
Starfish: A Self-tuning System
for Big Data Analytics

Authors: Herodotos Herodotou,Harold Lim, Fei Dong, Shivnath Babu

Presented by: Chen Zou, Kai Zou

Part 1 Introduction

Part 2 Overview

Part 3 Job-level Tuning

Part 4 Workflow-aware tuning

Part 6 Critique

Part 5 Workload-level Tuning

Introduction

Big Data is EVERYWHERE!

Large amount of data is

captured and analyzed

Introduction

Generating massive

amount of data

Adopt from https://en.wikipedia.org/wiki/Hubble_Space_Telescope Adopt from https://en.wikipedia.org/wiki/DNA_sequencing

Adopt from https://www.flickr.com/photos/11304375@N07/2046228644
Adopt from https://en.wikipedia.org/wiki/Genome

Hubble Space Telescope DNA Sequencer Particle Accelerator

Big Data is EVERYWHERE!

https://en.wikipedia.org/wiki/Hubble_Space_Telescope
https://en.wikipedia.org/wiki/DNA_sequencing
https://www.flickr.com/photos/11304375@N07/2046228644
https://en.wikipedia.org/wiki/Genome

Introduction

Generating massive

amount of data

Adopt from https://en.wikipedia.org/wiki/Hubble_Space_Telescope Adopt from https://en.wikipedia.org/wiki/DNA_sequencing

Adopt from https://www.flickr.com/photos/11304375@N07/2046228644
Adopt from https://en.wikipedia.org/wiki/Genome

Hubble Space Telescope DNA Sequencer Particle Accelerator

Key to Success = Timely and Cost-Effective Analysis

Big Data is EVERYWHERE!

https://en.wikipedia.org/wiki/Hubble_Space_Telescope
https://en.wikipedia.org/wiki/DNA_sequencing
https://www.flickr.com/photos/11304375@N07/2046228644
https://en.wikipedia.org/wiki/Genome

Introduction

What we need is a MAD system

Magnetism “Attracts” or welcomes all sources of data, regardless of structure, values,

etc.

Agility Adaptive, remains in sync with rapid data evolution and modification

Depth More than just your typical analytics, we need to support complex

operations like statistical analysis and machine learning

Introduction

Hadoop is MAD

• Copying files into the Distributed File System is all it takes to get

data into Hadoop

• Interpret data at processing time, and not at loading time

• Supports different kinds of programming languages  Depth


Magnetism

Agility

Introduction

Want best performance? Non-trivial!

Introduction

Want best performance? Non-trivial!

Over 190 configuration parameters…

Introduction

Want best performance? Non-trivial!

Over 190 configuration parameters…

Lack the expertise to tune system internals

Introduction

Want best performance? Non-trivial!

Over 190 configuration parameters…

Lack the expertise to tune system internals

What if there is a Self-tuning System?

Introduction

Want best performance? Non-trivial!

I can do it!

Introduction

Starfish is MADDER

Data-lifecycle Do more than just queries, optimize the movement, storage, and processing

Awareness of big data

Elasticity Dynamically adjust resource usage and operational costs based on

workload and user requirements

Robustness Provide storage and querying services even in the event of some failures

Introduction

Goal of Starfish

Enable Hadoop users and applications to get good performance automatically throughout

the data lifecycle in analytics; without any need on their part to understand and manipulate

the many tuning knobs available.

Introduction

Purpose of this paper

Using experimental results to illustrate the challenges in each component and to motivate

Starfish’s solution approach.

Overview

Example analytics workload

Overview

Tuning problems

Job-level

MapReduce

configuration

Workload

management

Data

layout

tuning

Cluster sizing

Workflow

optimization

J1 J2

J3

J4

Overview

Core Approaches to Tuning

Profiler
Collects concise summaries of execution

Optimizers
Search through space of tuning choices

What-if Engine
Estimates impact of hypothetical changes

on execution

Overview

Architecture

Overview

Basic idea of each level

Job-level The Just-in-Time Optimizer optimizes parameters based on the

Tuning results of the Profiler, the Sampler, and the What-if Engine.

Workflow-level Workflow-aware Scheduler addresses concerns, such as

Tuning unbalanced data layout, in conjunction with the What-if Engine and

the Data Manager.

Workload-level The Workload Optimizer generates optimized workflows with the

Tuning help of the Elastisizer and the What-if Engine.

Overview

LASTWORD:

Language for Starfish Workloads and Data

Clients submit WORKLOADS expressed in Lastword. It is not a human-interactable language.

Starfish provides language translators to convert workloads specified in high level languages

to Lastword.

Job-level Tuning

Three Components

Just-in-Time Automatically selects efficient execution techniques for

Optimizer MapReduce jobs.

Profiler Collects detailed summaries of jobs on a task-by-task basis.

Sampler Collects statistics about input, intermediate, and output data of a

MapReduce job.

Job-level Tuning

What Controls the Execution of a MR Job?

• Number of map tasks

• Number of reduce tasks

• Whether combine function should be used

• Partitioning of map outputs to reduce tasks

• Memory allocation to task-level buffers

• Whether output data from tasks should be compressed

• …

job j = < program p, data d, resources r, configuration c >

Job-level Tuning

What’s Wrong with the Rule-of-thumb Settings?

Response surface of a

Word Co-occurrence

MapReduce program

Dataset: 10 GB Wikipedia

Rule-of-thumb

settings

Job-level Tuning

MapReduce Job Tuning in a Nutshell

• Goal: 𝑝𝑒𝑟𝑓 = 𝐹 𝑝, 𝑑, 𝑟, 𝑐 ,

• Challenges: p is an arbitrary MapReduce program; c is high-dimensional; …

• Profiler: Runs p to collect a job profile (concise execution summary) of <p,d1,r1,c1>

• What-if Engine: Given profile of <p,d1,r1,c1>, estimates virtual profile for <p,d2,r2,c2>

• Optimizer: Enumerates and searches through the optimization space S efficiently

),,,(minarg crdpFc
Sc

opt




Job-level Tuning

Job Profile

• Concise representation of program execution as a job

• Records information at the level of “task phases”

• Generated by Profiler through measurement or by the What-if Engine through estimation

Memory

Buffer

Merge

Sort,

[Combine],

[Compress]

Serialize,

Partitionmap

Merge

split

DFS

SpillCollectMapRead

Map Task Phases

Job-level Tuning

1
Dataflow: amount of data

flowing through task phases 2

3 4

Job Profile Fields

 Map output bytes

 Number of spills

 Number of records in buffer per spill

 …

Dataflow Statistics: statistical

information about dataflow

 Width of input key-value pairs

 Map selectivity in terms of records

 Map output compression ratio

 …

Costs: execution times at the

level of task phases

 Read phase time in the map task

 Map phase time in the map task

 Spill phase time in the map task

 …

Cost Statistics: statistical

information about resource

costs
 I/O cost for reading from local disk per

byte

 CPU cost for executing the Mapper per

record

 …

Job-level Tuning

Profiling Using Dynamic Instrumentation

• Dynamic Instrumentation collects run-time monitoring information from unmodified

MapReduce programs running on Hadoop.

• BTrace is the current implementation of the Profiler.

• A safe, dynamic tracing tool for the Java platform

• Three views are exposed to capture the features of a job’s execution:

• Timings view: The amount of time spent in each sub-phases

• Data-flow view: The amount of data processed during each sub-phases

• Resource-level view: The usage trends of CPU, memory, I/O, and network resources

during each sub-phases

Job-level Tuning

Generating Profiles

split 0 map out 0reduce

split 1 map

raw data

raw data

raw data

map

profile

reduce

profile

job

profile

Job-level Tuning

Generating Profiles

split 0 map out 0reduce

split 1 map

raw data

raw data

raw data

map

profile

reduce

profile

job

profile

Use of Sampling

• Profile fewer tasks

• Execute fewer tasks

Job-level Tuning

Generating Profiles

split 0 map out 0reduce

raw data raw data

map

profile

reduce

profile

job

profile

Use of Sampling

• Profile fewer tasks

• Execute fewer tasks

Job-level Tuning

Example of a Timings View

Job-level Tuning

Predicting Job Performance in Hadoop

The What-if Engine

• Uses the job profile and a set of performance models to estimate the new profile if the job

were to be run using S

• Four inputs are required:

• The job profile <p, d1, r1, c1> generated for this job J by the Profiler

• The new setting c2 of the job configuration parameters using which Job J will be run

• The size, layout, and compression information d2 of the input dataset on which Job J

will be run

• The cluster setup and resource allocation r2 that will be used to run Job J

• Virtual job profile <p, d2, r2, c2>: Contains the predicted Timings and Data-flow views of the

job when run with the new parameter settings

Job-level Tuning

Estimate Result of the What-if Engine

True Surface Estimated Surface

Job-level Tuning

Experiment Results

• Single-rack Hadoop cluster running on 16 Amazon EC2 nodes of the c1.medium type.

• Each node runs at most 3 map tasks and 2 reduce tasks concurrently.

• WordCount processes 30GB of data generated using the RandomTextWriter program in

Hadoop.

• TeraSort processes 50GB of data generated using Hadoop’s TeraGen program.

Workflow-aware Tuning

Main Problem: Unbalanced Data Layouts in Hadoop

Skewed Data

Data-Layerout-unaware Tasks

Scheduling

Addition or dropping of nodes

Without data rebalancing

An Example Easy to Understand

Consequence of one execution of a large job

Workflow-aware Tuning

A Slightly More Complicated Example Showing that

Unbalanced Data Layout is Not Only A Coincidence

LOOP
Tasks are usually scheduled

where data is stored.

HDFS always write the first replica

of any block on the same node

the writer runs. (Overutilize)

Unbalanced data layouts are serious problems in big data analytics because

they are prominent causes of tasks failure and performance degradation.

Workflow-aware Tuning

Dilemma faced:

Exploiting data locality pros:

1. Less disk I/O. Save shuffling time.

Exploiting data locality cons (in this context):

1. Performance degradation due to reduced parallelism.

2. Making data layout further unbalanced.

Need a tuning method to achieve automatic optimization.

Workflow-aware Tuning

A Workflow-aware Scheduler can ensure that job-level

optimization and scheduling policies are coordinated

tightly with the policies for data placement employed

by the underlying distributed filesystem.

Rather than making decisions that are locally optimal for individual MapReduce jobs,

Starfish’s Workflow-aware Scheduler makes decisions by considering producer-consumer

relationships among jobs in the workflow.

Workflow-aware Tuning

Some information this tuning needs:

1. What parts of the data output by a job are used by

downstream jobs in the workflow?

In this example, both file 1 and file 2 will be

used by downstream jobs

2. What is the unit of data-level parallelism in each job that reads the data output by a job?

Data-parallel reader tasks of Job C1 read and process one data block each.

One file each for Job C2.

Workflow-aware Tuning

Some information this tuning needs (cont’d):

3. What is the expected running time of Job P if the

Round Robin block placement policy is used for P ’s

output files?

4. What will the new data layout in the cluster be if the

Round Robin block placement policy is used for

P ’s output files?

5. What is the expected running time of Job C1 (C2) if its input data layout is the one in the answer

to Question 4?

…

Workflow-aware Tuning

Some information this tuning needs (cont’d):

Questions in the previous slide are answered by the

What-if Engine based on a simulation of the main

aspects of workflow execution.

Action Involves Simulating:

• MapReduce job execution

• Task scheduling

• HDFS block placement policies

Workflow-aware Tuning

This system answers these questions:

• What block placement policy to use in the distributed filesystem for the output file of a job?

Implemented a Round Robin block placement policy in HDFS.

• How many replicas to store for the blocks of a file?

Replication helps tasks including heavily-accessed files

• What size to use for blocks of a file?

• Should a job’s output files be compressed for storage?

Transfer additional CPU cost for saving local disks I/O and network cost.

Workflow-aware Tuning

Experiment Result

Parameters:

• Replication Factor: 1

• Block Size: 128MB

• Compression: None

A partition job A two-job workflow

Workflow-aware Tuning

Reason for the winning of Round Robin

The local I/O within a node becomes the bottleneck before the parallel writes of data blocks to

other storage nodes over the network.

PLUS

The Round Robin policy spreads the blocks over the cluster so that maximum data-level

parallelism of sort processing can be achieved while performing data-local computation.

Workload-level Tuning

Workload Optimizer

This optimizer uses the What-if Engine to do a cost-based estimation of whether the

graph-to-graph transformation will improve performance.

Workload-level Tuning

Workload Optimizer

Introducing Jumbo Operator

The results IV, V and VI can be represented as a

Select-Project-Aggregation (SPA) expression over the join.

Jumbo operator can process any number of logical SPA

Nodes over the same table in a single job.

The Jumbo operator enables sharing of all or some of the map-side scan and computation,

sorting and shuffling, as well as the reduce-side scan, computation, and output generation.

At the same time, the Jumbo operator can help the scheduler to better utilize the bounded

number of map and reduce task slots in a Hadoop cluster.

Workload-level Tuning

Workload Optimizer

If possible, Running a MapReduce job to

partition Users based certain attribute

will enable the four workflows to prune out

irrelevant partitions efficiently.

Processing multiple SPA workflow nodes

on the same input dataset

Generating the partitions has significant. But possibilities exist to hide or reduce this overhead

by combining partitioning with a previous job like data copying. Partition pruning improves the

performance of all MapReduce jobs in our experiment. At the same time, partition pruning

decreases the performance benefits provided by the Jumbo operator.

Workload-level Tuning

Elastisizer

Introducing an especially made optimizer for Amazon Web Service.

It automatically free users from the burden of setting the number and type of EC2 nodes.

These parameters are Hadoop-level configuration parameters.

Workload performance under various cluster and Hadoop configurations

on Amazon Elastic MapReduce

Workload-level Tuning

Elastisizer

The user could have multiple preferences and constraints for the workload, which poses

a multi-objective optimization problem. For example, the goal may be to minimize the monetary

cost incurred to run the workload, subject to a maximum tolerable workload completion time.

Performance Vs. costs for a workload on Amazon Elastic MapReduce

Critique of this paper

Good:
• Able to See the impact of various settings

• Good Visualization Tools

Bad:

• This paper talks a lot about what starfish can do but not how it can achieve that

• Experiments constrained many variants (possibly related to each other) fixed.

THANK YOU FOR
WATCHING

