
RemusDB

Transparent High Availability for Database Systems
Presented by: Marcel Gietzmann-Sanders, Qianchao Nie

Outline

● Introduction and Motivation
● Normal High Availability Architectures
● Remus Overview
● ASC – Asynchronous Checkpoint Compression
● RT – Disk Read Tracking
● CP – Commit Protection
● Experimental Evaluation
● Conclusion

Introduction and Motivation

What is High Availability?

Computing environments configured to provide nearly full-time availability are
known as high availability systems.

Introduction and Motivation
Why do we need to provide system and database High Availability?

Planned Downtime
－Database backup/upgrade/patching
－Operating system upgrade/patching
－Hardware and Network maintenance

Unplanned Downtime
－Human Errors

Accidentally drops a table
Accidentally delete a data file or drop a tablespace

－Disasters
Server crash, malfunction of hardware
War, terrorism, Earthquake
No power for a long period

Normal High Availability Architectures

OS High Availability Theory
● Primary and standby server share same resource

group.(Disk, IP address, File system...)

● During normal time, Primary hold the resource
group and provide service to clients

● If there is a failover, standby server will take over
the resource group and continue provide service
to clients, consistency can be maintained.

Disadvantages:
● Not a warm-up backup, failover is not transparent

to clients, and a relatively long time to recover

Normal High Availability Architectures

Database High Availability
Theory

● Backup database redo the
transaction log sent by the primary
database

● Because backup database is warm
up, so the takeover time is short

Disadvantages:
● On failover, transaction log may

lose
● Lose all existing client sessions at

failure
● Complex to implement for DBMS

and a lot of bugs have been
reported

Normal High Availability Architectures

Some other advanced HA solutions:
● Oracle RAC
● DB2 PureScale
● ….

Disadvantages:
● Advanced commercial features are too

expensive and require specific hardware

● Too complex to configure and maintain,
different feature to different database
package

The Idea Behind Remus
Many DBMS applications are already run in VMs thanks to things like

● Live migration (transferring a virtual machine (VM) between physical
computers without losing client connections or applications)

● Elastic Scaleout
● More flexible use of resources

But because VM’s give us the power to copy any part of the VM’s state, running a
DBMS in a VM allows us to push the creation and maintenance of the standby out
of the application layer and into the virtualization layer. This is what Remus does
for general applications (not just DBMS).

● Remus takes frequent snapshots of the entire active server’s VM state. These
snapshots are called checkpoints(as often as every 25ms).

● Each of the snapshots get installed on the standby.

Remus Overview: Capturing State

● Between checkpoints all outgoing network packets are held back by Remus until
the checkpoint is complete.

● If the active fails, Remus transparently transfers client connections to the standby
and simply continues using the state the standby currently has.

Remus Overview: Handling of the Network

● All writes to the active’s disk are sent to a buffered pool on the standby.
● This pool is flushed to disk once per checkpoint after all the state has been

transferred from the active and the standby starts to sync.
● Remus marks the standby’s disk to keep track of the last consistent state so that in

the case of failure there is a crash consistent disk image.

Remus Overview: Handling Disk

Properties of Failover using Remus
● Because the entire state is copied to the standby we have a warmed-up replica of the

active as soon as the active fails. This means the handover period is extremely small.

● Because Remus transparently transfers connections to the standby on failover, besides
a small lag during the handover itself, the clients notice nothing.

● Because any packets concerning commits or aborts that occur between checkpoints are
held back and because any writes to the standby are buffered until a checkpoint
completes, in the case of a failure any commits or aborts that are not copied over to the
standby are never seen by the client either. Therefore when the standby takes over, its
state is consistent with the state seen by the client. In other words, the client never sees
inconsistent state.

● There is always a crash consistent disk image.

Properties of Failover Using Remus

Problems with Remus
● Remus checkpoints all of the VM’s memory. Because DBMS systems use large

amounts of memory relative to other workloads, this leads to significant
overhead.

● Network buffering (holding back packets between checkpoints) becomes the
source of significant network latency. But DBMS have their own notions of
consistency and therefore not all outgoing packets need to be buffered before by
Remus.

Essentially, Remus is designed for any kind of application and therefore is not as well
optimized as it could be for any particular type of application. This is why our authors
set out to create RemusDB: Remus optimized for DBMS applications.

Problems with Remus

RemusDB: Memory Optimizations

● Compressing Checkpoints
● Disk Tracking
● Memory deprotection

RemusDB: Memory Optimizations

Compressing Checkpoints
DBMSs often make small changes to large pages of memory. Therefore a lot of the
data that Remus would checkpoint is redundant.

Therefore RemusDB tries to send only the changes to the data.

This is accomplished using a LRU cache and the following algorithm to be applied
to every page of memory that is sent to the standby.

● Check page against the cache.
● If an older version of it is in the cache XOR the page against its older version

and send that.
● Otherwise send the page as is and add the document to the cache.

Compressing Checkpoints

Disk Tracking: What Remus normally does

In normal Remus:

● All of the page table entries in memory are initially set to read-only producing a
trap when something is modified

● Once a modification of a page is requested the trap handler verifies the write is
okay and then updates a bitmap of dirty pages.

● All dirty pages are sent on each checkpoint.
● After each checkpoint this bitmap is cleared.

Disk Tracking: What Remus Does

Disk Tracking: What RemusDB does
● Normally a read from disk into a memory page would cause that page to be

marked as dirty.
● In RemusDB, a read from disk does not cause a page to be marked as dirty,

only modification of a page in memory causes it to become dirty.
● Therefore pages filled with unmodified data read from disk are not sent with

the checkpoint
● Instead, RemusDB adds an annotation to the replication stream indicating

where to read the data from.
● To keep track of all of this, RemusDB creates a read tracking list.
● RemusDB also keeps a set of references from these pages to the associated

sectors on disk. If the VM writes to any of these sectors, the corresponding
page is removed from the read tracking list and the page becomes dirty.

Disk Tracking: What RemusDB Does

Memory Deprotection
The authors considered a third idea: allow the administrator to specify certain
regions of memory to remain unprotected.

These areas of memory would not be replicated during checkpoints but instead
would be tracked so that a faılover handler could either regenerate them or destroy
references to them in the event of a failure.

Problem:
Such tracking causes CPU overhead for RemusDB. The only data structure they
could identify which justified the CPU overhead and complexity for the user was
reads from disk. But this was already handled more efficiently and transparently by
read tracking. Therefore memory deprotection did not end up as part of RemusDB

Memory Deprotection

RemusDB: Memory Optimization Results

● Compressing Checkpoints
○ Less redundant data is sent at each checkpoint

● Disk Tracking
○ Simple reads from disk are not sent in checkpoints
○ Rather the standby is simply told where to read the data

from
● Memory deprotection

○ Not used

RemusDB: Memory Optimization Summary

RemusDB: Network Optimization

● Commit Protection

RemusDB: Network Optimization

Commit Protection: the problem
● Normally Remus buffers all outgoing packets
● This is overconservative because DBMSs have their own notions of

consistency.
○ Only things like commit and abort really need to be protected

● Therefore the group decided to allow the DBMS to determine which packets
should be buffered.

Commit Protection: The Problem

Commit Protection: the solution

Gives the DBMS the ability to switch between a protected mode and an
unprotected mode for any connection. Protected connections would buffer their
packets as would normally happen with Remus, unprotected connections act like
connections on an unprotected VM.

● Protected and unprotected Mode implemented by adding a new setsockopt()
option to Linux

● The DBMS system itself needs a small modification that causes it to trigger
this option on connections when appropriate.

Allow the DBMS to determine which packets should be buffered.

How RemusDB allows this:

Commit Protection: The Solution

Commit Protection: how it should be used

Therefore a commit or abort must be propagated to the standby before the client
can see it, but less important client-server communication is not buffered. This will
result in a decrease in network latency over normal Remus.

1. If the server receives a commit or abort it switches the
connection to protected mode.

2. Performs necessary actions
3. ‘Send’ the message in protected mode
4. Once the message has been sent, switch back to

unprotected mode

Commit Protection: How it Should be Used

An Issue with Commit Protection
TCP connection state can be lost on failover. Therefore the unbuffered packets
advance TCP sequence counters which can result in the connection stalling until it
times out.

They did not address this problem yet as it only affected a small set of connections
and those connections were always recovered after the initial connection timed out.

An Issue with Commit Protection

RemusDB: Network Optimization Result

● Commit Protection
○ Only messages tied to DBMS-specific consistency are

buffered.

RemusDB: Network Optimization Summary

Two Benchmarks

● TPC-C
1. An on-line transaction processing (OLTP) benchmark.

2. Simulates a complete computing environment where a population of users executes
transactions against a database

● TPC-H
1. A decision support benchmark

2. Examine large volumes of data, execute queries with a high degree of complexity, and give
answers to critical business questions. (a read intensive workload)

Experimental Evaluation

Three optimizations of RemusDB

● ASC
Asynchronous checkpoint compression -- sending less data

● RT
Disk read tracking -- protecting less memory

● CP
Commit Protection -- allow DBMS to decide which packets to hold or send to client

Experimental Evaluation

Behaviour of RemusDB During
Failover

TPC-C Failover(Postgres)

A failure is simulated by cutting power

● VM at the backup recovers with ≤ 3
seconds of downtime and continues
execution.

● The performance of RemusDB with ASC
and RT is much better than Remus

● After failure, performance rises sharply
because VM is not protected

Experimental Evaluation

Overhead During Normal Operation
(TPC-C)

TPC-C Overhead(Postgres)

● Remus protection for database systems
comes at a very high cost.

● The RT optimization provides very little
performance benefit because TPC-C has
a small working set and dirties many of
the pages that it reads.

● ASC and CP provide significant
performance gains because both of them
help reduce network latency to which
TPC-C is particularly sensitive

Experimental Evaluation

Overhead During Normal Operation
(TPC-H)

TPC-H Overhead(Postgres)

● No gain with CP because it is insensitive
to network latency

● Gain the most benefit from memory
optimizations alone (ASC and RT),
because this TPC-H is a read intensive
workload

Experimental Evaluation

Effects of DB Buffer Pool Size

TPC-H workload

● Study the effect of varying the size of the
database buffer pool(the database size is
same) on memory optimizations

● Memory optimizations(ASC,RT) offer
significant performance gains

● Benefit of RT decreases with increasing
buffer pool size. Because smaller buffer
size result a lot disk reads, which makes
RT more useful

Question: Why use TPC-H workload for this experiment?

Experimental Evaluation

Effects of Database Size(TPC-C)

TPC-C workload

● Overhead of unoptimized Remus
increases considerably, going from 10%
to 32%.

● RemusDB with memory optimizations
(ASC, RT) incurs an overhead of 9%,
10% and 12%

● RemusDB with memory and network
optimizations (ASC, RT, CP) provides
the best performance at all scales, only a
3% overhead in the worst case

Experimental Evaluation

Effects of Database Size(TPC-H)

TPC-H workload

● Unoptimized Remus incurs an overhead
of 22%, 19%, and 18% for different
database size

● RemusDB with memory optimizations
has an overhead of 10% for scale factor
1 and an overhead of 6% for both scale
factors 3 and 5 – showing much better
scalability.

Experimental Evaluation

● RemusDB provides active-standby HA and relies on VM checkpointing to propagate state
changes from the primary server to the backup server based on Remus VM.

● Identified two causes for performance overhead of database under Remus
1. Amount of state that needs to be transferred from primary to backup because database

systems use memory intensively
2. Database workloads can be sensitive to network latency.

● Several optimization help RemusDB impose little performance overhead
1. Asynchronous checkpoint compression -- ASC
2. Disk read tracking -- RT
3. Commit Protection -- CP

Conclusion

● Minhas, U. F., et. al (2011) RemusDB: Transparent High Availability for Database Systems

● Cully, B., et. al Remus: High Availability via Asynchronous Virtual Machine Replication

● White paper: Oracle Real Application Clusters

● Implementing High Availability Cluster Multi-Processing (HACMP) Cookbook

● High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

● https://dev.mysql.com/doc/refman/5.7/en/replication-howto-masterstatus.html

● http://www.tpc.org/tpcc/

● http://www.tpc.org/tpch/

References

https://dev.mysql.com/doc/refman/5.7/en/replication-howto-masterstatus.html
https://dev.mysql.com/doc/refman/5.7/en/replication-howto-masterstatus.html
http://www.tpc.org/tpcc/default.asp
http://www.tpc.org/tpcc/default.asp
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

