
	 1	

	
	
	
	
	

	
	
	
	

CS585:	Big	Data	Management	
	

Project	2	
	
	
	
	
Total	Points:		150		
	
Release	Date:		02/16/2017	
	
Due	Date:		02/26/2017	(11:59PM)	
	
Teams:	Project	to	be	done	in	teams	of	two.	
	
	 	



	 2	

Short	Description	
In	 this	project,	 you	will	write	 java	map-reduce	 jobs	 that	 implement	advanced	operations	 in	Hadoop	as	
well	as	learn	more	details	about	Hadoop’s	Input	Formats.			
	
	
Problem	1	(Spatial	Join)	[50	points]	
Spatial	join	is	a	common	type	of	joins	in	many	applications	that	manage	multi-dimensional	data.	A	typical	
example	 of	 spatial	 join	 is	 to	 have	 two	datasets:	Dataset	P	 (set	 of	 points	 in	 two	dimensional	 space)	 as	
shown	in	Figure	1a,	and	Dataset	R	(set	of	rectangles	 in	two	dimensional	space)	as	shown	in	Figure	1b.	
The	spatial	join	operation	is	to	join	these	two	datasets	and	report	any	pair	(rectangle	r,	point	p)	where	p	
is	contained	in	r	(or	even	in	the	border	of	r).	
	
	

																 	
Figure	1a:		Set	of	2D	Points		

	

							 	
Figure	1b:	Set	of	2D	Rectangles	

	

1,#2#

2,#4#

3,#15#

4,#3#

5,#16#

6,#2#

7,#7#

8,#5#

9,#15#

10,#4#

0#

2#

4#

6#

8#

10#

12#

14#

16#

18#

0# 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11#

Dataset&P"

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

!" '" #" (" $" )" %" *" &" +" '!" ''"

!"#"$%#&!"

r1#

r2#
r3#

r4#

r5#

r6#



	 3	

	
For	example,	the	join	between	the	two	datasets	shown	in	Figure	1,	will	result	in.	

	
<r1,	(3,15)>		
<r2,	(1,2)>	
<r2,	(2,4)>	
<r3,	(2,4)>	
<r3,	(4,3)>	
<r5,	(6,2)>	
<r5,	(7,7)>	
<r6,	(10,4)>	

	
Step	1	(Create	the	Datasets)[10	Points]	
• Your	task	in	this	step	is	to	create	the	two	datasets	P	(set	of	2D	points)	and	R	(set	of	2D	rectangles).	

Assume	 the	 space	 extends	 from	1…10,000	 in	 the	 both	 the	 X	 and	Y	 axis.	 Each	 line	will	 contain	 one	
object.	

• Scale	each	dataset	P	or	R	to	be	at	least	100MB.	
• Choose	the	appropriate	random	function	(of	your	choice)	to	create	the	points.	For	the	rectangles,	you	

will	 need	 to	 also	 select	 a	 point	 at	 random	 (say	 the	 top-left	 corner),	 and	 then	 select	 two	 random	
variables	that	define	the	height	and	width	of	the	rectangle.	For	example,	the	height	random	variable	
can	be	uniform	between	[1,20]	and	the	width	is	also	uniform	between	[1,5].			

	
	
Step	2	(MapReduce	job	for	Spatial	Join)[40	Points]	
In	this	step,	you	will	write	a	java	map-reduce	job	that	implements	the	spatial	join	operation	between	the	
two	datasets	P	and	R	based	on	the	following	requirements:	
• The	 program	 takes	 an	 optional	 input	 parameter	W(x1,	 y1,	 x2,	 y2)	 that	 indicate	 a	 spatial	 window	

(rectangle)	of	 interest	within	which	we	want	 to	 report	 the	 joined	objects.	 If	W	 is	omitted,	 then	 the	
entire	two	sets	should	be	joined.		

o Example,	 referring	 to	Figure	1,	 if	 the	window	parameter	 is	W(1,	3,	3,	20),	 then	 the	 reported	
joined	objects	should	be:	

<r1,	(3,15)>		
<r2,	(2,4)>	
<r3,	(2,4)>	

	
		

• You	should	have	a	single	map-reduce	job	to	implement	the	spatial	join	operation.	
	

	 	



	 4	

Problem	2	(Custom	Input	Format)	[50	points]	
So	far,	all	of	the	given	assignments	use	text	files	as	input,	and	hence	you	use	‘TextInputFormat()’	to	read	
the	files.	In	this	problem,	you	will	learn	more	about	Hadoop	input	formats	and	you	will	write	your	custom	
one	to	read	the	input	data.		
	
Step	1	(Data	Sets)	
You	will	use	 the	dataset	posted	 in	Blackboard	System	(under	Project	2),	 the	 file	name	 is	 “airfield.text”.		
This	file	has	records	formatted	in	JSON	format.	Each	record	starts	with	“{“		and	ends	with	“}”		(no	quotes).		
All	 attributes	 in	 between	 form	 one	 record.	 	 Records	 are	 separated	with	 “,”	 For	 example,	 the	 following	
image	shows	one	record:	
	

																																								 	
	
Upload	this	file	into	HDSF.		
	
	
	
Step	2	(Map	Job	with	a	Custom	Input	Format)[50	Points]	
• Now,	 to	do	any	 job	on	the	above	dataset	using	the	standard	“TextInputFormat()”,	 the	map	function	

must	be	complex	as	it	needs	to	collect	many	lines	to	form	a	single	record.	This	complexity	will	repeat	
with	each	written	job	over	the	above	dataset.	

• A	better	way	is	to	write	a	custom	input	format,	call	it	“JSONInputFormat”.	This	input	format	should	
read	many	lines	from	the	input	file	until	it	gets	a	complete	record	(as	the	one	in	the	image	above),	and	
then	coverts	 these	 lines	 to	a	 list	of	comma	separated	values	 in	a	single	 line,	and	 then	pass	 it	 to	 the	
map	function.	
o E.g.,	each	input	to	the	map	function	should	be:	ID:…,	ShortName:….,	Name:…,	Region:…,	…	
o In	this	case,	the	map	function	is	not	even	aware	that	it	is	reading	JSON	formatted	file.	
o As	 you	 see	 the	 line	 should	 have	 the	 fieldname	 then	 colon	 and	 then	 the	 value,	 and	 then	 “,”	

separating	the	fields.	
	

• Your	task	is	to	write	this	new	“JSONInputFormat”,	and	use	it	in	a	map-reduce	job	that	aggregates	the	
records	based	on	the	“Flag”	field,	and	for	each	flag	value	report	the	number	of	corresponding	records.		
	

• Part	of	 this	step	 is	 to	control	 the	number	of	mappers	that	will	execute	to	process	the	 input	 file.	We	
need	to	divide	the	file	(independent	of	the	HDFS	block	size)	into	5	splits,	which	means	Hadoop	should	
start	5	mappers	to	process	the	file.	

	
• Hint:	 You	 need	 to	 understand	 first	 the	 “FileInputFormat”,	 “TextInputFormat”,	 and	

“LineRecordReader”	classes.	And	you	can	reuse	some	of	them	and	build	your	new	one	as	extension.	



	 5	

	Problem	3	(K-Means	Clustering)	[50	points]	
K-Means	clustering	is	a	popular	algorithm	for	clustering	similar	objects	into	K	groups	(clusters).	It	starts	
with	an	initial	seed	of	K	points	(randomly	chosen)	as	centers,	and	then	the	algorithm	iteratively	tries	to	
enhance	 these	 centers.	 The	 algorithm	 terminates	 either	when	 two	 consecutive	 iterations	 generate	 the	
same	K	centers,	i.e.,	the	centers	did	not	change,	or	a	maximum	number	of	iterations	is	reached.		
	
Hint:	You	may	reference	these	links	to	get	some	ideas	(in	addition	to	the	course	slides):	
	 http://en.wikipedia.org/wiki/K-means_clustering#Standard_algorithm	

https://cwiki.apache.org/confluence/display/MAHOUT/K-Means+Clustering	
	
	
Step	1	(Creation	of	Dataset)	[10	points]:		
• Create	a	dataset	that	consists	of	2-dimenional	points,	i.e.,	each	point	has	(x,	y)	values.	X	and	Y	values	

each	range	from	0	to	10,000.	Each	point	is	in	a	separate	line.	
• Scale	the	dataset	such	that	its	size	is	around	100MB.	
• Create	another	file	that	will	contain	K	initial	seed	points.	Make	the	“K”	value	as	a	parameter	to	your	

program,	 such	 that	 your	 program	will	 generate	 these	K	 seeds	 randomly,	 and	 then	 you	upload	 the	
generated	file	to	HDFS.	

	
	
Step	2	(Clustering	the	Data)	[40	points]:		
Write	map-reduce	job(s)	that	implement	the	K-Means	clustering	algorithm	as	given	in	the	course	slides.	
The	algorithm	should	terminates	if	either	of	these	two	conditions	become	true:	

a) The	K	centers	did	not	change	over	two	consecutive	iterations	
b) The	maximum	number	of	iterations	(make	it	five	(5)	iterations)	has	reached.	

• Apply	the	tricks	given	in	class	and	in	the	2nd	link	above	such	as:	
o Use	of	a	combiner	
o Use	a	single	reducer	
o The	reducer	should	indicate	in	its	output	file	whether	centers	have	changed	or	not.	

	
Hint:	Since	the	algorithm	is	iterative,	then	you	need	your	program	that	generates	the	map-reduce	jobs	to	
control	whether	it	should	start	another	iteration	or	not.	
	
	
	
What	to	Submit	
You	will	submit	a	single	zip	file	containing	the	java	code	needed	to	answer	the	queries	above.	Also	include	
a	.doc	or	.pdf	report	file	containing	any	required	documentation.		
	
	
How	to	Submit	
Use	blackboard	system	to	submit	your	files.	


