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Abstract—Residential networks pose a unique challenge
for security since they are operated by end-users that
may not have security expertise. Residential networks are
also home to devices that may have lackluster security
protections, such as Internet of Things (IoT) devices,
which may introduce vulnerabilities. In this work, we
introduce TLSDeputy, a middlebox-based system to protect
residential networks from connections to inauthentic TLS
servers. By combining the approach with OpenFlow, a
popular software-defined networking protocol, we show
that we can effectively provide residential network-wide
protections across diverse devices with minimal perfor-
mance overheads.

I. INTRODUCTION

Residential networks pose unique challenges for the

security community. While these networks are ubiqui-

tous, they are often administered by end-users without

any training in networking or security. As a result, many

may have only minimal security safeguards. Further,

some of these users may be budget-constrained and un-

likely to purchase tools, such as enterprise middleboxes

(MBes), that may be able to increase the security of

their connected machines. Further, end-users may not

carefully follow best security practices, such as updating

device software and firmware regularly.

Residential networks may have high device diversity,

including more traditional systems such as laptops or

desktop computers, but also including Internet-enabled

televisions, video game systems, and home automation

systems. These embedded devices, sometimes called In-

ternet of Things (IoT) devices, may have vulnerabilities

that go unaddressed, either by the manufacturer or the

end-user [23], [31].

Residential routers are in a strategic place to address

the weaknesses of security in end-devices. Since the

routers are key to communication between these de-

vices and the untrusted Internet, the router can perform

filtering and validation efforts to block attacks from

exploiting devices. Unfortunately, residential routers are

often resource constrained and lack the ability to enforce

protections. However, when routers combine software-

defined networking (SDN) techniques with cloud-based

virtual machines (VMs), these routers can ensure that the

middleboxes running on cloud VMs can enforce certain

security goals [39].
While cloud-based middleboxes are useful in some

circumstances, they may introduce unacceptable network

latency or bandwidth overheads in some applications,

such as online video games. Further, cloud providers

must charge users for their network bandwidth, which in-

centivizes end-users and cloud-based security providers

to minimize the traffic sent to cloud-based VMs.
Our goal in this work is to protect residential de-

vices by ensuring the authenticity of the communication

between the devices and outside systems. Essentially,

if we can protect devices from communicating with

untrustworthy third-party systems, we can prevent de-

vices from being attacked. In several security protocols,

such as TLS (the successor to SSL), SSH, and IPSec,

the initial connection negotiation phase has the greatest

vulnerability [13], since it requires confirmation of the

other party’s authenticity. Given the prominence of TLS

in web security and online protocols, we focus on this

protocol as a concrete example and later discuss how the

approach can be applied to other protocols.
In this work, we ask three research questions: 1)

To what extent can we perform in-line TLS certificate

verification and revocation validation using cloud-based

middleboxes? 2) How can we minimize the performance

impact of cloud-proxying on long-lived network flows?

3) To what extent can SDN middleboxes provide novel

support for other important security protocols?
In performing the work, we make the following con-

tributions:

• Implementation of a Novel Cloud-Based TLS

Validator: We created a new verifier, called TLS-

Deputy, that monitors the TLS handshake process

and performs independent verification of TLS cer-

tificates and revocation checking using certificate

revocation lists (CRLs). Such revocation checks

were particularly important following the recent

HeartBleed vulnerability [17].

• Evaluation of the Cloud-Based Validator: We

verified the efficacy of the TLSDeputy across di-

verse devices and showed that it could increase

device security. In particular, we showed that the



TLSDeputy prevented smartphone web browsers,

which are known to not properly check for cer-

tificate revocations [29], from reaching untrustwor-

thy web sites. Our approach behaves similar to a

client performing full-chain TLS verification and

revocation check and can feasibly be used today.

Finally, we evaluated the tool across 40,000 top

web sites and found that it properly determined

which HTTPS servers were valid and which were

not, demonstrating its real-world viability.

• Created a Novel Communication Channel for

the Middlebox: By embracing the concept of par-

ticipatory networks [19], we created a new com-

munication channel between the OpenFlow SDN

controller and the cloud-based middlebox. In doing

so, we were able to migrate a network flow to use

a direct path from the user’s network after TLS-

Deputy confirms the TLS handshake was proper and

authentic. This addresses known limitations of MB

and controller consistency [18], [21].

II. BACKGROUND AND RELATED WORK

Given our emphasis on TLS as a working example, we

provide a background on the protocol and on work that

aims to improve the protocol. We then describe work for

using SDNs to outsource residential network security.

A. TLS Background

All TLS connections are preceded by a TLS hand-

shake in addition to a TCP handshake. Figure 1(a) shows

a full TLS handshake1 where the server provides the

corresponding certificate chain. That certificate chain

starts with a self-signed, well-trusted root certificate.

The root certificate signs the next certificate in the

chain, attesting to that certificate’s validity. The process

continues with each certificate signing the next one until

the process concludes at the server’s own certificate.

Upon receiving the certificates from the server, the

client then verifies each certificate in the chain. After

verification, the client and server create a session key

to use for encrypting the data to be transmitted. As

a performance enhancement, Figure 1(b) shows how

future TLS connection establishment from the client

can be abbreviated by transmitting a session ID that

is cryptographically derived from a previous handshake.

Since certificate verification happens early in the com-

munication between the client and server, our approach

can ignore the remaining TLS connection once the

certificates are successfully verified.

1Clients may also authenticate to the server but we exclude this case
from our discussion.

(a) Full TLS Handshake (b) TLS Renegotiation

Fig. 1. TLS Handshake

B. TLS Research

Researchers have performed Internet-wide scans and

those of the Alexa top 1 million [1] domain names

in recent years. Holz et al. [25], [26] have performed

multiple investigations of TLS certificates to determine

characteristics such as error codes in verification, chain

length, and ciphers. Zhang et al. [40] performed scans

in response to the devastating Heartbleed [17] attack.

This attack, and the subsequent analysis, shows the

importance of a certificate revocation system. However,

few end-hosts check for the actual revocation status of

certificates a year after that attack. Liu et al. [29] found

that, with the exception of Extended Validation (EV)

certificates, there is wide-spread failure in desktop web

browsers to check CRLs for certificate revocation lists

and no mobile platform browsers did so.

TLS is vulnerable to man-in-the-middle (MITM) at-

tacks when clients fail to properly verify certificates

or when malware has installed new root certificates.

Recent attacks have demonstrated the ease of deploy-

ing MITM attacks on some embedded devices [23].

Dacosta et al. [15] provides an efficient approach to

detecting MITM attacks by allowing domain servers to

use a previously-established, secure channel to provide

additional information to directly vouch for certificates.

Huang et al. [27] detects live MITM attacks by detecting

forged certificates through a browser Flash application.

To prevent SSL attacks such as a MITM, researchers

have used various methodologies for improving overall

security. Georgiev et al. [22] found vulnerabilities in

several security-critical applications and attributed the

problem to application developers misinterpreting SSL

library APIs. SSLint [24] was built as a static analysis

tool that will detect applications that are misusing SSL

APIs. Frankencerts [13] is a blackbox solution that

automates the vulnerability detection process in SSL

libraries by generating certificates to test for certain vul-

nerabilities. Our work is orthogonal in that TLSDeputy

detects and prevents insecure connections.

Client resource and performance limitations have led

to a number of research efforts. Server-Based Certifi-

cate Validation Protocol (SCVP) [20] is an approach



to enabling clients to delegate path construction and

certificate validation to another server. This proposed

standard has similar goals to TLSDeputy but requires

client-side support, which may not be feasible in legacy

or embedded devices. Naylor et al. [30] broadly quan-

tifies the performance costs associated with deploying

HTTPS over HTTP, which includes additional latency

and inability to effectively use caches. Zhu et al. [41]

more specifically focuses on the performance associated

with OCSP. While their work shows OCSP response

times are getting better, Liu [29]’s work shows that

CRLs are still the most popular revocation process for

all certificates (leaf and intermediate CAs). For example,

less that 50% of intermediate certificates support OCSP

as compared to 99% that support CRLs.

C. Existing TLS Security Systems

Some browsers are taking steps to improve revocation

checks. Chrome has introduced CRLSets [3] that contain

an internally maintained list of CRLs. Which CRLs are

included is not publicly known. However, the total size

is limited to 250KB. Similarly, Firefox is beginning its

own approach called OneCRL [8]. In contrast, our work

actively maintains a large CRL database that does not

need to compromise between CRL size and security.

ICSI Notary [4] is a system that passively collects cer-

tificates from participating gateways. Clients can perform

DNS queries using a hashed digest of a certificate to the

Notary. The DNS response contains information based

about the certificate based on what the participating gate-

ways have observed. The ICSI Notary’s does not provide

an enforcement mechanism but could provide another

reference point for TLSDeputy’s certificate validation.

Finally, Barracuda [2] has developed hardware to

provide an inline application firewall that will maintain

CRLs and perform OCSP checks for client certificates.

That approach only focuses on revocation (no verifica-

tion) and only for client certificates, which are rarely

observed within the residential environment.

D. Outsourcing and Residential SDN

Our past work [39] used cloud-based servers to pro-

vide an enterprise-grade proxy solution. We motivated

and evaluated our approach using the popular Skype

VoIP application by automatically detecting and proxy-

ing Skype-related traffic through an anonymizing proxy.

TLSDeputy builds upon this architecture and provides a

detailed investigation of the performance characteristics

of outsourcing security applications to a public cloud.

Other research has considered outsourcing residential

network functionality [28], [38]. Unfortunately, these

approaches require ISP support in deploying new ser-

vices within the ISP’s infrastructure. Such approaches

typically require custom virtual gateways within the

home, which do not exist in practice, and introduce

new protocols for deploying functionality. While the

ISP is well-positioned to enable such technologies, such

support remains limited in practice. We avoid requiring

support from the ISP by modifying existing commodity

home routers to support OpenFlow and leveraging public

cloud infrastructure.

APLOMB was an enterprise-focused solution to out-

sourcing network functionality to the cloud that required

a specialized network gateway [36]. APLOMB further

required DNS modifications to support redirection to

cloud MBes. Our approach only requires software mod-

ifications to existing hardware in the home. Our work

is tailored towards the residential network where for

outgoing connections a loopback approach is necessary

without proxying the connection.

III. SECURING CONNECTION ESTABLISHMENT

Our goal is to protect applications that conduct im-

portant security interactions at the beginning of a con-

nection. As part of our running example, we show

how our work supplements traditional TLS verification

and provides a practical approach to enforce certificate

revocation checks.

A. System Overview and Trusted Computing Base

Our system uses OpenFlow-enabled switches, cloud-

based controllers and middleboxes, and custom Open-

Flow agents (OFAs). In Figure 2, we show an overview

of our system with logical OpenFlow protocol commu-

nication depicted using dotted lines.

Destination

Server

Cloud1

Residential Network

OpenFlow

Router
Device

Cloud2

TLSDeputy

OVS

OFA
OFA

OpenFlow

Controller

TLSDL2

1

2
Internet

1. Packet flow through before TLSDeputy verification 

2. After verification, packets go directly to destination server

Fig. 2. Our system uses a cloud-based OpenFlow controller and
middlebox for TLS verification and revocation. TLSDeputy relays
verification results to a controller module using a special OpenFlow
Agent (dashed line). Similarly, TLSDeputy has a module on the
controller that steers new TLS connections through its MB software.
Blue dotted lines represent logical communication using OpenFlow.

We consider all the cloud infrastructure, including

the middlebox and OpenFlow controller, along with the

residential OpenFlow router to be within our trusted

computing base.

B. Cloud-based Flow Redirection

Our approach requires that some network traffic be

inspected by MBes in the cloud. We use an OpenFlow



controller and residential routers that support OpenFlow

to redirect network flows as needed. Without a connec-

tion to an OpenFlow controller, our switch acts as a

Layer 2 learning switch and mimics the behavior of tra-

ditional residential routers. That is, all required services

for an Internet connection such as DHCP, DNS, and NAT

all function without being connected to an OpenFlow

controller. This allows us to safely fail-over in the event

the OpenFlow controller goes offline. When connected,

our OpenFlow router enforces fine-grained flow control.

Any new network connection resulting in a new network

5-tuple (IPsrc, IPdst, Portsrc, Portdst, transport protocol)

will require approval from the controller. The controller

can then use packet-level information at the start of a

connection to determine how the flow should be handled

and whether or not a MB service is required.

By default, our controller performs basic Layer 2

learning to forward packets. In addition to Layer 2

learning, our controller runs a module to detect new TLS

connections (labeled TLSD) and an OFA module that

will communicate with the OpenFlow agent on the MB.

When the TLSD module detects a new TLS connection,

the TLSD module instructs the controller to send Open-

Flow FlowMods to the Open vSwitch (OVS) instance

in the cloud and to the home router. Those FlowMods

will cause the router to tunnel all incoming and outgoing

TLS packets through the cloud MB. These rules ensure

that the MB will see the bidirectional communication

between the client and TLS server.

The loopback communication path from the cloud

MB, shown in Figure 2, allows us to remove the loop

once the TLSDeputy has verified the TLS handshake.

This restores the performance benefits of direct com-

munication without the MB. If we instead proxied the

connection through the MB, we would not need the

loopback technique but would also never be able to

migrate the connection away from the MB without

breaking the end-to-end connection.

C. TLSDeputy Middlebox

Our TLSDeputy middlebox runs within a cloud VM

that is connected to an OVS instance. The TLSDeputy

monitors the TLS handshake and checks certificates and

other important information, such as the Server Name

Indicator (SNI) extensions to TLS, to ensure a secure

TLS connection. In addition to checking for certificate

revocation, TLSDeputy performs certificate verification

and other similar tasks that the end-host also performs.

We provide TLSDeputy with a trusted root certificate

store containing 180 root certificates that were extracted

from Mac OS X 10.11.3 to allow the TLSDeputy to

verify certificate chains.

The OpenFlow controller detects TLS traffic using

transport layer ports and diverts all TLS traffic to the

TLSDeputy beginning with the TCP SYN packet. The

TLSDeputy inspects the Client and Server Hello mes-

sages. First, the TLSDeputy checks to see if the TLS

request is a renegotiation or a new connection. If both

the client and server transmit a Session ID value in their

handshakes, TLSDeputy recognizes the connection is a

valid renegotiation and notifies the OpenFlow controller

via the OFA that the communication can be transmitted

directly via the residential router without further TLS-

Deputy inspection. Otherwise, TLSDeputy knows the

connection is a new negotiation and performs detailed

verification checks.

If the client uses the SNI extension and specifies a

server’s host name, for example www.example.com, in

the Client Hello message, we store that value to later

verify the host name in the server’s certificates. Next,

the server responds with a Server Hello and immediately

sends certificates, as shown in Figure 1(a). TLSDeputy

parses the server’s response and extracts each certificate

being provided. As per RFC 5246 [16], the first certifi-

cate in the chain is the destination server’s certificate.

The subsequent certificates are then ordered such that

the preceding certificate is directly certified by the next.

The chain terminates, optionally, with the self-signed

root certificate. Since TLSDeputy only trusts the root

certificates that are pre-loaded in its local store, it ignores

any self-signed root certificates.

Once the server sends the last certificate in the chain,

TLSDeputy performs its verification before allowing the

connection to continue. TLSDeputy passes the certifi-

cates and the client’s indication of the server’s host

name, if any, to the verification submodule. For our

verification, we use LibreSSL [5], which is a hardened

implementation of the popular OpenSSL library. Since

relatively few client implementations use LibreSSL cur-

rently, TLSDeputy’s use of LibreSSL provides software

diversity which may yield more robust security. We con-

vert each certificate into a corresponding X509 certificate

data structure and store each certificate. We use our root

certificates to verify each of the provided certificates.

After completing the verification, TLSDeputy removes

the flow from consideration and releases the remaining

associated packets. TLS deputy can then watch the

client’s response to the packets. If a device proceeds

with the connection when TLSDeputy found verification

issues, TLSDeputy will detect the device is improperly

verifying TLS handshakes and will break the connection.

Optionally, the software can notify the user of the issue.

D. CRL Enforcement

Before the TLS certification chain can be verified, we

must determine what CRL checks to perform. Due to

implementation details in both LibreSSL and OpenSSL,

there are only two options: only verify the server’s



certificate or verify the entire chain. If any certificate in

the chain lacks a CRL, we cannot perform a full chain

verification. Likewise, if the server’s certificate lacks a

CRL, no CRL verification is possible.

One of TLSDeputy’s most important functions is to

provide an approach that allow for efficient full path

CRL enforcement. Recent work [29] has shown that no

mobile browser performs revocation checks even after

the high-profile Heartbleed attack. Liu et al. speculate

that performance is likely a contributing factor given

that their Internet-wide scan found the weighted average

CRL size to be 51 KB. The size of CRL becomes more

concerning as the length of the certificate chain grows.

The average length of a valid chain has been shown

to be 2 (a single intermediate CA) [11]. TLSDeputy

addresses these concerns by proactively caching CRLs

locally rather than obtaining them on demand.

To determine which CRL to consult, we check the

CRL distribution point extension in each X509 object.

For each certificate, we retrieve all the available the

URIs distributions points2 provided. Beginning with the

server’s certificate, we iteratively check for revocation

using each certificate’s indicated CRL. If we have suc-

cessfully retrieved CRLs for all certificates in the chain,

we perform a full-chain CRL check with LibreSSL.

E. Enforcing TLS Validation via Participatory OFAs

The TLSDeputy can be more efficient with assistance

from the OpenFlow controller. If the TLSDeputy can

communicate TLS verification information to the con-

troller, the controller can then allow subsequent packets

in the connection to be routed directly (if TLSDeputy

verification passed) or install a drop rule at the residential

router (if TLSDeputy verification failed). This opti-

mization is an example of the “participatory networks”

concept. Essentially, the OpenFlow controller enforces

policy in the network yet relies upon MBes to perform

detailed inspection that is not feasible at the controller.

However, traditionally, the controller and MBes cannot

share information and collaboratively enforce policy.

Others have attempted to address the problem of SDN

and MBes by modifying packets in-flight to hold addi-

tional information. For example, FlowTags [18] over-

loads the 6-bit Differentiated Services field in the IP

header of a packet to pass information between Open-

Flow switches. OpenMB [21] suggests making the inter-

nal state of a MB accessible to the controller to allow the

controller to understand what actions were taken. These

approaches are limited in the amount of information they

can share or in the amount of redesign necessary for

support. To address this problem, we embrace the notion

of participatory networking [19] whereby MBes can

2We ignore unreachable distribution points such as ldap:// and
file://.

relay information to the controller to enable flow-level

decisions. FRESCO [37] has a similar notion of enabling

an API where MBes can send information out-of-band

to their applications. In contrast, our approach, shown

in detail in Figure 3, allows a MB to embed arbitrary

information into an OpenFlow PacketIn message and

transmit that in-band to the OpenFlow controller.

Cloud1
Cloud2

TLSDeputy

OVS

OFA
OFA

OpenFlow

Controller

TLSDL2

1. Initial TLS Handshake

2. Flow tuple info, status

 (after verification)

3. [flow, status, ...]

4. OFA receives PacketIn

5. Push FlowMods 

(drop/allow direct

 connection)

Residential Network

OpenFlow

Router

Fig. 3. Once the TLSDeputy has verified the handshake, it can
contact the controller through a custom OpenFlow agent to request the
connection be sent directly rather than diverted through the middlebox.
The controller can then send FlowMods to the residential router causing
packets to be transmitted directly rather than via a tunnel.

Although the middlebox communicates using an

OpenFlow PacketIn event, the payload of that message

uses a custom payload recognizable only by our own

specific OpenFlow controller module. We configure the

controller so that the only module listening for events

from the OFA is the OFA module that we designed

for this purpose. Accordingly, we can pass any arbitrary

information to the module relating to MB state. In our

work, we pass the flow tuple when verification has

finished, the status (e.g., success or failure) and an

additional message describing the reason for failure, if

appropriate. Future work will integrate this approach

with other MB applications such as an existing IDS.

F. Obtaining and Maintaining CRLs

Ideally, our approach maintains an Internet-wide cache

of all CRLs. We move towards this goal by initially

crawling the top 1 million Alexa domains [1] and obtain-

ing the CRLs for each certificate in a given chain. The

initial scan recovered 1,608 potentially reachable CRLs

of which 1,495 were retrieved.

Our ideal goal is to maintain a complete list of

all CRLs used on the Internet. As a result, anytime

TLSDeputy encounters a certificate with a CRL not in

the database we add the URI to a list of monitored CRLs

and immediately begin retrieving it in the background.

However, to avoid performance issues, we do not wait to

check the CRL for the chain causing the first retrieval.

Instead, we will enforce such revocation checks on the

next connection that uses the CRL. For example, Apple’s



Messages application regularly performs background

TLS connections that have several CRLs that were not

originally in our database. On the first connection, we

will not be able to enforce the CRL, but we will be able

to do so on the next connection. As we build our CRL

database, we retrieve all CRLs every 12 hours, which

is more frequent than the majority of the CRL validity

lengths in the certificates we found.

IV. IMPLEMENTATION

To implement the TLSDeputy, we use custom router

firmware on TP-LINK Archer C7 routers. We installed

OpenWrt [10] and added the Open vSwitch [32] package

for OpenFlow support. We used the POX [7] controller

running on Amazon EC2 micro-instance VMs to manage

the router. For tunneling, we used GRE tunnels as sup-

ported by OVS. This allowed better systematic tunneling

control than our past work, which required a routing

agent to direct flows over a Linux GRE tunnel [39].

When the controller detects a new TLS flow, the TLSD

module uses these GRE tunnels for directing the TLS

handshake through the TLDeputy middlebox.

Our TLSDeputy is a C++ application leveraging the

LibreSSL [5] implementation for certificate verification.

We implemented our own certificate stripping and pars-

ing functionality. The CRL retrieval and maintenance

code were written as scripts. We ran the TLSDeputy MB

and controller in separate EC2 micro-instances.
Our OFA application is a custom OpenFlow 1.0

compliant agent that communicates over an OpenFlow

connection to the controller and uses a local TCP socket

to receive verification information from the TLSDeputy.

A. Managing MTU Restrictions

Since we are using built-in tunneling support from

OVS, we must account for the overhead in bytes associ-

ated with GRE tunneling packets starting from Layer

2. The Maximum Transmission Unit (MTU) between

networks is typically 1500 bytes. Without accounting

for the GRE overhead, our packets could be dropped by

intermediate routers before reaching the tunnel endpoint.

One possibility for addressing this issue is to using IP

fragmentation to split the packet and have it reassembled

at the MB. IP fragmentation is typically avoided when

ever possible due to performance concerns. Instead,

we use the MB to set the Maximum Segment Size

(MSS) to 1400 bytes in the TCP handshake of both the

source and the destination. By reducing the MSS in the

SYN/SYN+ACK packets, both end-points of the connec-

tion will reduce the payload of packets transmitted and

thus avoid fragmentation altogether.

V. TLSDEPUTY EVALUATION

We evaluate TLSDeputy’s security effectiveness using

two IoT devices, smartphone web browsers, and web

browsers on traditional laptop/desktop operating sys-

tems. We then compare the performance of TLSDeputy

against traditional certificate verification and revocation

from a residential network.

A. Experimental Setup

For our security evaluation, we use multiple security

testing software packages and our own certificate author-

ity. Many IoT devices are hardcoded to communication

with specific servers or domains. Accordingly, we use

mitmproxy [14] and SSLsplit [34] to determine if

these non-browser applications and devices properly

verify TLS certificates and detect forgeries. We monitor

network traffic from such devices to determine if the

device performed revocation checking via OCSP or

CRL retrievals. We created a self-signed root CA and a

TLS chain consisting of a single intermediate certificate

authority. Using the intermediate CA, we signed a leaf

certificate for a publicly accessible web server. Our leaf

certificate’s revocation status was obtainable only via

a CRL. After generating the web server’s certificate,

we immediately revoked it and updated the CRL ac-

cordingly. However, the web server was configured to

continue using the revoked certificate.

The two IoT devices we use in testing are a Foscam

IP camera, which is used for home surveillance, and a

Belkin WeMo power outlet that can be turned on or off

through a smartphone application.

B. Security Effectiveness

Our security evaluation focuses on IoT, mobile de-

vices, and desktop browsers that operate within the home

network. We compare how TLSDeputy operates in com-

parison to the software embedded on two IoT devices,

both of which have known security vulnerabilities [6],

[9]. We also perform tests using mobile devices using

several major browser platforms. The results of security

evaluation are shown in Table III-F.

We first describe the IoT device results. Unsurpris-

ingly, neither the Focam or WeMo performed any type

of revocation. WeMo has a reported verification vul-

nerability that a certificate store is not stored locally

on the device. In our testing, we did not find that our

device was vulnerable to MITM attacks. However, we

did find the Foscam was vulnerable to such MITM

attacks. Foscam’s configuration allows users to setup

notifications of motion detection with images through

an email. During configuration, the user must provide a

mail server configuration, including a domain name and

port, and if authentication is required, a username and

password as well. Mail servers such as Gmail require

a TLS connection for sending and receiving email. Our

research found that the Foscam is indeed vulnerable to a

MITM attack on the communication between the camera



TABLE I
EVALUATION OF TLSDEPUTY ON IOT AND MOBILE PLATFORMS WITH A REVOKED LEAF CERTIFICATE

Device Type Device Device Verification TLSDeputy Verification Device Revocation TLSDeputy Revocation

IoT
Foscam ✗ X ✗ X

WeMo X X ✗ X

Mobile

iPhone
Safari X X ✗ X

Chrome X X ✗ X

Firefox X X ✗ X

Android
Default X X ✗ X

Chrome X X ✗ X

Firefox X X ✗ X

Desktop

Mac OS X
Safari X X ✗ X

Chrome X X ✗ X

Firefox X X ✗ X

Linux
Chrome X X ✗ X

Firefox X X ✗ X

Windows
IE X X X X

Chrome X X X X

Firefox X X ✗ X

and the Gmail mail servers, which can expose a user’s

Gmail username and password. We found none of the

listed CVE’s for Foscam [6] discuss TLS vulnerabilities

and conclude this was previously undocumented. Fortu-

nately, our TLSDeputy system is able to detect and block

this MITM attack without requiring software updates to

the Foscam or support from the manufacturer3. Without

TLSDeputy, it would be very difficult to determine if a

MITM attack was occurring on any IoT device.

During our evaluation, we expected that mobile

browsers would perform proper verification. Indeed,

without installing our root certificate on the mobile de-

vice, all browsers detected the certificate was untrusted,

stopped the connection, and notified the user. After

these tests, we installed our root certificate on all each

device in order to have the browsers trust the certificate

chain and then attempt a new TLS connection. After

establishing the connection, none of the mobile browsers

we tested performed revocation checks on our server’s

certificate, which corroborates recent research [29]. In

contrast to Liu’s work, we found that the newest version

of Safari (v9) did not properly check our CRL for

revocation. Their tests covered through v8. Additionally,

we found that Chrome v49 did properly check the

revocation status. Liu et al. [29] found that Chrome

v44 only performed this check for Extended Validation

(EV) certificates, which our certificate was not. Chrome

may have recently updated its revocation process. Again,

TLSDeputy uses its cached CRL to block connections

for each browser as shown in Table III-F, protecting

even devices and applications that fail to perform the

appropriate verification or revocation checks.

C. Performance Results

Our performance experiments present two different

comparisons. We first consider the end-to-end perfor-

mance of using TLSDeputy versus traditional end-host

3Prior to publishing this work, we contacted both manufacturers and
disclosed these vulnerabilities and suggested remediation approaches.

verification when only considering the leaf certificate

for revocation. Our other performance experiment com-

pares TLSDeputy to full path revocation checks using

CRLs. The results were obtained from a residential cable

network in Massachusetts with Amazon EC2 instances

hosted in the North Virginia data center.

1) TLS Verification and Revocation Overhead: Virtu-

ally no desktop or mobile browser performs full chain

verification using CRL or OCSP. Given the frequency

of browsers only checking leaf certificates, we perform

head-to-head performance measurements over 40,000

random domains using OCSP and CRLs to performing

revocation checks on leaf certificates. We then performed

connections using TLSDeputy to the same domains.

For OCSP and CRL leaf certificate revocation check-

ing, we first performed a TLS handshake with only veri-

fication (i.e., not checking for revocation). Upon verifica-

tion, we obtained the leaf certificate’s OCSP URL and

each of the certificates provided during the handshake

to check the leaf certificate’s revocation status. We then

added the time to perform the OCSP check to the TLS

handshake time. Similarly, we obtained the CRL dis-

tribution point from the TLS handshake and performed

a file retrieval on the CRL. The time taken to retrieve

the CRL file was added to the base TLS handshake

time. Lastly, we initiated a new TLS handshake with

TLSDeputy enabled, but allowed TLSDeputy to also

perform revocation checks on intermediate certificates.

The results are presented in Figure 4 and shows that

TLSDeputy adds roughly 0.5 seconds to the median of

an TLS handshake.

2) Full Chain Revocation Overhead: Only 48.5% of

intermediate certificates (which excludes leaf certificates

CRL) offer OCSP for revocation checking [29]. This low

number of OCSP responders means that the majority of

full path revocation checks require CRLs. To better un-

derstand the impacts of full chain revocation checks, we

perform an additional experiment using 10,000 random

domains which have two or more CRLs in the chain.
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Fig. 4. Leaf certificate verification comparison between CRL, OCSP,
and TLSDeputy over 40k random domains.

Similar to our previous experiment, we first initiate a

TLS handshake and then retrieve each CRL in the path

while accumulating the total time for the connection and

each CRL retrieval. The results of this experiment on

shown in Figure 5 and show the overhead associated with

full chain revocation checks using CRLs is comparable

to TLSDeputy’s performance.
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Fig. 5. Complete chain verification using CRLs.

3) Viability in Practice: In performing the verification

across 40,000 domains, we found that TLSDeputy was

viable in practice and was able to determine which TLS

connections were valid and which were not.

D. Evaluation Summary

Our approach is able to protect vulnerable devices,

including IoT devices, from connecting to servers with

invalid certificates. Further, we are able to protect many

IoT, mobile, and desktop devices that do not properly

check for certificate revocation. The performance costs

for doing so are comparable to a full chain CRL verifi-

cation at the client. Essentially, our middlebox strategy

is able to provide whole network protections for a

residential network at roughly the same cost of doing

the appropriate verifications at each end device.

VI. DISCUSSION

While we have focused on TLS in this paper, the

same approach is viable for other security protocols such

as SSH and IPSec. In particular, SSH’s leap-of-faith

security approach, in which a user may accept a public

key for a server without verifying it, has recognized

security risks [12]. We can eliminate the need for a

leap-of-faith by combining the use of DNSSEC and

the SSHFP resource record [35]. Our middlebox could

intercept DNS responses, cryptographically verify the

SSHFP records using DNSSEC, and store the destination

IP address and SSH fingerprint for each server in a

temporary database. For any SSH connections to known

IP addresses, the middlebox would then verify the public

key matched. With our tool, an organization could con-

figure DNSSEC and SSHFP records to ensure any clients

using our approach would be protected from SSH man-

in-the-middle attacks during the first SSH connection.

We can protect IPSec authenticity in a manner sim-

ilar to SSH. Using DNSSEC and the KEY resource

record [33], the middlebox can perform the appropriate

verification to ensure the IPSec server’s authenticity.

From a cost perspective, our development and evalua-

tion cost approximately $20 per month for cloud hosting.

The costs included two always-on VMs, network traffic

transmission, and disk storage, with the majority of the

cost associated with the VM uptime. Given our mini-

mal CPU and memory overheads, multiple residential

networks could easily share these VMs. Practically, a

third-party security provider could run cloud-based VMs

to provide TLSDeputy services to large numbers of

residential users and achieve economies of scale.

VII. CONCLUSION

In this work, we present TLSDeputy, a system that

allows residential networks to ensure they only connect

to properly verified TLS servers. We have shown the

approach offers valuable security protections for IoT,

mobile, and desktop devices and that the performance is

comparable to correct client-side verification measures.

Finally, using a set of 40,000 servers, we have demon-

strated the approach is capable of verifying connections

to top TLS destinations and can immediately be deployed

to residential networks.
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