
	 1	

	
	
	
	
	

	
	
	
	

CS585:	Big	Data	Management	
	

Project	3	
	
	
	
	
Total	Points:		100		
	
Release	Date:		03/06/2017	
	
Due	Date:		03/21/2017	(11:59PM)	
	
Teams:	Project	to	be	done	in	teams	of	two.	
	
	 	

	 2	

Short	Description	
In	this	project,	you	will	write	Scala/SparkSQL	code	for	executing	jobs	over	Spark	infrastructure.			
	
You	can	either	work	on	a	Cluster	Mode	(where	files	are	read/written	over	HDFS),	or	Local	Mode	(where	
files	are	read/written	over	local	file	system).	This	should	not	affect	your	code	design,	i.e.,	in	either	cases	
your	code	should	be	designed	with	the	highest	degree	of	parallelization	possible.	
	
	
Spark	Virtual	Machine	
You	can	either	build	your	own	VM	or	work	with	the	one	provided	to	you	(See	below).		
	

	
	
	
	 	

	 3	

Problem	1	SparkSQL	(Transaction	Data	Processing)	[30	points]																	
	
Use	the	Transaction	dataset	T	that	you	created	in	Project	1	and	create	a	Spark	workflow	to	do	
the	following.			[Use	SparkSQL	to	write	this	workflow.]	
	

1) T1:	Filter	out	(drop)	the	transactions	from	T	whose	total	amount	is	less	than	$200	
2) T2:	Over	T1,	group	the	transactions	by	the	Number	of	Items	it	has,	and	for	each	group	

calculate	the	sum	of	total	amounts,	the	average	of	total	amounts,	the	min	and	the	max	of	
the	total	amounts.		

3) Report	back	T2	to	the	client	side	
4) T3:	Over	T1,	group	the	transactions	by	customer	ID,	and	for	each	group	report	the	

customer	ID,	and	the	transactions’	count.		
5) T4:	Filter	out	(drop)	the	transactions	from	T	whose	total	amount	is	less	than	$600	
6) T5:	Over	T4,	group	the	transactions	by	customer	ID,	and	for	each	group	report	the	

customer	ID,	and	the	transactions’	count.		
7) T6:	Select	the	customer	IDs	whose		T5.count	*	3	<	T3.count	
8) Report	back	T6	to	the	client	side	

	
	 	

	 4	

Problem	2	Spark-RDDs	(Grid	Cells	of	High	Relative-Density	Index)	[70	points]																	
	

Overview:	
Assume	a	two-dimensional	space	that	extends	from	1…10,000	in	each	dimension	as	shown	in	Figure	1.	
There	are	points	scattered	all	around	the	space.	The	space	is	divided	into	pre-defined	grid-cells,	each	of	
size	20x20.	That	 is,	 there	is	500,000	grid	cell	 in	 the	space.	Each	cell	has	a	unique	ID	as	 indicated	in	the	
Figure.	Given	an	ID	of	a	grid	cell,	you	can	calculate	the	row	and	the	column	it	belongs	to	using	a	simple	
mathematical	equation.	
		

	
	Neighbor	Definition:	For	a	given	grid	cell	X,	N(X)	is	the	set	of	all	neighbor	cells	of	X,	which	are	the	cells	
with	which	X	has	a	common	edge	or	corner.	The	Figure	illustrates	different	examples	of	neighbors.	Each	
non-boundary	grid	cell	has	8	neighbors.	However,	boundary	cells	will	have	less	number	of	neighbors	(See	
the	figure).		Since	the	grid	cell	size	is	fixed,	the	IDs	of	the		neighbor	cells	of	a	given	cell	can	be	computed	
using	a	formula	(mathematical	equations)	in	a	short	procedure.	
Example:			N(Cell	1)	=	{Cell	2,	Cell	501,	Cell	502}	 	
																							N(Cell	1002)	=	{Cell	501,	Cell	502,	Cell	503,	Cell	1001,	Cell	1003,	Cell	1501,	Cell	1502,	Cell	1503}	 	
	
	
Relative-Density	 Index:	 For	 a	 given	 grid	 cell	 X,	 I(X)	 is	 a	 decimal	 number	 that	 indicates	 the	 relative	
density	of	cell	X	compared	to	its	neighbors.	It	is	calculated	as	follows.	
	
I(X)	=	X.count	/	Average	(Y1.count,	Y2.count,	…Yn.count)	

	 5	

		Where	“X.count”	means	the	count	of	points	inside	grid	cell	X,	and	{Y1,	Y2,	…,	Yn}	are	the	neighbors	of	X.	
That	is	N(X)	=	{Y1,	Y2,	…,	Yn}	
	
	
Step	1	(Create	the	Datasets)[10	Points]							//You	can	re-use	your	code	from	Project	2	
• Your	 task	 in	 this	 step	 is	 to	 create	one	dataset	P	(set	of	2D	points).	Assume	 the	 space	extends	 from	

1…10,000	in	the	both	the	X	and	Y	axis.	Each	line	in	the	file	should	contain	one	point	in	the	format	(a,	
b),		where	a	is	the	value	in	the	X	axis,	and	b	is	the	value	in	the	Y	axis.	

• Scale	the	dataset	to	be	at	least	100MB.	
• Choose	the	appropriate	random	function	(of	your	choice)	to	create	the	points.		
• Upload	and	store	the	file	into	HDFS	
	
	
	
Step	2	(Report	the	TOP	50	grid	cells	w.r.t	Relative-Density	Index)[40	Points]	
In	this	step,	you	will	write	Scala	or	Java	code	(it	is	your	choice)	to	manipulate	the	file	and	report	the	top	
50	grid	cells	(the	grid	cell	IDs	not	the	points	inside)	that	have	the	highest	I	index.	Write	the	workflow	that	
reports	the	cell	IDs	along	with	their	relative-density	index.	
		
Your	code	should	be	fully	parallelizable	(distributed)	and	scalable.	
	
	
	
Step	3	(Report	the	TOP	50	grid	cells	w.r.t	Relative-Density	Index)[20	Points]	
Continue	over	the	results	from	Step	2,	and	for	each	of	the	reported	top	50	grid	cells,	report	the	IDs	and	
the	relative-density	indexes	of	its	neighbor	cells.	
		
	
	
	
	
	
	
What	to	Submit	
You	will	submit	a	single	zip	file	containing	the	code	needed	to	answer	the	problems	above.	Also	include	a	
.doc	or	.pdf	report	file	containing	any	required	documentation.		
	
	
How	to	Submit	
Use	blackboard	system	to	submit	your	files.	

