
NoSQL Databases: MongoDB vs Cassandra

Veronika Abramova
Polytechnic Institute of Coimbra

ISEC - Coimbra Institute of Engineering
Rua Pedro Nunes, 3030-199 Coimbra, Portugal

Tel. ++351 239 790 200

a21190319@alunos.isec.pt

Jorge Bernardino

Polytechnic Institute of Coimbra
ISEC - Coimbra Institute of Engineering

Rua Pedro Nunes, 3030-199 Coimbra, Portugal
Tel. ++351 239 790 200

jorge@isec.pt

ABSTRACT

In the past, relational databases were used in a large scope of

applications due to their rich set of features, query capabilities and

transaction management. However, they are not able to store and

process big data effectively and are not very efficient to make

transactions and join operations. Recently, emerge a new

paradigm, NoSQL databases, to overcome some of these

problems, which are more suitable for the usage in web

environments. In this paper, we describe NoSQL databases, their

characteristics and operational principles. The main focus of this

paper is to compare and evaluate two of the most popular NoSQL

databases: MongoDB and Cassandra.

Categories and Subject Descriptors

H.2 [Database Management]. H.2.5 [Heterogeneous

Databases]. H.2.6 [Database Machines].

General Terms

Management, Measurement, Performance, Experimentation,

Verification.

Keywords

Database Management Systems (DBMS), NoSQL Databases.

1. INTRODUCTION
Some years ago, databases appeared as a repository with

organized and structured data, where all that data is combined into

a set of registers arranged into a regular structure to enable easy

extraction of information. To access data is common to use a

system usually known as DataBase Management System (DBMS).

DBMS can be defined as a collection of mechanisms that enables

storage, edit and extraction of data; over past years the concept of

DBMS has become a synonym of database. Size and complexity

of databases are defined by the number of registers used. A simple

database can be represented as a file with data while more

complex databases are able to store millions of registers with a

huge amount of gigabytes all over the globe. More and more,

databases became an important enterprise tool. For the past years

with the evolution of Information and Communications

Technology, the storage type, functionalities and interaction with

databases has improved. Moreover, databases became a resource

used every day by millions of people in countless number of

applications. All that value and usage created a must to have all

data structured and organized in the best way so extraction can be

made fast and easy. Whenever quantity of data increases,

databases become larger. With the exponential growth of database

size, access to data has to be made as more efficient as possible.

That leads to the well-known problem of efficiency in information

extraction.

Edgar Frank Codd introduced the relational model in 1970

publishing a paper in Communications of ACM magazine while

working as IBM programmer [2]. As research result, Codd

proposed a solution to overcome data storage and usage

difficulties according to principles based on relations between

data. So, 12 rules were introduced to manage data as relational

model, known as “E. F. Codd’s 12 rules” [3]. Meanwhile System

R [15], experimental database system, was developed to

demonstrate usability and advantages of relational model. With it

was created a new language, Structured Query Language, known

as SQL [6]. Since then, SQL became a standard for data

interaction and manipulation. Relational Databases store data as a

set of tables, each one with different information. All data is

related so it is possible to access information from different tables

simultaneously. Relational model is based on “relationship”

concept. The origin of relational model was the concept Codd

used to define a table with data, he called it “relation”. So,

basically, a relation is a table organized in columns and rows.

Each table is formed by set of tuples with same attributes. Those

attributes contain information about some object. More complex

database contains a lot of tables with millions of entries. Those

tables are connected so data from one table can be related to other

by key. There are different types of keys, but essentially there are

of two types: primary key and foreign key. Primary key is used to

identify each entire table, tuple, as unique. Foreign key is used to

cross-reference tables. Foreign key in one table represents a

Primary key in the other.

While data volume increases exponentially, some problems

became evident. One of those is database performance related to

data access and basic structure of relational model. SQL enables

easy data extraction but when information volume is huge, query

execution time can become slow [10, 12, 18]. Any application

with large amount of data will unavoidably lose performance. To

overcome those efficacy problems, emerged different types of

databases. One of those is known as NoSQL corresponding

“NotOnlySQL” [16]. NoSQL was introduced by Carlo Strozzi in

1980 to refer an open source database that wasn’t using SQL

interface. Carlo Strozzi prefer to refer to NoSQL as “noseequel”

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference C3S2E, July 10–12, 2013, Porto, Portugal.

Copyright 2013 ACM 1-58113-000-0/00/0010 …$15.00

14

or “NoRel”, which is a principal difference between that

technology and already existent [13]. The origin of NoSQL can be

related to BigTable, model developed by Google [7]. That

database system, BigTable, was used to storage Google’s projects,

such as, Google Earth. Posteriorly Amazon developed his own

system, Dynamo [5]. Both of those projects highly contributed for

NoSQL development and evolution. However NoSQL term was

not popular or known until the meeting held in San Francisco in

2009 [20, 21]. Ever since then, NoSQL became a buzzword.

This paper is focused on testing NoSQL databases and compare

performance of two widely used databases, MongoDB and

Cassandra. We will describe the main characteristics and

advantages of NoSQL databases compared to commonly used

relational databases. Some advantages and innovation brought by

noseequel model and different existing types of NoSQL databases

will be discussed. The benchmarking of these two NoSQL

databases, MongoDB and Cassandra is also described.

The experimental evaluation of both databases will test the

difference in managing and data volume scalability, and verify

how databases will respond to read/update mix while running just

on one node without a lot of memory and processor resources, just

like personal computers. More specifically will be used Virtual

Machine environment. It is common to benchmark databases on

high processing and with large capabilities clusters, but in our

study the main goal is focus on less capacity servers.

The remainder of this paper is organized as follows. Section 2

reviews related work on the topic and Section 3 makes a brief

summary of NoSQL databases. Section 4 describes the

comparison between MongoDB and Cassandra. Section 5

describes the YCSB – Yahoo! Cloud Serving Benchmark. In

section 6 the experimental results obtained in the study are shown.

Finally, Section 7 presents our conclusions and suggests future

work.

2. RELATED WORK
Performance and functional principles of NoSQL databases has

been approached ever since those gained popularity. While

analyzing different papers and studies of NoSQL databases two

different types of approaches can be defined. The first is focused

on compare commonly used SQL databases and NoSQL

databases, evaluate and study performance in order to distinguish

those two types of databases. The other one consists of

comparison only between NoSQL databases. Those studies

commonly pick most known NoRel databases and compare their

performance. However, both of those comparisons in most cases

are focused on analyzing the number of operations per second and

latency for each database. While latency may be considered an

important factor while working in cluster environment, there is no

value for it in a single node study.

Brian F. Cooper et al. analyzed NoSQL databases and MySQL

database performance using YCSB benchmark by relating latency

with the number of operations per second [4]. In our paper the

main focus is to perform studies prioritizing different execution

parameters. More specifically our goal is based on relating

execution time to the number of records used on each execution.

More importantly, all benchmarking is commonly done in high

processing and with lots of memory clusters, it is also important to

understand how these databases behave in simpler environments

and while using just one server.

The main difference of our paper is its goal to study execution

time evolution according to increase in database size. Although all

different studies performed are important and allow better

understanding of capabilities of NoSQL database and how those

differ, we consider data volume a very important factor that must

be evaluated. At the same time, execution time provides better

perception of performance while the number of operations per

second may be hard to analyze. At the same time, while examine

related work, it is important to notice that there are no much

papers discussing performance and benchmarking NoSQL

databases. With all aspects defined above, the main aim of our

study is to increase the number of analysis and studies available,

while focusing on different parameters compared to existing

papers.

3. NOSQL DATABASES
The main reason to NoSQL development was Web 2.0 which

increased the use and data quantity stored in databases [8, 11].

Social networks and large companies, such as Google, interact

with large scale data amount [12]. In order not to lose

performance, arises the necessity to horizontally scale data.

Horizontal scaling can be defined as an attempt to improve

performance by increasing the number of storage units [19]. Large

amount of computers can be connected creating a cluster and its

performance exceeds a single node unit with a lot of additional

CPUs and memory. With increased adherence to social networks,

information volume highly increased. In order to fulfill users

demands and capture even more attention, multimedia sharing

became more used and popular. Users became able to upload and

share multimedia content. So, the difficulty to keep performance

and satisfy users became higher [19]. Enterprises became even

more aware of efficiency and importance of information

promptness. The most widely used social network, Facebook,

developed by Mark Zuckerberg grew rapidly. With that, meet all

requirements of its users became a hard task. It is difficult to

define the number of millions of people who use this network at

the same time to perform different activities. Internally interaction

of all those users with multimedia data is represented by millions

of requests to database at the same time. The system must be

designed to be able to handle large amount of requests and

process data in a fast and efficient way. In order to keep up with

all demands as well as keep high performance, companies invest

in horizontal scaling [18]. Beyond efficiency, costs are also

reduced. It is more inexpensive to have a large amount of

computers with fewer resources than build a supercomputer.

Relational databases allow to horizontally scaling data but

NoSQL provide that in an easier way. This is due to ACID

principles and transaction support that is described in the next

section. Since data integrity and consistency are highly important

for relational databases, communication channels between nodes

and clusters would have to instantly synchronize all transactions.

NoSQL databases are designed to handle all type of failures.

Variety of hardware fail may occur and system must be prepared

so it is more functional to consider those concerns as eventual

occurrences than some exceptional events.

In the next sections it will be described the principles of

operation, characteristics and different types of NoSQL databases.

15

3.1 ACID vs BASE
Relational databases are based on a set of principles to optimize

performance. Principles used by Relational or NoSQL databases

are derived from CAP theorem [11]. According to this theorem,

following guarantees can be defined:

 Consistency – all nodes have same data at the same

time;

 Availability – all requests have response;

 Partition tolerance – if part of system fails, all system

won’t collapse.

ACID is a principle based on CAP theorem and used as set of

rules for relational database transactions. ACID’s guarantees are

[17]:

 Atomic – a transaction is completed when all operations

are completed, otherwise rollback1 is performed;

 Consistent – a transaction cannot collapse database,

otherwise if operation is illegal, rollback is performed;

 Isolated – all transactions are independent and cannot

affect each other;

 Durable – when commit2 is performed, transactions

cannot be undone.

It is noticeable that in order to have robust and correct database

those guarantees are important. But when the amount of data is

large, ACID may be hard to attain. That why, NoSQL focuses on

BASE principle [17, 20]:

 Basically Avaliable – all data is distributed, even when

there is a failure the system continues to work;

 Soft state – there is no consistency guarantee;

 Eventually consistent – system guarantees that even

when data is not consistent, eventually it will be.

It is important to notice, that BASE still follows CAP theorem

and if the system is distributed, two of three guarantees must be

chosen [1]. What to choose depends of personal needs and

database purpose. BASE is more flexible that ACID and the big

difference is about consistency. If consistency is crucial, relational

databases may be better solution but when there are hundreds of

nodes in a cluster, consistency becomes very hard to accomplish.

3.2 Data access
When it comes to data access, data interaction and extraction in

NoSQL databases is different. Usual SQL language cannot be

used anymore. NoSQL databases tend to favor Linux so data can

be manipulated with UNIX commands. All information can be

easily manipulated using simple commands as ls, cp, cat, etc. and

extracted with I/O and redirect mechanisms. Even though, since

SQL became a standard and widely used, there are NoSQL

databases where SQL-like query language can be used. For

example, UnQL – Unstructured Query language developed by

Couchbase [22] or CQL – Cassandra Query language [23].

1 Operation that returns database to consistent state
2 Operation that confirms all changes done over database as

permanent

3.3 Types of NoSQL databases
With high adherence to NoSQL databases, different databases

have been developed. Currently there are over 150 different

NoSQL databases. All those are based on same principles but own

some different characteristics. Typically can be defined four

categories [9]:

 Key-value Store. All data is stored as set of key and

value. All keys are unique and data access is done by

relating those keys to values. Hash contains all keys in

order to provide information when needed. But value

may not be actual information, it may be other key.

Examples of Key-value Store databases are:

BynamoDB, Azure Table Storage, Riak, Redis.

 Document Store. Those databases can be defined as set

of Key-value stores that posteriorly are transformed into

documents. Every document is identified by unique key

and can be grouped together. The type of documents is

defined by known standards, such as, XML or JSON.

Data access can be done using key or specific value.

Some examples of Document Store databases are:

MongoDB, Couchbase Server, CouchDB, RavenDB.

 Column-family. That is the type most similar to

relational database model. Data is structured in columns

that may be countless. One of projects with that

approach is HBase based on Google’s Bigtable [24].

Data structure and organization consists of:

o Column – represents unit of data identified by

key and value;

o Super-column – grouped by information

columns;

o Column family – set of structured data similar

to relation database table, constituted by

variety of super-columns.

 Structure of database is defined by super-columns and

 column families. New columns can be added whenever

 necessary. Data access is done by indicating column

 family, key and column in order to obtain value, using

 following structure:

 <columnFamily>.<key>.<column> = <value>

 Examples of Column-family databases: HBase,

 Cassandra, Accumulo, Hypertable.

 Graph database. Those databases are used when data

can be represented as graph, for example, social

networks.

Examples of Graph databases: Neo4J, Infinite Graph,

InfoGrid, HyperGraphDB.

In the next section we describe the main characteristics of the two

popular NoSQL databases under test.

4. MONGODB VS CASSANDRA
In this section we describe MongoDB and Cassandra, which are

the databases chosen for analysis and tests. The main

characteristics to be analyzed are: data loading, only reads, reads

and updates mix, read-modify-write and only updates. Those

databases were chosen in order to compare different types of

16

databases, MongoDB as Document Store and Cassandra as

Column family.

4.1 MongoDB
MongoDB is an open source NoSQL database developed in C++.

It is a multiplatform database developed in 2007 by 10gen with

first public release in 2009, currently in version 2.4.3 and

available to download at (http://www.mongodb.org/downloads).

MongoDB is a document store database where documents are

grouped into collections according to their structure, but some

documents with different structure can also be stored. However, in

order to keep efficiency up, similarity is recommended. The

format to store documents in MongoDB is BSON – Binary JSON

and the maximum size for each is limited to 16MB. The

identification is made by defined type, not just id. For example, it

can be the combination of id and timestamp in order to keep

documents unique. It is important to notice that 32bit MongoDB

has a major limitation. Only 2GB of data can be stored per node.

The reason of that is memory usage made by MongoDB. In order

to increase performance data files are mapped in memory. By

default data is sent to disc every 60 seconds but that time can be

personalized. When new files are created, everything is flushed to

disc, releasing memory. It is not known if the size of memory used

by MongoDB can be defined, eventually unused files will be

removed from memory by operating system. So, since 64 bit OS

are capable of address more memory, 32 bit OS are limited. In

order to increase performance while working with documents,

MongoDB uses indexing similar to relational databases. Each

document is identified by _id field and over that field is created

unique index. Although indexing is important to execute

efficiently read operations, it may have negative impact on inserts.

Apart from automatic index created on _id field, additional

indexes can be created by database administrator. For example,

can be defined index over several fields within specific collection.

That feature of MongoDB is called “compound index”. However,

all indexes use the same B-tree structure. Each query use only one

index chosen by query optimizer mechanism, giving preference to

more efficient index. Eventually query optimizer reevaluates used

indexing by executing alternative plans and comparing execution

cost.

Some of the most important characteristics of this database are

durability and concurrency. Durability of data is granted with

creation of replicas. MongoDB uses Master-Slave replication

mechanism. It allows defining a Master and one or more Slaves.

Master can write or read files while Slave serves as backup, so

only reading operations are allowed. When Master goes down,

Slave with more recent data is promoted to Master. All replicas

are asynchronous, what means that all updates done are not spread

immediately. Replica members can be configured by system

administrator in a variety of ways, such as:

 Secondary-Only Members. Those replicas store data but

cannot be promoted to Master under any circumstances.

 Hidden Members. Hidden replicas may not become

primary and are invisible to client applications. Usually

those members provide dedicated backups and read-

only testing. However, those replicas still vote for new

Master when failover occurs and primary unit must be

chosen.

 Delayed Members. Replicas that copy primary unit

operations with specified delay. Which means that data

on replica will be older compared to the Master and will

not match last updates done.

 Arbiters. These members exist only to participate in

elections and interact with all other members.

 Non-Voting Members. These replicas may not take part

in elections and usually are used only with large clusters

with more than 7 members.

Starting from version 2.2 MongoDB uses locks to ensure

consistency of data and prevent multiple clients to read and

update data at the same time. Before, information could be simple

replaced while being transferred to memory.

Similarly to RDBMS may be defined four core database

operations executed over MongoDB. The set of those operations

is called CRUD and stands for Create, Read, Update and Delete.

In Figure 1 is shown an example of the MongoDB interface.

Figure 1 – MongoDB interface

Like other NoSQL databases, MongoDB is controlled by UNIX

shell but there are some projects that developed an interface, such

as, Edda, MongoVision and UMongo [25].

4.2 Cassandra
Cassandra is a NoSQL database developed by Apache Software

Foundation written in Java. Cassandra is available as Apache

License distribution at (http://cassandra.apache.org/).

Being part of Column-Family, Cassandra is very similar to the

usual relational model, made of columns and rows. The main

difference were the stored data, that can be structured, semi

structured or unstructured.

While using Cassandra, there is a community of support and

professional support from some companies. Cassandra is designed

to store large amount of data and deal with huge volumes in an

efficient way. Cassandra can handle billions of columns and

millions of operations per day [26]. Data can be distributed all

over the world, deployed on large number of nodes across

multiple data centers. When it comes to storage in cluster and

nodes, all data is stored over clusters. When some node is added

or when it is removed, all data is automatically distributed over

other nodes and the failed node can be replaced with no

downtime. With that it is no longer necessary to calculate and

assign data to each node. Every node in the cluster have same role

17

http://cassandra.apache.org/

which means that there are no master. That architecture is known

as peer-to-peer and overcomes master-slave limitations such as,

high availability and massive scalability. Data is replicated over

multiple nodes in the cluster. It is possible to store terabytes or

petabytes of data. Failed nodes are detected by gossip protocols

and those nodes can be replaced with no downtime. The total

number of replicas is referred as replication factor. For example,

replication factor 1 means that there is only one copy of each row

on one node but replication factor 2 represents that there are two

copies of same records, each one on different node. There are two

available replication strategies:

 Simple Strategy: it is recommended when using a single

data center. Data center can be defined as group of

related nodes in cluster with replication purpose. First

replica is defined by system administrator and

additional replica nodes are chosen clockwise in the

ring.

 Network Topology Strategy: it is a recommended

strategy when the cluster is deployed across multiple

data centers. Using this strategy it is possible to specify

the number of replicas to use per data center.

Commonly in order to keep tolerance-fault and

consistency it should be used two or three replicas on

each data center.

One of the important features of Cassandra is durability. There are

two available replication types: synchronous and asynchronous,

and the user is able to choose which one to use. Commit log is

used to capture all writes and redundancies in order to ensure data

durability.

Another important feature for Cassandra is indexing. Each node

maintains all indexes of tables it manages. It is important to notice

that each node knows the range of keys managed by other nodes.

Requested rows are located by analyzing only relevant nodes.

Indexes are implemented as a hidden table, separated from actual

data. In addition, multiple indexes can be created, over different

fields. However, it is important to understand when indexes must

be used. With larger data volumes and a large number of unique

values, more overhead will exist to manage indexes. For example,

having database with millions of clients’ records and indexing by

e-mail field that usually is unique will be highly inefficient.

All stored data can be easily manipulated using CQL – Cassandra

Query Language based on widely used SQL. Since syntax is

familiar, learning curve is reduced and it is easier to interact with

data. In Figure 2 is shown a Cassandra client console.

Figure 2 – Cassandra console

There are different ways to use Cassandra, some of most

prominent areas of use are: financial, social media, advertising,

entertainment, health care, government, etc. There are many

companies that use Cassandra, for example, IBM, HP, Cisco and

eBay [24].

4.3 Features comparison
In order to better understand differences between MongoDB and

Cassandra we study some features of those NoSQL databases such

as: development language, storage type, replication, data storage,

usage and some other characteristics. All those characteristics are

shown in Table 1.

Table 1. MongoDB and Cassandra features

 MongoDB Cassandra

Development

language
C++ Java

Storage Type BSON files Column

Protocol TCP/IP TCP/IP

Transactions No Local

Concurrency Instant update MVCC

Locks Yes Yes

Triggers No Yes

Replication Master-Slave Multi-Master

CAP theorem
Consistency,

Partition tolerance

Partition tolerance,

High Availability

Operating

Systems

Linux / Mac OS /

Windows

Linux / Mac OS /

Windows

Data storage Disc Disc

Characteristics

Retains some SQL

properties such as

query and index

A cross between

BigTable and

Dynamo. High

availability

Areas of use
CMS system,

comment storage

Banking, finance,

logging

By analyzing core properties it is possible to conclude that there

are similarities when it comes to used file types, querying,

transactions, locks, data storage and operating systems. But it is

important to notice the main difference, according to CAPs

theorem, MongoDB is CP type system – Consistency and

Partition tolerance, while Cassandra is PA – Consistency and

Availability. In terms of replication, MongoDB uses Master-Slave

while Cassandra uses peer-to-peer replication that is typically

named as Multi-master.

In terms of usage and best application, MongoDB has better use

for Content Management Systems (CMS), while having dynamic

queries and frequently written data. Cassandra is optimized to

store and interact with large amounts of data that can be used in

different areas such as, finance or advertising. Following, we

describe the benchmark to test MongoDB and Cassandra

databases.

18

5. YCSB BENCHMARK
The YCSB – Yahoo! Cloud Serving Benchmark is one of the

most used benchmarks to test NoSQL databases [10]. YCSB has a

client that consists of two parts: workload generator and the set of

scenarios. Those scenarios, known as workloads, are

combinations of read, write and update operations performed on

randomly chosen records. The predefined workloads are:

 Workload A: Update heavy workload. This workload

has a mix of 50/50 reads and updates.

 Workload B: Read mostly workload. This workload

has a 95/5 reads/update mix.

 Workload C: Read only. This workload is 100% read.

 Workload D: Read latest workload. In this workload,

new records are inserted, and the most recently inserted

records are the most popular.

 Workload E: Short ranges. In this workload, short

ranges of records are queried, instead of individual

records.

 Workload F: Read-modify-write. In this workload, the

client will read a record, modify it, and write back the

changes.

Because our focus is on update and read operations, workloads D

and E will not be used. Instead, to better understand update and

read performance, two additional workloads were defined:

 Workload G: Update mostly workload. This workload

has a 5/95 reads/updates mix.

 Workload H: Update only. This workload is 100%

update.

The loaded data is from a variety of files, each one with a certain

number of fields. Each record is identified by a key, string like

“user123423”. And each field is named as field0, field1 and so on.

Values of each field are random characters. For testing we use

records with 10 fields each of 100 bytes, meaning a 1kb per

record.

Since client and server are hosted on the same node, latency will

not take part of this study. YCSB provides thread configuration

and set of operation number per thread. During initial tests we

observed that using threads, the number of operations per second

actually reduced. That is due to the fact that tests are running on

virtual machine with even lower resources than a host.

6. EXPERIMENTAL EVALUATION
In this section we will describe the experiments while using

different workloads and data volumes. Tests were running using

Ubuntu Server 12.04 32bit Virtual Machine on VMware Player.

As experimental setup it is important to notice that VM has

available 2GB RAM and Host was single-node Core 2 Quad 2.40

GHz with 4GB RAM and Windows 7 Operating System. The

tested versions of NoSQL databases are MongoDB version 2.4.3

and Cassandra version 1.2.4.

As focus of study, we take the execution time to evaluate the best

database performance. All workloads were executed three times

with reset of computer between tests. All the values are shown in

(minutes:seconds) and represent the average value of the three

executions.

In the following figures we show data loading phase tests and

time execution for the different types of workloads: A, B, C, F, G,

and H.

Data loading phase

00:00

04:48

09:36

Ti
m

e
 (

m
in

:s
e

c)

Number of records

MongoDB

Cassandra

MongoDB 00:45 02:00 04:42

Cassandra 00:59 02:24 05:42

100K 280K 700K

Figure 3 - Data loading test

To compare loading speed and throughput different volumes of

were loaded with 100.000, 280.000 and 700.000 records as shown

in Figure 3. While observing results, it is possible to see that there

was no significant difference between MongoDB and Cassandra.

MongoDB had slightly lower insert time, regardless of number of

records, compared to Cassandra, which has an average overhead

of 24%. When the size of loaded data increases, the execution

time increased in a similar proportion for both databases with

highest time of 04:42 for MongoDB and 05:42 for Cassandra

when inserting 700.000 records.

Workload A (50/50 reads and updates)

00:00

00:28

00:57

Ti
m

e
 (

m
in

:s
e

c)

Number of records

MongoDB

Cassandra

MongoDB 00:19 00:31 00:28

Cassandra 00:10 00:14 00:11

100K 280K 700K

Figure 4 - Workload A experiments

Compared to MongoDB, Cassandra had better execution time

regardless database size. The performance of Cassandra can be

2.54 times faster than Mongo DB using a mix of 50/50 reads and

updates with 700.000 records. Another important fact that can be

observed is the decrease in time execution when number of

records used goes from 280.000 up to 700.000, for both databases

(see Figure 4). This happens due to optimization of databases to

work with larger volumes of data.

19

Workload B (95/5 reads and updates)

00:00

00:28

00:57

Ti
m

e

(m
in

:s
e

c)

Number of records

MongoDB

Cassandra

MongoDB 00:12 00:22 00:32

Cassandra 00:29 00:21 00:18

100K 280K 700K

Figure 5 - Workload B experiments

When we test the databases with a 95/5 reads/update mix the

results for Cassandra and MongoDB had different behavior as

shown in Figure 5. While execution time for MongoDB kept

increasing, Cassandra was able to reduce time while data volume

became larger. However, the highest time for Cassandra was

00:29 and corresponds to querying over 100.000 records when for

MongoDB highest time was of 00:32 for 700.000 records. The

performance of Cassandra with this workload is 56% better when

comparing to MongoDB, using 700.000 records. Although for

small size data (100.000 records) the MongoDB has better results.

Workload C (100% reads)

00:00

00:28

00:57

Ti
m

e
 (

m
in

:s
e

c)

Number of records

MongoDB

Cassandra

MongoDB 00:16 00:27 00:35

Cassandra 00:43 00:24 00:20

100K 280K 700K

Figure 6 - Workload C experiments

In this workload we have 100% of reads. As the previous

experiments, when it comes to large amount of read operations,

Cassandra becomes more efficient with bigger quantity of data, as

illustrated in Figure 6. MongoDB showed similar behavior of the

previous workload, where execution time is directly proportional

to data size. However, MongoDB is 2.68 faster when using

100.000 records but 1.75 slower for 700.000 records, when

comparing to Cassandra execution time. Fastest execution time of

MongoDB is 00:16 and for Cassandra is 00:20, however those

results represent opposite volumes of data, being better execution

time for Cassandra with high number of records and for

MongoDB with just 100.000 records.

Workload F (read-modify-write)

00:00

00:28

00:57

Ti
m

e
 (

m
in

:s
e

c)

Number of records

MongoDB

Cassandra

MongoDB 00:19 00:21 00:36

Cassandra 00:40 00:21 00:20

100K 280K 700K

Figure 7 - Workload F experiments

In this workload, the client will read a record, modify it, and write

back the changes. In this workload Cassandra and MongoDB

showed opposite behavior results as illustrated id Figure 7. The

Cassandra’s higher execution time was with small data volume

and with increase it kept reducing while MongoDB has worst time

with bigger data size. MongoDB is 2.1 faster for querying over

100.000 records but 1.8 slower for 700.000 records, and have the

same value for 280.000 records, when comparing to Cassandra

execution time. Smallest execution time variations were 00:01 for

Cassandra when increasing number of records from 280.000 up to

700.000 and 00:02 for MongoDB when lowing number of records

used from 280.000 down to 100.000 records.

Workload G (5/95 reads and updates)

00:00

00:28

00:57

Ti
m

e
 (

m
in

:s
e

c)

Number of records

MongoDB

Cassandra

MongoDB 00:23 00:31 00:36

Cassandra 00:01 00:02 00:03

100K 280K 700K

Figure 8 - Workload G experiments

This workload has a 5/95 reads/updates mix. The results shown in

Figure 8 are absolutely demonstrative of the superiority of

Cassandra over MongoDB for all database sizes. On every

execution time Cassandra showed better results. With grown of

data volume both Cassandra and MongoDB started having higher

execution time, but MongoDB was not even close to Cassandra.

The performance of Cassandra with this workload varies from 23

to 12 times faster than MongoDB. That established difference in

performance allows us to conclude that in this environment,

Cassandra is more optimized to update operations compared to

MongoDB, showing surprisingly high performance results.

20

Workload H (100% updates)

00:00

00:28

00:57
Ti

m
e

 (
m

in
:s

e
c)

Number of records

MongoDB

Cassandra

MongoDB 00:25 00:27 00:43

Cassandra 00:01 00:01 00:01

100K 280K 700K

Figure 9 - Workload H experiments

When it came to a 100% update workload Cassandra had stable

performance even with increased number of records, as shown in

Figure 9. Similarly to results of workload G, Cassandra showed

great results compared to MongoDB, which varies from 25 to 43

times better. For MongoDB the difference in execution time

between 100.000 records and 280.000 records was not big but

almost doubled when using 700.000 records

7. CONCLUSIONS AND FUTURE WORK
The development of the Web need databases able to store and

process big data effectively, demand for high-performance when

reading and writing, so the traditional relational database is facing

many new challenges. NoSQL databases have gained popularity

in the recent years and have been successful in many production

systems. In this paper we analyze and evaluate two of the most

popular NoSQL databases: MongoDB and Cassandra. In the

experiments we test the execution time according to database size

and the type of workload. We test six different types of

workloads: mix of 50/50 reads and updates; mix of 95/5

reads/updates; read only; read-modify-write cycle; mix of 5/95

reads/updates; and update only. With the increase of data size,

MongoDB started to reduce performance, sometimes showing

poor results. Differently, Cassandra just got faster while working

with an increase of data. Also, after running different workloads

to analyze read/update performance, it is possible to conclude that

when it comes to update operations, Cassandra is faster than

MongoDB, providing lower execution time independently of

database size used in our evaluation. As overall analysis turns out

that MongoDB fell short with increase of records used, while

Cassandra still has a lot to offer. In conclusion Cassandra show

the best results for almost all scenarios.

As future work, we pretend to analyze the number of operations

per second vs database size. That would help to understand, how

those databases would behave with higher number of records to

read/update with data volume grown.

8. AKNOWLEDGMENTS
Our thanks to ISEC – Coimbra Institute of Engineering from

Polytechnic Institute of Coimbra for following us to use the

facilities of the Laboratory of Research and Technology

Innovation of Computer Science and Systems Engineering

Department.

9. REFERENCES
[1] Brewer, E., "CAP twelve years later: How the "rules" have

changed," Computer , vol.45, no.2, pp.23,29, Feb. 2012. doi:

10.1109/MC.2012.37.

[2] Codd. E. F. 1970. A relational model of data for large

shared data banks. Communications of ACM 13, 6 (June

1970), 377-387. doi=10.1145/362384.362685.

[3] Codd. E. F. 1985. “Is your DBMS Really Relational?” and

“Does your DBMS Run by the Rules?” Computer World,

October 14 and October 21.

[4] Cooper B. F., Adam Silberstein, Erwin Tam, Raghu

Ramakrishnan, and Russell Sears. 2010. Benchmarking

cloud serving systems with YCSB. In Proceedings of the 1st

ACM symposium on Cloud computing (SoCC '10). ACM,

New York, NY, USA, 143-154.

DOI=10.1145/1807128.1807152

http://doi.acm.org/10.1145/1807128.1807152

[5] DeCandia Giuseppe, Deniz Hastorun, Madan Jampani,

Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner

Vogels. 2007. Dynamo: amazon's highly available key-value

store. In Proceedings of twenty-first ACM SIGOPS

symposium on Operating systems principles (SOSP '07).

ACM, New York, NY, USA, 205-220.

[6] Donald D. Chamberlin, Raymond F. Boyce: SEQUEL: A

Structured English Query Language. SIGMOD Workshop,

Vol. 1 1974: 249-264.

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra,

Andrew Fikes, and Robert E. Gruber. 2006. Bigtable: a

distributed storage system for structured data. In Proceedings

of the 7th USENIX Symposium on Operating Systems

Design and Implementation - Volume 7 (OSDI '06), Vol. 7.

USENIX Association, Berkeley, CA, USA, 15-15.

[8] Hecht, R.; Jablonski, S., "NoSQL evaluation: A use case

oriented survey," Cloud and Service Computing (CSC), 2011

International Conference on , vol., no., pp.336,341, 12-14

Dec. 2011. doi: 10.1109/CSC.2011.6138544.

[9] Indrawan-Santiago, M., "Database Research: Are We at a

Crossroad? Reflection on NoSQL," Network-Based

Information Systems (NBiS), 2012 15th International

Conference on , vol., no., pp.45,51, 26-28 Sept. 2012. doi:

10.1109/NBiS.2012.95.

[10] Jayathilake, D.; Sooriaarachchi, C.; Gunawardena, T.;

Kulasuriya, B.; Dayaratne, T., "A study into the capabilities

of NoSQL databases in handling a highly heterogeneous

tree," Information and Automation for Sustainability

(ICIAfS), 2012 IEEE 6th International Conference on , vol.,

no., pp.106,111, 27-29 Sept. 2012. doi:

10.1109/ICIAFS.2012.6419890.

[11] Jing Han; Haihong, E.; Guan Le; Jian Du, "Survey on

NoSQL database," Pervasive Computing and Applications

(ICPCA), 2011 6th International Conference on , vol., no.,

pp.363,366, 26-28 Oct. 2011.

doi:10.1109/ICPCA.2011.6106531.

[12] Leavitt, N., "Will NoSQL Databases Live Up to Their

Promise?," Computer , vol.43, no.2, pp.12,14, Feb. 2010.

doi: 10.1109/MC.2010.58.

21

[13] Lith, Adam; Jakob Mattson (2010). "Investigating storage

solutions for large data: A comparison of well performing

and scalable data storage solutions for real time extraction

and batch insertion of data". Göteborg: Department of

Computer Science and Engineering, Chalmers University of

Technology.

[14] Lombardo, S.; Di Nitto, E.; Ardagna, D., "Issues in Handling

Complex Data Structures with NoSQL Databases," Symbolic

and Numeric Algorithms for Scientific Computing

(SYNASC), 2012 14th International Symposium on , vol.,

no., pp.443,448, 26-29 Sept. 2012. doi:

10.1109/SYNASC.2012.59.

[15] M.M. Astrahan, A history and evaluation of system R,

Performance Evaluation, Volume 1, Issue 1, January 1981,

Page 95, ISSN 0166-5316, 10.1016/0166-5316(81)90053-5.

[16] nosql-database.org, accessed on 30th April 2013.

[17] Roe C. 2012 “ACID vs. BASE: The Shifting pH of Database

Transaction Processing” - http://www.dataversity.net/acid-

vs-base-the-shifting-ph-of-database-transaction-processing/.

[18] Shidong Huang; Lizhi Cai; Zhenyu Liu; Yun Hu, "Non-

structure Data Storage Technology: A Discussion,"

Computer and Information Science (ICIS), 2012 IEEE/ACIS

11th International Conference on , vol., no., pp.482,487,

May 30 2012-June 1 2012. doi: 10.1109/ICIS.2012.76.

[19] Silberstein, A.; Jianjun Chen; Lomax, D.; McMillan, B.;

Mortazavi, M.; Narayan, P. P S; Ramakrishnan, R.; Sears,

R., "PNUTS in Flight: Web-Scale Data Serving at Yahoo,"

Internet Computing, IEEE , vol.16, no.1, pp.13,23, Jan.-Feb.

2012. doi: 10.1109/MIC.2011.142.

[20] Tudorica, B.G.; Bucur, C., "A comparison between several

NoSQL databases with comments and notes," Roedunet

International Conference (RoEduNet), 2011 10th , vol., no.,

pp.1,5, 23-25 June 2011.

doi:10.1109/RoEduNet.2011.5993686.

[21] Yahoo! Developer Network 2009. Notes from NoSQL

Meetup. - http://developer.yahoo.com/blogs/ydn/notes-nosql-

meetup-7663.html.

[22] http://www.couchbase.com/press-releases/unql-query-

language, accessed on 30th April 2013

[23] http://www.datastax.com/docs/1.0/references/cql/index,

accessed on 30th April 2013.

[24] http://cassandra.apache.org/, accessed on 30th April 2013.

[25] http://docs.mongodb.org/ecosystem/tools/administration-

interfaces/, accessed on 30th April 2013.

[26] http://www.datastax.com/what-we-offer/products-

services/datastax-enterprise/apache-cassandra, accessed on

30th April 2013.

22

http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/
http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/
http://developer.yahoo.com/blogs/ydn/notes-nosql-meetup-7663.html
http://developer.yahoo.com/blogs/ydn/notes-nosql-meetup-7663.html
http://www.couchbase.com/press-releases/unql-query-language
http://www.couchbase.com/press-releases/unql-query-language
http://www.datastax.com/docs/1.0/references/cql/index
http://cassandra.apache.org/
http://docs.mongodb.org/ecosystem/tools/administration-interfaces/
http://docs.mongodb.org/ecosystem/tools/administration-interfaces/
http://www.datastax.com/what-we-offer/products-services/datastax-enterprise/apache-cassandra
http://www.datastax.com/what-we-offer/products-services/datastax-enterprise/apache-cassandra

