particularly appealing for partial

deployment scenarios. A power provider may choose to imple-

ment our authentication protocol on outstations before deploy-

ing it on the master (or vice versa). If only one communicating

end-point deploys the approach, the other communicating

system will simply discard the authentication messages. As

new components begin deploying the approach, the other

endpoint can learn to expect the authentication packets. If the

authentication packets stop arriving or a string of packets are

not authenticated properly, an alert can be generated for the

provider’s operators.

Our approach does not attempt to proactively verify in-

coming messages. Instead, our approach reacts to packets

that cannot be validated and generates alerts afterward. This

design decision allows us to authenticate messages without

introducing latency between the endpoints. Even with our

reactionary approach, operators will quickly learn that the

information being communicated is not authentic. This allows

operators to respond appropriately based on the communi-

cated information. This technique is particularly appealing for

SCADA systems in which physical changes occur slowly since

an alert can be issued an examined before the affected physical

systems are dramatically affected.

In our approach, we proposed a technique to allow key

sharing between the parties using inexpensive, backwards-

compatible hardware while providing key recovery guarantees.

This approach combines the benefits of shared key cryptogra-

phy with perfect forward and backward security.

ACKNOWLEDGEMENTS

The authors would like to thank Adam Crain of Automatak

for insight into OpenDNP3 and Lammert Bies for his freely

available implementation of DNP3’s CRC calculation. The

authors would also like to thank Evan Frenn for his prior work

on surveying related work. The authors would additionally like

to thank Stacy Prowell for his insights in early discussions

related to the work.

3The device would need to signal to the operating system that it would not
be allowed to cache file values to ensure programs would see new values.

REFERENCES

[1] F. Boroomand, A. Fereidunian, M.-A. Zamani, M. Amozegar, H. R. Ja-
malabadi, H. Nasrollahi, M. Moghimi, H. Lesani, and C. Lucas, “Cyber
security for smart grid: A human-automation interaction framework,” in
Innovative Smart Grid Technologies Conference Europe (ISGT Europe),

2010 IEEE PES, 2010, pp. 1–6.
[2] D. Dickinson, “Protecting Water Industry Control and SCADA Sys-

tems from Cyber Attacks,” http://www.graybar.com/documents/phoenix-
contact-protecting-water-industry-control.pdf, accessed: 2013-09-27.

[3] E. D. Knapp and R. Samani, Applied Cyber Security and the Smart Grid:

Implementing Security Controls into the Modern Power Infrastructure.
225 Wyman Street, Waltham, MA 02451, USA: Elsevier Inc., 2013, ch.
Smart Grid Network Architecture.

[4] P. P. Tsang and S. W. Smith, “YASIR: A Low-Latency, High-Integrity
Security Retrofit for Legacy SCADA Systems,” 2007.

[5] E. D. Knapp and R. Samani, Applied Cyber Security and the Smart Grid:

Implementing Security Controls into the Modern Power Infrastructure.
225 Wyman Street, Waltham, MA 02451, USA: Elsevier Inc., 2013, ch.
Hacking the Smart Grid.

[6] “IEEE Standard for Electric Power Systems Communications-
Distributed Network Protocol (DNP3),” IEEE Std 1815-2012 (Revision

of IEEE Std 1815-2010), pp. 1–821, 2012.
[7] G. Gilchrist, “Secure authentication for DNP3,” in Power and Energy

Society General Meeting - Conversion and Delivery of Electrical Energy

in the 21st Century, 2008 IEEE, 2008, pp. 1–3.
[8] M. Majdalawieh, F. Parisi-Presicce, and D. Wijesekera, “DNPSec:

Distributed Network Protocol Version 3 (DNP3) Security Framework,”
in Advances in Computer, Information, and Systems Sciences, and

Engineering, K. Elleithy, T. Sobh, A. Mahmood, M. Iskander, and
M. Karim, Eds. Springer Netherlands, 2006, pp. 227–234. [Online].
Available: http://dx.doi.org/10.1007/1-4020-5261-8 36

[9] A. Hadbah, A. Kalam, and H. Al-Khalidi, “The subsequent security
problems attributable to increasing interconnectivity of SCADA sys-
tems,” in Power Engineering Conference, 2008. AUPEC ’08. Aus-

tralasian Universities, 2008, pp. 1–4.
[10] D.-J. Kang, J.-J. Lee, S.-J. Kim, and J.-H. Park, “Analysis on cyber

threats to SCADA systems,” in Transmission Distribution Conference

Exposition: Asia and Pacific, 2009, 2009, pp. 1–4.
[11] H. Khurana, M. Hadley, N. Lu, and D. Frincke, “Smart-grid security

issues,” Security Privacy, IEEE, vol. 8, no. 1, pp. 81–85, 2010.
[12] Y. Simmhan, A. Kumbhare, B. Cao, and V. Prasanna, “An Analysis

of Security and Privacy Issues in Smart Grid Software Architectures
on Clouds,” in Cloud Computing (CLOUD), 2011 IEEE International

Conference on, 2011, pp. 582–589.
[13] “SEL-3021 Serial Encrypting Transceiver Security Policy,” https://www.

selinc.com/WorkArea/DownloadAsset.aspx?id=2855, accessed: 2013-
09-27.

[14] “IEEE Standard Communication Delivery Time Performance Require-
ments for Electric Power Substation Automation,” IEEE Std 1646-2004,
pp. 1–24, 2005.

[15] A. Shah, A. Perrig, and B. Sinopoli, “Mechanisms to Provide Integrity
in SCADA and PCS devices ,” in Proceedings of the International

Workshop on Cyber-Physical Systems - Challenges and Applications,
2008.

[16] “TCPDUMP/LIBPCAP,” http://www.tcpdump.org/, accessed: 2013-07-
01.

[17] “OpenSSL,” http://www.openssl.org/, accessed: 2013-07-01.
[18] “Automatak OpenDNP3,” https://github.com/automatak/dnp3, accessed:

2013-07-01.
[19] “Software for RS232 communications,” http://www.lammertbies.nl/

comm/software/index.html, accessed: 2013-07-01.
[20] R. Richmond, “The RSA hack: How they did it,” http://bits.blogs.

nytimes.com/2011/04/02/the-rsa-hack-how-they-did-it/, April 2011.
[21] L. Lamport, “Password authentication with insecure communication,”

Communications of the ACM, vol. 24, no. 11, pp. 770–772, 1981.
[22] J. Langill, Ed., Applied Cyber Security and the Smart Grid: Imple-

menting Security Controls into the Modern Power Infrastructure. 225
Wyman Street, Waltham, MA 02451, USA: Elsevier Inc., 2013.

