
Exploitable Redirects on the Web: Identification, Prevalence, and Defense

Craig A. Shue
Indiana University

cshue@cs.indiana.edu

Andrew J. Kalafut
Indiana University

akalafut@cs.indiana.edu

Minaxi Gupta
Indiana University

minaxi@cs.indiana.edu

Abstract

Web sites on the Internet often use redirection. Unfor-
tunately, without additional security, many of the redi-
rection links can be manipulated and abused to mask
phishing attacks. In this paper, we prescribe a set of
heuristics to identify redirects that can be exploited. Us-
ing these heuristics, we examine the prevalence of ex-
ploitable redirects present in today’s Web. Finally, we
propose techniques for Web servers to secure their redi-
rects and for clients to protect themselves from being
misled by manipulated redirects.

1 Introduction

While browsing the Web, users often find themselves
redirected to a URL other than the one they clicked on.
Perhaps the most common reason to redirect users is
when content moves from one place to another. A redi-
rect can help the users locate the content at its new lo-
cation. In fact, when done properly, a Web server can
redirect Web clients to the new content location without
the users even noticing the redirection occurred. Another
popular reason site operators use redirects is to track their
users’ browsing patterns. Normally, a site will not be
able to tell which of the external links a user followed
from their Web page. However, if the link contains a
redirect which causes the user to contact the site’s Web
server first, the server can record user activity and then
provide the URL for the new destination. Another usage
allows popular domains to register variants of their do-
main name and redirect to their original Web site when
users mistype the domain name. This approach can pro-
tect clients from unrelated sites that register misspelled
(typo-squatted) variants of the legitimate domain name
in order to provide malicious or inappropriate content.

From a security viewpoint, the most interesting cat-
egory of redirects are the ones that areopen. Links
containing redirects often use parameters to control the
destination of the redirect. If the Web server does not
check the parameters appropriately before taking action,
one can manipulate the destination. This seemingly in-
consequential aspect of open redirects has been abused
in phishing attacks [1, 2]. For example, the follow-
ing redirect, http://example.com/redirect.

php?dest=http://1.2.3.4/, would be open if
a phisher could replace1.2.3.4 with any host name
or IP they desired andexample.com would honor the
new URL. A casual Internet user who receives this link,
perhaps in an email, would think that she was visiting
example.comwhen in reality she was only being redi-
rected byexample.com to the phisher’s domain. Iso-
lating the actual phishing domain from such URLs re-
quires an understanding of open redirects, which many
users on the Internet lack. Further, if encoded, it be-
comes even more challenging to detect these URLs, even
for those familiar with redirects.

Phishers can abuse open redirects on trusted sites to
mislead users about the site they are visiting. Given
this potential for abuse, it is important to understand the
prevalence of open redirects in the Web. However, little
is known about these redirects, perhaps because no sys-
tematic approach currently exists to find them. If Web
browsers are able to identify open redirects, they can
warn users when they click on such links in phishing
emails. This would be an important step forward in the
fight against phishing. In the context of open redirects,
we make the following contributions in this paper:
Develop heuristics to identify open redirects.To the
best of our knowledge, ours is the first work to prescribe
a systematic set of heuristics to identify if a link contains
an open redirect. This analysis can be performed without
contacting the destination of the redirect, which is impor-
tant in cases of phishing emails where the phisher should
not learn about the validity of the user’s email address.
Determine the prevalence of redirects in the Web.We
use extensive Web crawls to estimate how many Web
pages contain links with open redirects.
Propose techniques to mitigate open redirects.We
propose both client and server side techniques to limit
the harm of open redirects or to close the redirects with
little overhead.

We found that a significant proportion of the redirects
on the Web are open. From a sweep of2.5 million Web
pages, we found557, 646 redirect links using our heuris-
tics. Of these redirects, we found that161, 142 contained
the destination of the redirect within the original URL.
These redirects, which we callsimple redirects, can be
easily exploited by miscreants; accordingly, we focused
on testing if any of these were open. To our surprise, 79%



(128, 058) of them were completely open, implying that
anyone could manipulate their destination and cause the
server to redirect to the manipulated destination instead
of the original one. Using another set of heuristics, we
were able to pry open another 2% (2, 346) of the simple
redirects.

Our observations point to the need for securing redi-
rect links on the Web. We review current approaches
to secure redirects at the Web servers and propose two
additional approaches that do not share the shortcoming
of the present-day approaches. To allow clients to pro-
tect themselves against servers that fail to secure their
redirects, we propose to enhance the Web browsers with
the open redirect detection heuristics we developed. If
Web browsers have the ability to detect open redirects
and warn the users about the risk, open redirects would
be less useful to phishers.

The rest of this paper is organized as follows. We dis-
cuss our heuristics to detect open redirects in Section 2
and our data collection in Section 3. The results are pre-
sented in Section 4. We presents approaches to mitigate
open redirects in Section 5. Finally, related work is re-
viewed in Section 6 and Section 7 presents concluding
remarks.

2 Heuristics to Identify Open Redirects

We begin by describing the heuristics we developed to
identify open redirects. Given a particular link, the
heuristics determine 1) if it contains a redirect, 2) if the
redirect isopen, and 3) if it is not, whether it can be pried
open.

2.1 Heuristics to Find Redirects

A variety of mechanisms can be used to implement redi-
rects. The most popular technique, also highly recom-
mended by the World Wide Web Consortium (W3C) [3],
is theHTTP redirect. It uses the HTTP protocol to redi-
rect users. When a user clicks on a link containing an
HTTP redirect, the Web server responds with the URL
for the destination of the redirect along with a status code
indicating to the user that she is being redirected. A less
commonly used approach exploits theHTML refresh to
redirect users. The refresh capability exists primarily to
allow sites whose content changes frequently to specify
in the HTML code of their pages how often the pages
should be automatically reloaded. A redirect exploiting
this mechanism basically leverages the fact that it allows
the destination of the reload to be specified. Since this
destination could be different from the page the user is
visiting, it can be used to redirect users. This mecha-
nism is inefficient in that it causes the user to fetch an ex-
tra page containing the HTML refresh redirect. Another

less common approach uses client-side scripting, such as
JavaScript. When a user clicks on a redirect that uses this
technique, the Web server sends a new Web page con-
taining JavaScript which specifies the destination of the
redirect. This technique also causes an additional HTML
page to be fetched. Additionally, the redirect may not
happen if the client browser does not support JavaScript
or has it disabled. Due to its pervasiveness, we focus on
HTTP redirects in this paper.

Regardless of the mechanism used to implement them,
a redirect may be either static or dynamic. Links contain-
ing static redirects always lead to the same destination.
Since these links cannot be manipulated, they are not in-
teresting from the perspective of potential abuse; there-
fore, we do not consider them in this paper. The links
containing dynamic redirects often embed the destination
of the redirect in an optional query string contained in the
URL itself1. When a user clicks on the link, the browser
sends the query string with the request. The Web server
reads the parameters contained in the query string to de-
cide the destination of the redirect. Dynamic redirects
offer greater flexibility and convenience for the Web site
operator, but can be abused if not properly secured. Due
to their potential for abuse, we focus on dynamic redi-
rects in this paper.

A typical link containing a dynamic redirect has the
following structure. In the URL,http://example.
com/redirect.php?dest=http://1.2.3.4/,
example.com is the name of the server the client
contacts and redirect.php is the script the
server runs. The script takes the query string,
dest=http://1.2.3.4/, as parameters. The
query string starts with a “?” character and is frequently
composed of a series of name and value pairs delimited
by the “&” character. In this example, the value,
http://1.2.3.4/, is associated with the name
dest.

Based on this observation, our heuristic to find dy-
namic HTTP redirects is the following: we search for
the presence of a query string in the URLs. In the URLs
that contain a query string, we search for protocol pre-
fixes,http:// or https://, which signal the desti-
nation of the redirect. One caveat is that query strings
are sometimesURL encoded in which reserved charac-
ters are replaced with special hexadecimal notation. To
account for this, we unencode the string before looking
for the protocol prefix when searching for URL patterns.
We consider the link to contain a potential redirect if a
query string is found containing a URL pattern.

Due to the myriad of ways links can be composed, it
is necessary to validate if what our heuristics considers
a potential redirect is indeed a redirect. First, we use

1The destination can also be embedded using the URL path. How-
ever, for simplicity, we focus on query strings in this work.



the Perl UserAgent library [4] to access the URL. The
library automatically follows HTTP-based redirects, al-
lowing us to determine the URL of the page at the end
of the redirection chain. If the URL of the final page
is different from the original URL requested, we clas-
sify the page as using a redirect. The rest are not redi-
rects. We also note that a redirect does not necessar-
ily mean that the destination of the redirect matches the
destination contained in the query string of the URL.
One such case where this may happen is when multi-
ple cascaded redirects occur. Since we are interested
in determining whether it is possible to manipulate the
destination of the redirect for attacks, we focus only
on the redirects where the final destination matches the
destination contained in the query string of the origi-
nal URL. Subsequently, we refer to such redirects as
simple redirects. To find these redirects, we first ex-
tract the destination of the redirect from the URL’s query
string. The destination begins with anhttp:// or
https:// and either ends with a “&” character, which
marks the beginning of the next key-value pair, or when
the URL itself ends. Upon traversing the URL, if the
final destination URL matches that contained in the
redirect, we test it for openness. For example, if the
redirecthttp://example.com/redirect.php?
dest=http://1.2.3.4/ resulted in the final desti-
nation URL ofhttp://1.2.3.4/, we scrutinize it
further; otherwise, we exclude it from further analysis.

2.2 Heuristic to Find Open Redirects

A redirect isopen if the destination contained in its query
string can be altered and the Web server processing the
redirect sends the client to the new location without val-
idation. To test if a simple redirect is open, we replace
the destination URL contained in the query string of the
redirect with a Web site that we control. On that site,
we include a randomly generated character string that is
unlikely to appear on other Web pages. (In our tests, we
used a200 character string.) We then follow the link to
determine whether it causes the browser to return a page
containing the string. If so, we consider the page to be
an open redirect.

2.3 Heuristics to Pry Redirects

If a redirect employs weak protections, it may be pos-
sible to pry it open. For example, some redirects may
employ a checksum for the destination contained in the
query string, preventing the redirect from being used if
the checksum is incorrect. By altering the checksum
along with the destination, one may be able to pry open
such redirects. Though exploiting such redirects would
require some thought on the part of the attacker, they can

be easily exploited by others once an algorithm to open
them is developed. We now explain the heuristics we use
to test if a redirect which was not open according to the
heuristic in Section 2.2 can be pried open.

Redirects which have query strings with only one pa-
rameter, the URL of the destination, clearly do not have
other query string parameters securing the redirect. If
they are not open, they must be using some internal
mechanism, such as a white list, to secure the redirect.
Such redirects cannot be pried open externally. For such
cases, we focus on detecting whether such redirects use
white lists containing popular Web sites.

Redirects whose query strings have at least one param-
eter other than the destination required some thought. If
altering the destination and leaving the remaining param-
eters unchanged failed to open the redirect, the redirect
is secured internally or there is at least one parameter the
server is testing before redirecting. Even though 90% of
the redirects had 4 or few parameters including the desti-
nation parameter, varying each to infer which of the pa-
rameters could be altered would have been cumbersome.
Upon manual inspection, we found that some of the pa-
rameters are unlikely to be specific to the destination of
the redirect. For example, two of the common param-
eters were related to language of the page and country
of origin of the request. However, many sites will have
the same language and country or origin. Instead of try-
ing to infer the intent of all parameters to check which
ones were specific to the destination, we tried two very
simple strategies: we either dropped all the parameters
other than the URL, or altered each of them simultane-
ously in trivial ways. Specifically, if a parameter was a
number, we simply incremented it, and if it was a string,
we dropped a character from the string. Doing so essen-
tially only checked if the server was checking anything
at all for the altered destination. While one may expect
that anything outside of the permitted destinations would
be denied if the default case was handled properly, we
found quite the contrary: many servers were only allow-
ing the permitted destination with a given set of param-
eters, but allowed arbitrary destinations when these pa-
rameters were altered. We describe these and other re-
sults in Section 4.

3 Data Collection Methodology

To find the prevalence of exploitable redirects in the Web,
we performed extensive Web crawls using three different
data sets. To perform the crawls, we used the Java lan-
guage to write our own crawler based on Jakarta’s Http-
Client [5] project. For each data set, we obtained a URL
for a top page, downloaded that page and any page linked
from that page that was within the same DNS domain as
the original page. We examined all the links contained in



the top-level pages as well as on the pages we followed
using the heuristics described in Section 2. We used the
Perl SimpleLinkExtor module [6] to extract all links con-
tained in the HTML tags in the document. An alternative
method to extract links would have been to look for the
presence ofhttp:// or https:// on the Web pages. We used
this strategy initially but decided to use the Perl module
instead because this strategy was causing us to miss links
that used relative addressing.

In our first data set (referred to asAlexa subse-
quently), we investigated the presence of vulnerable redi-
rects on popular Web sites. We used the Alexa Web
Information Service [7], which ranks the most popu-
lar Web sites on the Internet, to obtain the1, 000 most
popular sites in each of 16 top level categories, as well
as the top 500 most popular sites overall. Some sites
were present in multiple categories; upon removing du-
plicates, we found15, 341 unique Web sites. We used
each of the sites obtained from Alexa as starting pages
for Web crawling. This crawl resulted in864, 628 Web
pages.

The second data set (referred to asDMOZ subse-
quently) uses links from the DMOZ Open Directory
Project [8]. The DMOZ project is a categorized collec-
tion of user-submitted links, allowing users to use a di-
rectory tree to locate relevant Web sites, rather than use
search engines. To obtain a similar number of sites as
in the first data set, we randomly selected16, 500 unique
links from an October 23, 2007 snapshot of the DMOZ
project to perform our crawl. We obtained216, 812 Web
pages from this crawl.

In the third data set (referred to asDNS subsequently),
we focused on actual user behavior. To create this data
set, we captured all the DNS queries issued on our de-
partmental network for a one-week period. We used the
host names contained in theA (Address) record queries
as the base for URLs for Web crawling. This data con-
tained164, 145 unique host names. From this crawl, we
obtained1, 368, 198 Web pages.

Table 1 shows the number of pages and links contained
in each data set.

4 Results: Prevalence of Open Redirects
on the Web

Recall from Section 2 that potential redirects specify a
destination in the URL’s query string (identified by the
presence ofhttp:// or https://). When eliminat-
ing URLs that fail these tests, between 0.92% and 1.7%
of the links remained in our data sets, as shown in Ta-
ble 1. We note that even links that are not regarded as
potential redirects could be involved in redirects; these
pages may use a mechanism to obfuscate their function-

ality. Short of traversing each of them individually, there
is no way to find such redirects. Since visiting over 140
million links from our three data sets would have been
very time consuming, we simply excluded these cases
which did not have a query string or a destination speci-
fied. Accordingly, the results we present serve as a strict
lower-bound on the actual number of redirects on the
Web.

Source Total No Query No URL Potential
Data Set Pages Links String Pattern Redirects
Alexa 864,628 53,833,400 71.00% 27.92% 1.07%

DMOZ 216,812 5,745,145 70.09% 28.99% 0.92%
DNS 1,368,198 81,186,127 73.07% 25.24% 1.70%

Table 1: Classification of the links extracted from each
data set. A total of 815,779 unique potential redirects
were found.

Potential redirects totaled2, 007, 253 URLs across
the three data sets. Removing duplicates left us with
815, 779 unique links. These span4, 978 unique do-
mains, and82 unique TLDs. Validation of these redi-
rects through an actual traversal, as described in Sec-
tion 2.1, confirmed that557, 646 (68%) were actual redi-
rects. A further100, 191 (12%) of the links were broken
and could not be retrieved and the rest did not appear to
use redirection even though they contained a query string
with a URL pattern. We examine this by individual data
set in Table 2. We see that a significantly lower portion of
potential redirects are actual redirects in theDMOZ data
set, which is composed of random sites, than in the other
data sets.

Potential Redirects Actual Not Redirects Broken
Alexa 283,001 68.75% 23.01% 8.24%
DMOZ 20,364 58.61% 19.28% 22.10%
DNS 562,118 68.48% 18.17% 13.35%

Table 2: Classification of potential redirects from each
data set. A total of 557,646 actual redirects were found.

Recall from Section 2.1 thatsimple redirects are easily
manipulated by the attackers. These are redirects where
the destination of the redirect is the same as the URL in-
cluded in the parameters of the query string. Of the actual
redirects,177, 284 (32%) passed this test. From a man-
ual inspection of a small subset of the links that did not
match the destination, we found several cases of indepen-
dent redirection: redirection to site authentication pages,
transitions of the protocol from HTTP to HTTPS, search
pages, and blog posting pages. While these links do have
query strings that contain URL patterns and use redirec-
tion, these factors are independent, suggesting these redi-
rects were statically configured even though they looked
like dynamic redirects. Since these cannot be manipu-
lated, we exclude these links from testing for open redi-
rects.



Next, we tested if the177, 284 actual simple redirects
were open, as described in Section 2.2. Replacing the
destination of the redirect with our custom page was not
possible for16, 142 of the URLs because they used non-
standard character encoding; we excluded these redirects
from subsequent analysis. Of the remaining161, 142 en-
tries, 128, 058 (79%) of the redirects were completely
open: traversing them caused the server to redirect to
our custom page instead of the original one contained
in the destination of the redirect. Another5, 108 (3%)
returned an error. From this, it is clear that sites that
use parameters to determine the destination of the redi-
rect fail to secure their redirects a vast majority of the
time. These results are shown by individual data sets in
Table 3. Results across the data sets were similar, with
popularAlexa sites containing the highest percentage
of open redirects. TheDNS data set had the lowest per-
centage of open redirects.

Simple Redirects Open Closed Broken
Alexa 65,012 83.00% 12.97% 4.03%
DMOZ 3,117 81.30% 13.86% 4.84%
DNS 98,138 77.65% 19.65% 2.70%

Table 3: Classification of the 161,142 unique simple
redirects from each data set. 128,058 (79%) wereopen.

We then tested if the remaining simple redirects,
27, 976 (17%), could be pried open. As described in
Section 2.3, we used three approaches to subvert these
protections: alter all parameters simultaneously except
the URL (which reflects the new destination), drop all
the parameters except the URL, and replace the redirect
URL with a popular site possibly on the server’s white
list (we usedgoogle.com). To our surprise,2, 346

(8.4%) could be pried open by at least one of these ap-
proaches. Dropping the non-URL parameters was the
only effective approach in965 cases. Altering the non-
URL parameters was the only effective approach in682.
In 699 cases, either dropping or altering the non-URL
parameters successfully resulted in prying open the redi-
rect. There were no cases where simply changing the
URL to a popular site opened the redirect.In all, simple
redirects were either open or pried open in 81% of the
cases we examined, yielding a total of 130, 404 unique
redirect links.

5 Mitigating Open Redirects

An ideal solution to guard against the risks posed by
open redirects would be for Web designers to avoid in-
troducing them in the first place. Short of that, the risks
of open redirects can be mitigated by server or client-
side modifications. In this section, we describe existing

approaches to combat open redirects and propose addi-
tional approaches.

5.1 Server-side Modifications

Web servers sometimes modify their redirect pages to
warn users that they are being redirected. If detailed in-
formation about the transition from one Web site to an-
other is provided to the user, it may alert them about
phishing traps. However, with the ubiquity of redirect
pages, constant redirect warnings may lead to users sim-
ply disregarding them. Some servers use whitelists of
approved destinations to ensure their redirects are not
misused. This approach requires the site to store a
database of valid third-party redirect destinations, which
may be extensive in some cases, and requires adminis-
trative overhead to keep the list current. Time sensitive
tokens have also been used by some sites to limit the us-
age of a redirect link.

We propose two additional approaches Web servers
can use to ensure that their redirects cannot be abused
by phishers or other miscreants. The first leverages the
referer header supplied by the client browser. When
following a link from one page, which we call thesource
page, to another page, thedestination page, the client
supplies areferer header to destination page. This
header indicates the URL of the source page. We pro-
pose that the server check the referer header when pro-
cessing redirects. If it indicates that the client was at
another page on the server, the redirect can be processed
normally. Otherwise, it can be halted with an error mes-
sage because it indicates that the client is coming from
a third-party site, which could be potentially malicious.
Though simple and attractive, this approach has a short-
coming: though popular Web browsers provide this in-
formation by default, security suites and other browsers
may simply omit thereferer header.

Our second technique does not depend on the browser
behavior. In this technique, the Web site operator cre-
ates an authentication token for each redirect. This to-
ken is the hash of a concatenation of a secret value for
the site and the destination of the redirect. This token
is then included as a part of the query string of the redi-
rect. To verify that a redirect processed by the server
is legitimate, the server verifies the authentication token
contained in the URL by comparing it with a hash of the
destination of the redirect and the secret value. In addi-
tional to universal client coverage, this approach has an
additional advantage: server-side scripts could automat-
ically re-write links to include the authentication tokens
before serving pages to clients. This allows for easy in-
corporation without going through an overhaul of exist-
ing Web sites. Further, the low hashing overheads can be
further reduced through caching.



5.2 Client-side Modifications

Client-side defenses are necessary in cases when servers
fail to protect their redirects. Today, phishing toolbars
can detect the final destination of the redirection chain
and block access to known phishing sites [9]. However,
the phishing site must be known before such toolbars
can operate, which does not immediately protect users
from deception. Likewise, a blacklist of open redirect
Web pages would have similar limitations. Redirect Re-
mover [10], a Firefox browser extension, analyzes links
on the page client is visiting and rewrites them to expose
the actual destination. Unfortunately, this breaks some
of the legitimates uses of redirects. Further, it does not
protect against phishing, where the redirected links come
from email messages.

We propose that client browsers apply the heuris-
tics we used to identify open redirects. Essentially, the
browser would examine the link for any URL patterns in
the query string. If a destination is specified, the browser
would replace the URL pattern with a test verification
Web page. If upon following that link, the client is redi-
rected to the verification page, it has confirmed that the
redirect is open. At that point, the browser can either
refuse to connect or warn the end-user of the open redi-
rect. This approach has the advantage that the client
does not actually follow the redirects, which ensures that
the phishing sites cannot confirm that a user attempted
to follow a link. Otherwise, the phisher could confirm
the destination of a phishing email was valid and include
the address in further attacks. Given the prevalence of
open redirects on the Web today, the overhead of this ap-
proach could harm the user experience. To avoid warn-
ing users about inconsequential open redirects they en-
counter on the Web, the browsers could perform the pro-
posed checks only when a user is redirected from a third
party site or application, such as a mailer program or
Web-based email sites.

6 Related Work

Web security has many facets, of which open redirects
are one. In the interest of brevity, we focus on works
directly related to open redirects in this section.

Fette et al. [1] describe open redirects in email as an
indication of phishing. They use this to motivate one of
their heuristics for detecting phishing emails based on
the number of dots contained in URLs in the email. In
our work, we focus on the prevalence of redirects on the
the Web instead.

Wang et al. [11] analyze Web sites to detect malicious
sites that exploit browser vulnerabilities. In doing so,
they analyze whether Web site redirects are being used
to obfuscate the attack. They find that many sites hosting

exploits hide behind redirects. When following redirects,
their list of exploit providers grew 263%. In our work,
we focus on characterizing the redirects themselves.

¡Netcraft provides a commercial service to check Web
sites for open redirects [9]. They additionally provide
examples of previously found open redirects. However,
they do not provide details of their methods or any infor-
mation on what they find beyond the small set of moti-
vating examples.

7 Conclusion

Our analysis found that a large proportion of redirects
on the Web can be manipulated and exploited. While
our analysis is a lower bound on the threat posed by
open redirects, it opens several avenues of future work.
Specifically, we would like to follow each of the links
we find in order to detect redirects we may have missed.
We further plan to consider redirects using JavaScript
and the HTML refresh approaches. We also would like
to explore how complex redirects can be exploited in
order to deceive users and suggest methods to thwart
these attacks. Finally, the feasibility and overheads of
the client and server-side approaches we proposed to de-
fend against open redirects deserve close scrutiny.

Acknowledgments

We would like to thank Gregory Blanton, Pablo Santa
Cruz, and Jenett Tillotson for contributing their Web
page crawl data, which was used to find redirect links in
the project. We would also like to thank Yonghyun Yoon
and Dalvinder Singh, who worked on an earlier project
that showed the viability of this work.

References

[1] I. Fette, N. Sadeh, and A. Tomasic, “Learning to de-
tect phishing emails,” inInternational World Wide
Web Conference (WWW), 2007.

[2] J. Nagle, “SiteTruth - blacklisting collateral dam-
age,” inMIT Spam Conference, 2008.

[3] World Wide Web Consortium (W3C), “Use stan-
dard redirects - don’t break the back button!” http:
//www.w3.org/QA/Tips/reback.

[4] M. Langheinrich, “LWP::Parallel::UserAgent
- a class for parallel user agents,” http:
//search.cpan.org/∼marclang/ParallelUserAgent-2.
57/lib/LWP/Parallel/UserAgent.pm.

[5] Apache Software Foundation, “Jakarta commons
HTTP client,” http://hc.apache.org/httpclient-3.x/.



[6] B. Foy, “HTML::SimpleLinkExtor - extract
links from HTML,” http://search.cpan.org/
∼bdfoy/HTML-SimpleLinkExtor-1.19/lib/
SimpleLinkExtor.pm.

[7] Amazon.com, Inc, “Alexa web information service
(AWIS),” 2008, http://aws.amazon.com/awis.

[8] DMOZ, “Open directory project,” http://www.
dmoz.org/.

[9] Netcraft, “Netcraft: Anti-fraud open redirect
detection service,” http://news.netcraft.com/
open-redirect-detection.

[10] Xeen, “Redirect remover,” http://redirectremover.
mozdev.org/.

[11] Y. Wang, D. Beck, X. Jiang, R. Roussev, C. Ver-
bowski, S. Chen, and S. King, “Automated web pa-
trol with Strider HoneyMonkeys,” inInternet Soci-
ety Network and Distributed System Security Sym-
posium (NDSS), 2006.


