NOSQL DATABASE SYSTEMS

pASE

Basically Available
Soft State

Eventual Consistency

ACID

Atomicity
Consistency
Isolation

Durable

(A THEOREM

1l Guide to NoSQL Sys

A\

W Document-Oriented

¥

ttp://i.stack.imgur.com/rOeRQ.

DATA MOD

ID=1
‘ - Y H Name Age State
Key: User1 » Value: Mike Sohn 57 Colitiar
K U 2 Val Joh ID=2 Name Age State
ey. user - alue: John
Yy Daniel 32 Montana
e Name Age State
Key: User3 = Value: Mary Mary 31 Washinglon
http://scraping.pro/res/nosql/keyvalue_database.png http://scraping.pro/res/nosgl/column_database.png

Age: 34
Gender: Male

Age: 32
Gender: Female

Document #1 Document #2 Document #3
Name: Mike Result: Failure City: New York

Age: 36 Error code: 1054 Street: \Wall st.
Blog: scraping.pro

\

scraping.pro

Married

Since: 2010-02-15

URL: http://scraping.pro
Topic: web scraping

Collection #1

http://scraping.pro/res/nosql/document_database.png

http://scraping.pro/res/nosql/graph_database.pnghttp://scraping.pro/res/nosql/graph_
database.png

Background: SQL vs. NoSQL

- Data modeling: schema-less

-Relational: driven by the structure of available data

-NoSQL.: driven by application- specific pattern

- Query capability:
- Relational: human user-oriented, query is simple

-NoSQL.: application-oriented, query is comparatively complex
- Scalability:
-Relational: vertical

-NoSQL: horizontal

Background: SQL vs. NoSQL

Horizontal Scalability

Performance Linear scalable
architectures provide a

constant rate of additonal

performance as the number MNon-scalable systems
of processors increases reach a plateau of

performance where
adding new processors
does not aad
incremental
performance

Number of processors
>

Figure 6.2

Background: SQL vs. NoSQL

NoSQL is naturally fit for big data.

-Unstructured data with similar semantics but
varied syntax

-Large volume of data for which scalability is
becoming a must and consistency expensive

10

Background: A refresh on MongoDB

Use collections to organize modules

Database

Collections

Documents

Normalized (Reference) or denormalized (embedding)

user document -

3

< . -~
_id: <ObjectIdi>, >
username: "123xyz"”

contact document

_id: <ObjectId2>,
wuser_id: <ObjectIdil>,

phone: "123-456-7890",
email: "xyz@example.com”
3
access documen t

or

_id: <ObjectId3>,
™ user_id: <ObjectIdl>,
level: 5,
group: "dev"”
>

€
i
username:
contact: {

access: {

X

<ObjectIdi>,
"123xyz",

phone:

email:

level: 5,
group:

"123-456-7890",
"xyz@example.com”
sub
ey

Strict consistency (All writes must go to primary node)

Client Application
Driver

Writes Reads

Primary
S
7
<SS

)?s
2
<
\%lxgk
Secondary

I

p

S
o,
o
6,

'

7777777777 New Primary Electedr

i " 1 ReEhcati{mI .
: Primary Hearcheat Secondary
fr e — A e

11

LOUCHDB

A NDSQL DBMS THAT DOES NOT MIMIC S(L

Introduction: What is CouchDB?

>
=]
CouchDB

relax

Name comes from:

- Cluster Of Unreliable Commodity Hardware

-Relax (in a couch)

- Written in Erlang, initial release in 2005

Licence: Apache, Original author: Damien Katz, et al.

13

Introduction: What is CouchDB?

. An open source, document-oriented, NoSQL database
that uses JSON to store data, as its query
language, and HT TP for an API.

Instead of locking mechanism, CouchDB uses
Multi-version Concurrency Control (MVCC) to
resolve conflicts, and incremental replication to
achieve eventual consistency.

14

Introduction: Why CouchDB?

- Availability, Locality and Scalability

Each node in a system should be able to make decisions purely based on local state. If you need to do something under high
load with failures occurring and you need to reach agreement, you're lost. If you're concerned about scalability, any algorithm
that forces you to run agreement will eventually become your bottleneck. Take that as a given.

—Werner Vogels, Amazon CTO and Vice President

- “A database that completely embraces the web.”

15

Data Modeling of CouchDB: JSON Format

CouchDB: JSON - MongoDB: BSON

BSON i1is binary JSON

BSON is a JSON that

— has been serialized
as a binary
—— document.

17

Data Modeling of CouchDB: Self-contained Data

- CouchDB: * MongoDB: embedded
purely self-contained (NoSQL);
(Say Goodbye to SQL) or referenced (SQL-like)

Real-world data is managed as real-world documents

Invoice 10/07/08
Joe the Plumber
Labor $200.00
Materials $ 75.00
$275.00

Due by: 12/01/08

18

Data Modeling of CouchDB: Self-contained Data

- CouchDB:

purely self-contained (NoSQL);

(Say Goodbye to SQL)

If real-world data is not managed as real-world data

* MongoDB: embedded

Invoice 10/07/08
Joe the Plumber
Labor $200.00
Materials S 75.00 ~

$275.00
Due by: 12/01/08

Workers

NAME WAGE

Joe
Bob

100
150

1t

\

Materials

NAME PRICE

Rod

30

String 20

or referenced (SQL-like)

19

Data Modeling of CouchDB: Data Storage

- CouchDB: one big warehouse

No global indexes predefined on DB
level, create a view to report results
instead

“STATUS":

{ “TEXT": “At Conf}

“GEO_LOC”": 134"
“COUNTRY": "USA™

JSON

{ “TEXT”: “At Conf}
} “Geo_Loc”: “13a7),
) “COUNTRY": "USA™

} “Geo_Loc”: “13a"},
} “COUNTRY": "USA"

JSON

- 1,
“STATUS": i
{ “TEXT": “At Conf} ST s
} “GEO_LOC": “134" }, P 940407,
“COUNTRY": "USA™ T v,
ison [FATE"
ATU

{ “TEXT”: “At Conf}
} “Geo_Loc”: "13a”},
}“CGUNTRV": "uUsA”

JSON

MongoDB:

separated by collections

Can create index for any field of
documents in a collection

(identical to indexin

ollection 1

Collection 2|

| II I

ollection 3

1

g in RDBMS)

Query Capabilities: How do you aggregate unstructured data?

- Define a view

- Map takes documents and emits key/value pairs

naan® b

et ally”,

laat_naree” “Stesenicn”,

''''''' e 0 | 0A0413 { "firss_name": "Susan”, Thst_name™: "Smich” |
1 1

NN

-x.=
()
~

RO T
52 o
Il:ﬂlrr,ll
||:ﬂ|n‘||

n :ﬂ4ﬂ‘ [T}

value
value
value
value

MapReduce
9

"4 "offset":0,"rows":[

"{"first_name":"
"{"first_name™:"
"{"first_name":"
"I"first_name":"

Margie","last_name":"|Johnson"}},

Charlie","last_name":"Johnson"}},
Sophie","last_name":"jchnson"}},

Susan","last_name":"Smith"}}

21

Query Capabilities: How do you aggregate unstructured data?

- Construct B-tree index
- CouchDB storage engine constructs a B-tree index

“a “ e weh® “h" “h” o g e nspar i i

Query Capabilities: How do you aggregate unstructured data?

* Query the view
- Reduce operates on the subtree to do aggregation

“f” “af “ch” meh® “h” "h” o T i nspu i i

Query Capabilities: How do you aggregate unstructured data?

- MapReduce + B-tree = results of a view

GET /my-database/_design/example/_view/all?startkey="a"&endkey="2z"

“example/all’~ Range lookup
‘-“‘_desig n/example

Retrieve
view
B-Tree

JSON
collation
w/ ICU

Trigger
view gg-d ate

server
JSON >

"all" "3
pi v J——— view range m—4

‘couchjs

rows — JSON encoding

HTTP: {"total_rows":9,"offset":0,"rows":[...]}

24

Query Capabilities

CouchDB:

MapReduce(complex queries)

—

)

All
Documents

5L
L)

) e (emwe)
Ky, Value }

¥ View Code

|function{doc) {
var store, price, value;
if {doc.item && doc.prices){
for (store in doc.prices){

price = doc.prices[store];
[doc.item, pricel;

value =
emit{price, walue);

Run Language: |

javascript

|::> Map function

Key, Value
Key, Valus
Key, Valuea
Key, Value

=

e, g, b e,
e s e i

-
-

Well, comparatively complex...

- MongoDB:

(1) Aggregatlon pipeline(SQL-like)

d: "A123",]

r:usl id: "A123"

nt: 500,
status: “A

cust_id: "A123",
amount: 250,

status: "A"

cust_: d “B2127,
20!

status

orders

cust_id: "B
amount

orders

{ mm123n: [see,

Results

{
—id: “a123%,
total: 75@

T LE4iRBEIE,
total 200

250] } | s A
!lreduce |,

"A123",
alue: 75@

' id: "B212%,
alue 200
¥

order_totals

25

Data Management

- REST API: a thin wrapper around the DB core

REST API

POST http://localhost:5984 /employees

Read
GET http://localhost:5984/employees/1

Update
PUT http://localhost:5984/employees/1

Delete
DELETE http://localhost:5984/employees/1

26

Data Management

- REST API: a thin wrapper around the DB core

pocoyang: ~ %: curl http://127.0.0.1:5984/
VVEﬂ'{“:?u:hdh“:”Helcome',‘uuid”:“hd94a3fﬂ5?&933@2522F913d99?:h?96“.“version“:'l.ﬁ.l'
s “wendor”:{"version™:"1.6.1-1", "name” : "Homebrew™}}

pocoyang: ~ %: curl -X PUT http://127.0.0.1:5984/albums
{"ok™ :true}
Add a new database:
pocoyang: ~ %: curl -X PUT http://127.0.0.1:5984/albums/a688d8d2@el7b5e87e47daba
FiNo o I-Wal=\""Ro[o]e:0]aal=12| M 08@@4eaa -d "{"title":"D Minor K466, "artist”:"Mozar+"}"
{"ok™:true,”id": "a688d8d20el7b5e87ed4Fdabaai@@4eaa™ ; rev”:"1-d@67700c88a3a78e5863)
97@ccad4faz23"}

Get a new UUID pocoyang: curl -X GET http://127.0.0.1:5984/_uuids
; , {"uuids" : ["a688d8dZ2@el7b5Se87e47dabaal@@4teaa™]}
(if don’t have one)

pocoyang: ~ %: curl -X GET http://127.0.0.1:5984/albums./a688d8d20el7b5e87e47daba
a8d@4ieaa
Read a document: {"_id": "a688d8d2@el17b5e87e47da6aa80@4eaa” ,"_rev" : " 1-d067700c88a3a78e5863970ccad4

923" ,"title” : "D Minor K466","artist”:"Mozart™}

27

Concurrency control of CouchDB

* Multi-Version Concurrency Control:

-Doesn’t rely on global state, always available to readers;
-Each reader is reading the latest visible snapshot

Locking CouchDB
. Jwrite
Commit fo disk p .'_'.‘.-_I ___________ E_v?q.. “ﬂld vers]un"
- rea - read
apwv, - i T
"-___:'--,____,_.read "new version™ -+~ | [et s -?‘-‘)-qb old version
ver FRY write read
g E qu “new version
A seq
°
- MongoDB CouchDB

28

Distributed Architecture of CouchDB

Master-Slave vs. Peer to Peer

Master-Slave Peer-to-Peer

requests

Used only if primary
master fails

“*-._ Standby
Master

Master

« The Master node may become a bottleneck in large clusters

» Many newer NoSQL architectures are moving toward a true
peer-to-peer system

Distributed Architecture of CouchDB

Eventual consistency by incremental replication:

- Peer-to-peer rather than primary-secondary

put . .'Q : ,___EfFlltatlon

— : Replication
- l‘ N
O ... Replication

29

Distributed Architecture of CouchDB

Eventual consistency by incremental replication:
-Peer-to-peer rather than primary-secondary
-Sites can go offline, DB will handle sync when back online

user C]_ _generate _rev)__ oS CouchDB
insert

CouchDB

30

Distributed Architecture of CouchDB

Eventual consistency by incremental replication:
-Peer-to-peer rather than primary-secondary
-Sites can go offline, DB will handle sync when back online

insert read

CouchDB

31

Distributed Architecture of CouchDB

Eventual consistency by incremental replication:
-Peer-to-peer rather than primary-secondary
-Sites can go offline, DB will handle sync when back online

insert read
/
I

‘Sync

\
CouchDB

32

Distributed Architecture of CouchDB

Eventual consistency by incremental replication:
-Peer-to-peer rather than primary-secondary

-Sites can go offline, DB will handle sync when back online
- Automatic conflict detection and resolution

insert ‘ (6\10

reply with revO
CouchDB :—'E—_—_____:
append _rev1

Distributed Architecture of CouchDB

Eventual consistency by incremental replication:
-Peer-to-peer rather than primary-secondary

-Sites can go offline, DB will handle sync when back online
- Automatic conflict detection and resolution

=G e L G - ~ B
R 4
W=

@ <

e -
user A/ap\)e“d
update
lrjes;(: C]‘ reply with rev1(B) CouchDB

g - s - - -
append _rev1

Distributed Architecture of CouchDB

Eventual consistency by incremental replication:
-Peer-to-peer rather than primary-secondary

-Sites can go offline, DB will handle sync when back online
- Automatic conflict detection and resolution

=G e -G - ~)

e
e Y
\
wite C]"""‘)e Sync , "B Conflict!

W=
/

- _reply with_revO
user < SR With_Tevi(B) Mo e
read append _rev1

Conclusions

Distributed architecture Primary-Secondary replication Peer-Peer
synchronization
Concurrency control Update in-place (much like MVCC
SQL)
Document format BSON JSON
Data storage Referenced or embedded Self-contained
Data organization One extra layer: collections Everything piled
together
Query capabilities Aggregation pipeline or MapReduce views and
MapReduce indexes
CRUD syntax SQL-like HTTP methods

36

When to use what?

- You have some predefined queries upfront,
want to run on occasionally changing data;

Need to make sure that sites are always

available, even if data center crashes; L ™
Need to replicate data bi-directionally .:
between 2 or more data centers;

Couch DB

If versioning is important; relax

* You are familiar with HTTP but not SQL;

* You are a geek and you believe RDBMS is
outdated.

34

When to use what?

* All other cases when you need a 0 mongoDB
distributed DBMS

35

CASSANDRA

OVERVIEW

e Apache Cassandra 1is a free
o Distributed
o Performant
o Scalable
o Fault tolerant

(M
e NoSQL Databases \W/ W

cassandra

HISTORY

S00sc &) “amazon
BlgTabIe © DynamoDB

\,,/

&

/@‘é%

cassandra

ARCHITECTURE DECISION

'0{\ %‘Gf"
B ’
0 Cos,
o j w

Node 1

""'--..____.__...---""

Replication
Mode 4 Node 3

Secondary Ry Hearcbeat . SENRNIORs
{vote only}

https://www.tutorialspoint.com/cassandra/images/data_replication.jpg

https://docs.mongodb.com/manual/replication/

DATA MODEL

Settings

Settings

WRITES

Commit log | S-STfElhh.!:.

Bloom filter

Read .
request
Compression
offsets
Partition key cache
Memory
Drisk
Return

BLOOM FILTER - EXAMPLE

QUERY MODEL

- CQL
- Data Definition
- Data Manipulation
- Secondary Indexes
- Materialized Views
- Data Security
- Aggregate and User-defined functions
- JSON Support
- Triggers

REAL LIFE

75,000 Nodes
10 PB

Apple

https://upload.wikimedia.org/wikipedia/
commons/a/a5/Apple_gray_logo.png

2500 Nodes
420 TB
1 Trillion Daily Requests

Netflix

NETELIN

http://cdn.wegotthiscovered.com/
wp-content/uploads/netflix-logo.jpg

>100 Nodes
250 TB

eBay

https://upload.wikimedia.org/wikipedia/
commons/4/48/EBay_logo.png

Constant Contact
CERN

Comcast

GoDaddy

Hulu

Instagram

Intuit

Reddit

The Weather Channel

REFERENCES

CouchDB

CouchDB: The Definitive Guide

http://couchdb.apache.org
https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling- techniques/
http://blog.scottlogic.com/2014/08/04/mongodb-vs-couchdb.html
http://openmymind.net/2011/10/27/A-MongoDB-Guy-Learns-CouchDB/

Cassandra

https://docs.datastax.com/en/cassandra/3.0/index.html

http://cassandra.apache.org/

Abramova, Veronika, and Jorge Bernardino. "NoSQL databases: MongoDB vs cassandra."
Proceedings of the international C* conference on computer science and software
engineering. ACM, 2013.

48

