
Introduction to Data Warehouse
and Implementation

Fangyu Lin
Mei Yang

Outline
• 1. Introduction and Definition

• 2. Multi-dimensional Data Warehouse Model

• 3. Data Mining Query Language (DMQL)

• 4. Introduce to OLAP and its Architecture

• 5. Data Warehouse Architecture and Design

• 6. Data Warehouse Implementation (Integration)

Introduction
• Definition of Data Warehouse:

• 1. Subject Oriented:

• 2. Integrated:

• 3. Time Variant:

• 4. Non-volatile:

Provide a simple and concise view of major subjects by focusing
on modeling and analyzing of data for the decision maker.

Construct multiple data sources by using data cleaning
and data integration technique, and data is converted.

Every DW may or may not contains explicit or inexplicit time
and provides information from a historical perspective.

Data in are physical separate stored in DW which does not have
operational update, and only allows operation of initial loading data

and access of data

1. Heterogeneous DBMS
a. build wrappers or mediators on top of DM

to do the integration.
b. Query Driven, complex info filtering

2. Operational DBMS

a. OLTP (on-line transaction processing)
b. Operations in purchasing, inventory,

banking, manufacturing, payroll
registration, accounting…

3. Data Warehouse
a. Update-driven, high performance

b. OLAP (on-line analytical processing)
c. Data analysis and decision making

DW vs. Heterogeneous &
Operational DBMS

OLAP v.s. OLTP

Why separate data warehouse?

DBMS | Data Warehouse

Outline
• 1. Introduction and Definition

• 2. Multi-dimensional Data Warehouse Model

• 3. Data Mining Query Language (DMQL)

• 4. Introduce to OLAP and its Architecture

• 5. Data Warehouse Architecture and Design

• 6. Data Warehouse Implementation (Integration)

Modeling of Data Warehouse
• 1. View data in the form of cube

• Example cube: sales

n-D cube = n entitis
The n-D base cube is called a base cuboid
The top 0-D cuboid is called apex cuboid

Dimensional Tables: time, item, location, supplier
 Fact Table: contains Keys and Measures

Example of cuboids (table sales):

Conceptual Modeling of Data
Warehouse

1. Star Schema A fact table in the middle connected to a set of
dimension tables

2. Snowflake schema
A refinement of the star schema where some
dimensional hierarchy is normalized into a set of
smaller dimensional tables.

3. Fact constellations
(Galaxy Schema)

Multiple fact tables share dimensional tables, which can
be viewed as collection of stars.

Star Schema

Snowflake Schema

Fact constellations

Outline
• 1. Introduction and Definition

• 2. Multi-dimensional Data Warehouse Model

• 3. Data Mining Query Language (DMQL)

• 4. Introduce to OLAP and its Architecture

• 5. Data Warehouse Architecture and Design

• 6. Data Warehouse Implementation (Integration)

Data Mining Query Language

• 1. Definition:

• 2. Syntax:

Need a data definition language to define
the table in the conceptual model

define cube: <cube_name> [<dimensional_list>]:
<measure_list>

define dimension: <dimension_name> as
(<attributes_or_list_of_subdimension>)

define dimension <dimension_name> as <dimension_name_first_time>
in cube <cube_name_first_time>

fact table

dimensional table

share dimensional table

Example of define cube sales
define cube sales [time, item, branch, location]:

 dollars_sold = sum(sales_in_dollars),
avg_sales = avg(sales_in_dollars),

units_sold = count(*)

define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier_type)

define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city, province_or_state, country)

define dimension item as (item_key, item_name, brand, type,
supplier(supplier_key, supplier_type))

define dimension location as (location_key, street,
city(city_key, province_or_state, country))

star

snowflake

example of fact constellation

define cube shipping [time, item, shipper, from_location, to_location]:
dollar_cost = sum(cost_in_dollars),

unit_shipped = count(*)

define dimension time as time in cube sales
define dimension item as item in cube sales
define dimension shipper as (shipper_key, shipper_name,
 location as location in cube sales, shipper_type)
define dimension from_location as location in cube sales
define dimension to_location as location in cube sales

Measures in DMQL

1. Distributive

The Result derived by applying the function to n aggregate values
is the same as that derived by applying the function on all data
without partitioning.
Example: count(), sum(), min(), max()

2. Algebraic

Use distributive aggregate functions it is computed by an algebraic
function with M arguments, each of which is obtained by applying
a distributive aggregate function.
Example: avg(), min_N(), standard_deviation()

3. Holistic
If there is no constant bound on the storage size needed to describe
a sub-aggregate.
Example: median(), mode(), rank()

Measures Example
• Sales Table:

time (time_key, day, day_of_week, month, quarter, year)
item (item_key, item_name, brand, type, supplier(supplier_key, supplier_type))
branch (branch_key, branch_name, branch_type)
location (location_key, street, city, province_or_state, country)

sales (time_key, item_key, branch_key, location_key, number_of_unit_sold,
price)

To compute dollar_sold & unit_sold:
select s.time_key, s.item_key, s.branch_key, s.location_key,

 sum(s.number_of_units_sold*s.price),

 sum(s.number_of_units_sold)
from time t, item i, branch b, location l, sales s

where s.time_key = t.time_key and s.item_key = i.item_key
 and s.branch_key = b.branch_key and s.location_key = l.location_key

group by s.time_key, s.item_key, s.branch_key, s.location_key

Questions?

• What’s the relation between “data cube” and
“group by” ?

• what’s query for the 0-D cuboid or apex?

Outline
• 1. Introduction and Definition

• 2. Multi-dimensional Data Warehouse Model

• 3. Data Mining Query Language (DMQL)

• 4. Introduce to OLAP and Operations

• 5. Data Warehouse Architecture and Design

• 6. Data Warehouse Implementation (Integration)

OLAP Operations in a
Multidimensional Data

• 1. Dimension Hierarchical Concept:

• 2. Operations:
a. roll up (drill up)
b. drill down (droll down)
c. slice and dice (project & select)
d. pivot (rotate)
e. drill cross & drill through

a. Total order hierarchy
b. Partial order hierarchy

Example of Dimensional Hierarchy

• Product dimension: Product<Category<industry

• Location dimension: Office<city<Country<Region

• Time dimension: Day<{month<quarter;week}<year

product

category

industry

country

region

city

office

year

quarter

month

week

day
total order hierarchy partial order hierarchy

Example of Operations in Cube
• 1. Roll up (drill up) —summarize data
•

location

Example of Operations in Cube
• 2. Drill down (droll down) —reverse of roll up

time

Example of Operations in Cube
• 3. Dice (project and select)

location
time
item

Example of Operations in Cube
• 4. Slice (Select)

time = “Q2”

Outline
• 1. Introduction and Definition

• 2. Multi-dimensional Data Warehouse Model

• 3. Data Mining Query Language (DMQL)

• 4. Introduce to OLAP and its Architecture

• 5. Data Warehouse Architecture and Design

• 6. Data Warehouse Implementation (Integration)

View of Data Warehouse

1. Top-down View Allows Selection of the relevant information necessary
for the data warehouse.

2. Data Source View
It exposes the information being captured, stored, and
managed by operational systems.
Example: ER model.

3. Data Warehouse View Fact tables and dimensional tables.

4. Business Query View It sees the perspective of data in the warehouse from the
view of end-user.

Based on business requirements:

Data Warehouse Design

• 1. Top-down: Overall Design and Planing

• 2. Bottom-up: WaterFall or Spiral

• 3. Design Process:

1. choose business process model
2. choose the atomic level of data of the business process
3. choose the dimensions for each fact table record
4. choose the measure that will populate each fact table

Data Warehouse Models

• 1. Enterprise Warehouse:

• 2. Data Mart:

• 3. Virtual Warehouse:

Collect All of the information about subjects
spanning the entire organization

a subset of corporate-wide data that is of
value to a specific groups of users.

Independent vs. dependent

A set of views over operational database (materialized)

OLAP Server Architectures

1. Relational OLAP
Use Relational DBMS as Backend, store manage
warehouse data OLAP middle ware support, greater
scalability.

2. Multidimensional
OLAP

Array-based storage (sparse matrix techniques)
Pre-computed data and fast indexing

3. Hybrid OLAP Flexibility: relational or array
Support SQL queries: Star or Snowflake schema

4. Data Storage
Methods

a. Base Cuboid data: base fact table
b. Aggregate data: base fact table, or Separate summary

fact tables

OLAP DW Usages and Advantages

Four Advantages:
 1. High quality of data in data warehouses
 2. Available information processing structure
surrounding data warehouses
 3. OLAP-based exploratory data analysis
 4. On-line selection of data mining functions

Three kinds of Usage:
 1. Information Processing
 2. Analytical Processing
 3. Data Mining

Outline
• 1. Introduction and Definition

• 2. Multi-dimensional Data Warehouse Model

• 3. Data Mining Query Language (DMQL)

• 4. Introduce to OLAP and its Architecture

• 5. Data Warehouse Architecture and Design

• 6. Data Warehouse Implementation (Integration)

Data Warehouse Implementation

• 1. Monitoring: sending data from the source

• 2. Integrating: loading, cleansing, schema matching…

• 3. Processing: cube computation, query processing, indexing

The Importance of integration

Usage-Based Schema Matching

Introduction:
● Problems in Data Integration:

● Find correspondences between attributes of two
schemas.

● Proposed tchniques:
● Schema-based techniques:

▪ rely on metadata:
▪ same attributes may have different meaning

● Instance-based techniques:
▪ rely on characteristics of data instances:

▪ same user has different names in different tables
▪ tacked schema matching with opaque attribute names
▪ not complete schema

Usage-Based Schema Matching

Introduction:
● New Technique for Schema Matching:

● Usage-based schema matching
● Good matching quality
● Identifies co-occurrence patterns:

▪ attributes, relationship types

● Genetic algorithm:
▪ highest-score mappings

● Opaque attributes and different layouts.

Contributions

● Based on usage of attributes in query log:
● Tow usage-based matchers：

● SLUB : Structure-Level Usage-Based matcher
● ELUB : Element-Level Usage-Based matcher

● Prototype implementation:
● Employs a genetic algorithm to find highest score

mapping

● An extensive experimental study:
● Effective
● Accurate

● Goal:
● Exploit similarities in query patterns to match attributes

● Feature extraction:
● Uses query logs
● Collects attributes' roles and interrelationships.

● Matching:
● Examines potential mappings
● Assigns a score for them
● Terminates by reporting highest-score

Main Point

Feature Extraction

● SLUB: Structure-Level Usage-Based matcher
● Structure-level freatures:

● An attribute A roles:
▪ part of the answer (select clause)
▪ filterint role (where or having)
▪ grouping role (group by)
▪ odering role (oder by)

● Tow attributes in same query:
▪ usage relationship
▪ four possible roles results in 16 different

possible relationships
▪ 16 graphs with weights on endges (frequency

of occurrence)

Feature Extraction
● Identification process

● SPJGO:
● relationship depends on two clauses

● SPJGO-UEI:
● relationships are identified separately
● attributes in one subquery don't affect result of another

● SPJGO-N:
● relationships identifed separately for each block

▪ outer query and inner subquery
● more relationships identified between attributes in differernt blocks

▪ inner subquery may be a filter of outer query (if it's in where or from clause
of outer query)

▪ they are considered to be related to all outer query attributes

Matching

● Genetic Algorithm:
● Selection : generate population

● S1 = {1,2,3,4,5,6,7}
● S2 = {1,2,3,4,5,6,7}
● Assume a population with 4: 011101, 101011,011100,111001
● Fitness function: f(x1,x2) = x1

2 + x2
2

Individual No Population(0) x1 x2 Fitness % Selection time
Random

Results

1 011101 3 5 34 0.24 1 011101

2 101011 5 3 34 0.24 1 111001

3 011100 3 4 25 0.17 0 101011

4 111001 7 1 50 0.35 2 111001

sum 143 1

Matching

● Genetic Algorithm:
● Genetic Operators:

● Crossover:
▪ Pair : random
▪ Crossover position: random
▪ Crossover part of gene

Individual No Results Pairs Crossover position
(Random)

Results

1 011101
1-2 2

011001

2 101011 111101

3 011100
3-4 4

101001

4 111001 111011

...

Matching

● Genetic Algorithm:
● Genetic Operators:

● Mutation:
▪ Mutation position: random
▪ Change the bit with a probability

Individual No Results Mutation
Position

Mutation Result Population(1)

1 011001 4 011101 011101

2 111101 5 111111 111111

3 101001 2 111001 111001

4 111011 6 111010 111010

...

Individual No Population(1) x1 x2 Fitness %

1 011101 3 5 34 0.14

2 111111 7 7 98 0.42

3 111001 7 1 50 0.21

4 111010 7 2 53 0.23
sum 235

Individual No Population(0) x1 x2 Fitness % Selection time
Random

Results

1 011101 3 5 34 0.24 1 011101

2 101011 5 3 34 0.24 1 111001

3 011100 3 4 25 0.17 0 101011

4 111001 7 1 50 0.35 2 111001

sum 143 1

● Compare Population(0) and Population(1)

● How to implement in Usage-Based Schema
Matching
● Compare 16 graphs of each table one by one to

generate potentially mached attributes of two
schemas

● Fixed number of interation
● Make crossover and mutation to find the highest

mapping from possible ones.

● Fitness function is indentified to calculate the
similarities of two schemas

Matching

Conclusion

● A new schema matching: usage-based
● Find correspondences between attributes of two schemas

with high accuracy
● For now focusing on relational schemas
● Futher more, tring to apply in an XML context and other

schema

References

● J. Madhavan, P. Bernstein, A. Doan, and A. Halevy.
Corpusbased schema matching. In ICDE, 2005.

● https://en.wikipedia.org/wiki/Genetic_algorithm
● http://blog.csdn.net/b2b160/article/details/4680853/
● http://cedric.cnam.fr/workshops/caise03/InvitedTalk.pdf
● J. Madhavan, P. Bernstein, and E. Rahm. Generic schema
 matching with Cupid. In VLDB, 2001.
● R. Warren and F. Tompa. Multi-colunm substring

matching for database schema translation. In VLDB, 2006.

http://blog.csdn.net/b2b160/article/details/4680853/
http://blog.csdn.net/b2b160/article/details/4680853/

