
NoSQL Database SysTems

Presented by: Sai Vadlamudi and Tejbir Singh

NoSQL

 BASE ACID
● Basically Available

● Soft State

● Eventual Consistency

● Atomicity

● Consistency

● Isolation

● Durable

 5

CAP Theorem

http://i.stack.imgur.com/rOeRQ.png

Data Models

http://scraping.pro/res/nosql/keyvalue_database.png http://scraping.pro/res/nosql/column_database.png

http://scraping.pro/res/nosql/document_database.png

http://scraping.pro/res/nosql/graph_database.pnghttp://scraping.pro/res/nosql/graph_
database.png

• Data modeling: schema-less
-Relational: driven by the structure of available data

-NoSQL: driven by application- specific pattern

• Query capability:
-Relational: human user-oriented, query is simple

-NoSQL: application-oriented, query is comparatively complex

• Scalability:
-Relational: vertical

-NoSQL: horizontal

Background: SQL vs. NoSQL

9

Background: SQL vs. NoSQL

• NoSQL is naturally fit for big data.

-Unstructured data with similar semantics but
varied syntax

-Large volume of data for which scalability is
becoming a must and consistency expensive

Background: SQL vs. NoSQL

10

Background: A refresh on MongoDB

Database Collections Documents

or

• Use collections to organize modules

• Normalized (Reference) or denormalized (embedding)

• Strict consistency (All writes must go to primary node)

11

CouchDB
A NoSQl DBMS that does not mimic sql

• Name comes from:
-Cluster Of Unreliable Commodity Hardware

-Relax (in a couch)

• Written in Erlang, initial release in 2005

• Licence: Apache, Original author: Damien Katz, et al.

Introduction: What is CouchDB?

13

• An open source, document-oriented, NoSQL database
that uses JSON to store data, JavaScript as its query
language, and HTTP for an API.

• Instead of locking mechanism, CouchDB uses
Multi-version Concurrency Control (MVCC) to
resolve conflicts, and incremental replication to
achieve eventual consistency.

Introduction: What is CouchDB?

14

• Availability, Locality and Scalability

• “A database that completely embraces the web.”

Introduction: Why CouchDB?

15

•

17

CouchDB: JSON • MongoDB: BSON

Data Modeling of CouchDB: JSON Format

• CouchDB:
purely self-contained
(Say Goodbye to SQL)

• MongoDB: embedded
(NoSQL);
or referenced (SQL-like)

Data Modeling of CouchDB: Self-contained Data

18

• CouchDB:
purely self-contained
(Say Goodbye to SQL)

• MongoDB: embedded
(NoSQL);
or referenced (SQL-like)

email: null

Workers

NAME WAGE
Joe 100
Bob 150
…

Materials

NAME PRICE
Rod 30
String 20
…

If real-world data is not managed as real-world data

19

Data Modeling of CouchDB: Self-contained Data

• CouchDB: one big warehouse
No global indexes predefined on DB
level, create a view to report results
instead

MongoDB:
separated by collections
Can create index for any field of
documents in a collection
(identical to indexing in RDBMS)

Collection 1

Collection 2

Data Modeling of CouchDB: Data Storage

20

Collection 3

• Define a view
- Map takes documents and emits key/value pairs

Query Capabilities: How do you aggregate unstructured data?

21

• Construct B-tree index
- CouchDB storage engine constructs a B-tree index

Query Capabilities: How do you aggregate unstructured data?

22

• Query the view
- Reduce operates on the subtree to do aggregation

Query Capabilities: How do you aggregate unstructured data?

23

• MapReduce + B-tree = results of a view

Query Capabilities: How do you aggregate unstructured data?

24

Query Capabilities
• CouchDB:

MapReduce(complex queries)
• MongoDB:
(1) Aggregation pipeline(SQL-like)

(2) MapReduce(complex queries)

Well, comparatively complex…
25

Data Management

• REST API: a thin wrapper around the DB core

REST API

26

Welcome:

 Add a new database:
 Add a new document:

 Read a document:

… …

•

27

REST API: a thin wrapper around the DB core

Data Management

Get a new UUID:
(if don’t have one)

Concurrency control of CouchDB

• Multi-Version Concurrency Control:
-Doesn’t rely on global state, always available to readers;
-Each reader is reading the latest visible snapshot

•

28

MongoDB • CouchDB

Distributed Architecture of CouchDB

Distributed Architecture of CouchDB
• Eventual consistency by incremental replication:

- Peer-to-peer rather than primary-secondary

29

• Eventual consistency by incremental replication:
-Peer-to-peer rather than primary-secondary
-Sites can go offline, DB will handle sync when back online

30

Distributed Architecture of CouchDB

CouchDB
generate _rev0

CouchDB

user
insert

reply with _rev0

• Eventual consistency by incremental replication:
-Peer-to-peer rather than primary-secondary
-Sites can go offline, DB will handle sync when back online

CouchDB
generate _rev0

CouchDB

user
read

user
insert

31

Distributed Architecture of CouchDB

reply with _rev0

• Eventual consistency by incremental replication:
-Peer-to-peer rather than primary-secondary
-Sites can go offline, DB will handle sync when back online

CouchDB
generate _rev0

CouchDB

user
read

user
insert

Sync

Distributed Architecture of CouchDB

32

append _rev1

reply with _rev0

• Eventual consistency by incremental replication:
-Peer-to-peer rather than primary-secondary
-Sites can go offline, DB will handle sync when back online
-Automatic conflict detection and resolution

CouchDB
generate _rev0

CouchDB

user
update

user
read

user
insert

user
delete

reply with _rev0

Distributed Architecture of CouchDB

33

reply with _rev0

append _rev1

 reply with _rev1(B)
append _rev1

reply with _rev0
CouchDB

generate _rev0

CouchDB

user
update

user
read

user
insert

user
delete

reply with _rev0
user
read

34

• Eventual consistency by incremental replication:
-Peer-to-peer rather than primary-secondary
-Sites can go offline, DB will handle sync when back online
-Automatic conflict detection and resolution

Distributed Architecture of CouchDB

reply with _rev0

append with _rev1

 reply with _rev1(B)
append _rev1

reply with _rev0
CouchDB

generate _rev0

CouchDB

user
write

user
read

user
insert

user
delete

reply with _rev0

Sync Conflict!

user
read

35

• Eventual consistency by incremental replication:
-Peer-to-peer rather than primary-secondary
-Sites can go offline, DB will handle sync when back online
-Automatic conflict detection and resolution

Distributed Architecture of CouchDB

reply with _rev0

append with _rev1

Conclusions

36

MongoDB CouchDB

Focus Consistency Availability

Distributed architecture Primary-Secondary replication Peer-Peer
synchronization

Concurrency control Update in-place (much like
SQL)

MVCC

Document format BSON JSON

Data storage Referenced or embedded Self-contained

Data organization One extra layer: collections Everything piled
together

Query capabilities Aggregation pipeline or
MapReduce

MapReduce views and
indexes

CRUD syntax SQL-like HTTP methods

When to use what?

• You have some predefined queries upfront,
want to run on occasionally changing data;

• Need to make sure that sites are always
available, even if data center crashes;

• Need to replicate data bi-directionally
between 2 or more data centers;

• If versioning is important;

• You are familiar with HTTP but not SQL;

• You are a geek and you believe RDBMS is
outdated.

34

When to use what?

• All other cases when you need a
distributed DBMS

35

Cassandra

Overview
● Apache Cassandra is a free

○ Distributed
○ Performant
○ Scalable
○ Fault tolerant

● NoSQL Databases

History

CAP Decision

http://robertgreiner.com/uploads/images/2014/CAP-CP.pnghttp://robertgreiner.com/uploads/images/2014/CAP-AP.png

Architecture Decision

https://www.tutorialspoint.com/cassandra/images/data_replication.jpg https://docs.mongodb.com/manual/replication/

Data Model

Writes

Reads

Bloom Filter - Example

Query Model
- CQL

- Data Definition
- Data Manipulation
- Secondary Indexes
- Materialized Views
- Data Security
- Aggregate and User-defined functions
- JSON Support
- Triggers

Real Life
75,000 Nodes
10 PB

Apple

2500 Nodes
420 TB
1 Trillion Daily Requests

Netflix

>100 Nodes
250 TB

eBay

https://upload.wikimedia.org/wikipedia/
commons/a/a5/Apple_gray_logo.png

http://cdn.wegotthiscovered.com/
wp-content/uploads/netflix-logo.jpg

https://upload.wikimedia.org/wikipedia/
commons/4/48/EBay_logo.png

Constant Contact
CERN
Comcast
GoDaddy
Hulu
Instagram
Intuit
Reddit
The Weather Channel
...

REFERENCES

48

CouchDB
● CouchDB: The Definitive Guide
● http://couchdb.apache.org
● https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling- techniques/
● http://blog.scottlogic.com/2014/08/04/mongodb-vs-couchdb.html
● http://openmymind.net/2011/10/27/A-MongoDB-Guy-Learns-CouchDB/

Cassandra
● https://docs.datastax.com/en/cassandra/3.0/index.html
● http://cassandra.apache.org/
● Abramova, Veronika, and Jorge Bernardino. "NoSQL databases: MongoDB vs cassandra."

Proceedings of the international C* conference on computer science and software
engineering. ACM, 2013.

