
An overview of Spark

Amogh Raghunath

Suhas Srinivasan

A class presentation for CS 561 (3/17/2016)

Worcester Polytechnic Institute

Outline

1. Introduction

2. Motivation

3. Spark Programming Model

4. Resilient Distributed Datasets

5. Spark Programming Interface

6. Representing Resilient Distributed Datasets

7. Implementation

8. Evaluation

9. Conclusion

Introduction

• Apache Spark is an open source cluster computing framework.

• Originally developed at the University of California, Berkeley's
AMPLab by Matei Zaharia.

• Spark codebase was later donated to the Apache Software
Foundation that has maintained it since.

• Fast & general engine for big data processing.

• Generalizes MapReduce model to support more types of
processing.

Motivation

• MapReduce was great for batch processing, but users quickly
needed to do more:

 More complex, multi-pass algorithms

 More interactive ad-hoc queries

 More real-time stream processing

• Result: many specialized systems for these workloads

Motivation

Motivation

Motivation

• Problems with Specialized Systems

 More systems to manage, tune and deploy.

• Can’t combine processing types in one application

 Even though many pipelines need to do this.

 e.g. load data with SQL, then run machine learning.

• In many pipelines, data exchange between engines is the dominant
cost.

Motivation

• Recall 3 workloads were issues for MapReduce:

 More complex, multi-pass algorithms

 More interactive ad-hoc queries

 More real-time stream processing

• While these look different, all 3 need one thing that MapReduce
lacks: efficient data sharing

Motivation

Motivation

Motivation

Spark Programming Model

1. Developers write a driver program that implements the high-level
control flow of their application and launches various operations
in parallel.

2. Spark provides two main abstractions for parallel programming:
resilient distributed datasets and parallel operations on these
datasets.

3. Spark supports two restricted types of shared variables that can
be used in functions running on the cluster.

Spark Programming Model

Spark Programming Model

• A resilient distributed dataset (RDD) is a collection of objects that
can be stored in memory or disk across a cluster.

• Built via parallel operations and are fault-tolerant without
replication.

Spark Programming Model

Several parallel operations can be performed on RDDs:

• reduce: Combines dataset elements using an associative function to
produce a result at the driver program.

• collect: Sends all elements of the dataset to the driver program.

• foreach: Passes each element through a user provided function.

Spark Programming Model

Developers can create two restricted types of shared variables to
support two simple but common usage patterns:

• Broadcast variables: If a large read-only piece of data is used in
multiple parallel operations, it is preferable to distribute it to the
workers only once.

• Accumulators: These are variables that workers can only “add” to
using an associative operation, and that only the driver can read.
Useful for parallel sums and are fault tolerant.

Spark Programming Model

Spark Programming Model

Resilient Distributed Datasets

• Existing abstractions for in-memory storage on clusters offer an
interface based on fine-grained updates.

• With this interface, the only ways to provide fault tolerance are to
replicate the data across machines or to log updates across
machines.

• Both approaches are expensive for data-intensive workloads, as
they require copying large amounts of data over the cluster
network.

Resilient Distributed Datasets

• A resilient distributed dataset (RDD) is a read-only collection of
objects partitioned across a set of machines that can be rebuilt if a
partition is lost.

• The elements of an RDD need not exist in physical storage; instead,
a handle to an RDD contains enough information to compute the
RDD starting from data in reliable storage.

• Users can control two other aspects of RDDs: persistence and
partitioning.

• Users can indicate which RDDs they will reuse and choose a
storage strategy for them (e.g., in-memory storage).

• They can also ask that an RDD be partitioned across machines this
is useful for placement optimizations.

Resilient Distributed Datasets

Resilient Distributed Datasets

Resilient Distributed Datasets

Advantages

• Existing frameworks (like MapReduce) access the computational
power of the cluster, but not distributed memory.

- Time consuming and inefficient for applications that reuse
intermediate results.

• RDDs allow in-memory storage of intermediate results, enabling
efficient reuse of data.

Resilient Distributed Datasets

Comparison of RDDs with distributed shared memory

Resilient Distributed Datasets

Creating RDDs

• Two methods:

1. Loading an external dataset.

2. Creating an RDD from an existing RDD.

Resilient Distributed Datasets

1. Loading an external dataset

• Most common method for creating RDDs

• Data can be located in any storage system like HDFS, Hbase ,
Cassandra etc.

• Example:

lines = spark.textFile("hdfs://...")

Resilient Distributed Datasets

2. Creating an RDD from an Existing RDD

• An existing RDD can be used to create a new RDD.

• The Parent RDD remains intact and is not modified.

• The parent RDD can be used for further operations.

• Example

errors = lines.filter(_.startsWith("ERROR"))

Resilient Distributed Datasets

Operations

• Transformations and Actions are two main types of operations that
can be performed on a RDD.

• Concept similar to MapReduce:

- Transformations are like the map() function.

- Actions are like the reduce() function.

Resilient Distributed Datasets

Transformations

• Operations on existing RDDs that can return a new RDD.

• Transformation examples: map, filter, join.

- Example: running a filter on one RDD to produce another RDD.

Resilient Distributed Datasets

Transformations

lines = spark.textFile("hdfs://...")

errors = lines.filter(_.startsWith("ERROR"))

• Original parent RDD is left intact and can be used in future
transformations.

• No action takes place, just metadata of errors RDD are created.

Resilient Distributed Datasets

Actions

• Perform a computation on existing RDDs producing a result.

• Result is either:

- Returned to the Driver Program.

- Stored in a files system (like HDFS).

• Examples:

- count()

- collect()

- reduce()

- save()

Resilient Distributed Datasets

Fault Tolerance

• In event of node failure, operations can proceed.

• Spark uses an approach called the Lineage Graph or Directed
Acyclic Graph (DAG).

• Critical to maintain dependencies between RDDs.

• Linage Graph are maintained by the DAGScheduler.

Resilient Distributed Datasets

Fault Tolerance

• Model that describes steps required and business logic needed to
create the end result of the transformation process.

• Does not store the actual data.

• Example:

Resilient Distributed Datasets

Lazy Evaluation

• Transformation operations in RDD are referred to as being lazy.

- Results are not physically computed right away.

- Metadata regarding the transformations is recorded.

- Transformations are implemented only when an action is invoked.

• Example:

lines = spark.textFile("hdfs://...")

errors = lines.filter(_.startsWith("ERROR"))

- RDD errors are not returned to Driver program.

- Instead, the transformations are implemented only when a action on errors
RDD is invoked (like errors.persist()).

Resilient Distributed Datasets

Example:

lines = spark.textFile("hdfs://...")

errors = lines.filter(_.startsWith("ERROR"))

errors.count()

Resilient Distributed Datasets

Applications not suited for RDDs

• RDDs are best suited for batch applications that apply the same
operation to all elements of a dataset.

• Less suitable for applications that make asynchronous fine grained
updates to shared state

- Storage system for web application

- Incremental Web crawler

Spark Programming Interface

Spark Programming Interface

Driver Program

• Every spark application consists of a “driver program”.

- Responsible for launching parallel tasks on various cluster nodes.

- Encapsulates the main() function of the code.

- Defines distributed datasets across the nodes.

- Applies required operations across the distributed datasets.

Spark Programming Interface

SparkContext (sc)

• Means of connecting the driver program to the cluster.

• Once SparkContext is ready, it can be used to built an RDD.

Spark Programming Interface

Executers

• Driver Program manages nodes called executers.

- Used to run distributed operations.

- Each executor performs part of operation.

• Example: running count() function

- Different partition of the data sent to each executor.

- Each executor counts the number of lines in its data partition
only.

Representing Resilient Distributed Datasets

• RDDs are broken down into:

- Partitions

- Dependencies on parent RDDs

• How to represent dependencies between RDDs?

- Narrow Dependency

Example: Map

- Wide Dependency

Example : Join

Representing Resilient Distributed Datasets

Narrow Dependency

• All the partitions of the RDD will be consumed by a single child
RDD.

• Example:

- Filter

- Map

Representing Resilient Distributed Datasets

Wide Dependency

• Multiple child RDDs may depend on a parent RDD.

• Example:

- Join

- Group By

Representing Resilient Distributed Datasets

Interface used to represent RDD in Spark

Implementation

Job Scheduling

• When an action is invoked on an RDD, the scheduler checks the
lineage graph to be executed.

Implementation

Memory Management

Three options for storage of persistent RDDs:

1. In-memory storage as deserialized Java objects (fastest
performance)

2. In-memory storage as serialized data (Memory efficient but lower
performance)

3. On-disk storage (RDD is too large to fit in memory, highest cost)

Implementation

Memory Management

• LRU eviction policy at the level of RDDs is used.

• When a new RDD partition is computed but there is not enough
space, a partition from the LRU RDD is evicted.

• Unless this is the same RDD as the one with the new partition keep
the old partition to prevent cycling partitions.

• Users get further control via a “persistence priority” for each RDD.

Implementation

Checkpointing

• Recovery may be time-consuming for RDDs with long lineage
chains.

• Spark provides an API for checkpointing (a REPLICATE flag to
persist).

• Automatic checkpointing – the scheduler knows the size of each
dataset and the time it took to first compute it, it should be able to
select an optimal set of RDDs to checkpoint to minimize recovery
time.

• Metadata can also be checkpointed to account for Driver node
failure.

Evaluation

• Spark outperforms Hadoop by up to 20x in iterative machine
learning and graph applications.

• The speedup comes from avoiding I/O and deserialization costs by
storing data in memory as Java objects.

• When nodes fail, Spark can recover quickly by rebuilding only the
lost RDD partitions.

• Spark can be used to query a 1 TB dataset interactively with
latencies of 5–7 seconds.

Evaluation

Duration of the first and later iterations in Hadoop, HadoopBinMem and Spark for logistic
regression and k-means using 100 GB of data on a 100-node cluster.

Evaluation

Running times for iterations after the first in Hadoop, HadoopBinMem, and Spark. The
jobs all processed 100 GB.

Evaluation

HadoopBinMem ran slower due to several factors:

1. Minimum overhead of the Hadoop software stack.

2. Overhead of HDFS while serving data.

3. Deserialization cost to convert binary records to usable in-
memory Java objects.

Evaluation

Iteration times for logistic regression using 256 MB data on a single machine for different
sources of input.

Evaluation

Iteration times for k-means in presence of a failure. One machine was killed at the start of
the 6th iteration, resulting in partial reconstruction of an RDD using lineage.

Evaluation

Performance of logistic regression using 100 GB data on 25 machines with varying
amounts of data in memory.

Evaluation

Response times for interactive queries on Spark, scanning increasingly larger input
datasets on 100 machines. Querying the 1 TB file from disk took 170s.

Conclusion

• How should we design computing platforms for the new era of
massively parallel clusters?

• As we saw the answer can, in many cases, be quite simple: a single
abstraction for computation, based on coarse-grained operations
with efficient data sharing, can achieve state-of-the-art
performance.

Conclusion

Lessons Learned

• The importance of data sharing.

• Value performance in a shared setting over single-application.

• Optimize the bottlenecks that matter.

• Simple designs compose.

Conclusion

Most active open source project in big data processing.

Conclusion

Conclusion

References

1. Matei Zaharia et al. “Spark: Cluster Computing with Working
Sets”.

2. Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory Cluster Computing”.

3. Matei Zaharia’s dissertation, “An Architecture for Fast and
General Data Processing on Large Clusters”.

4. Databricks resources (https://databricks.com/resources/slides).

5. Apache Spark programming guide
(https://spark.apache.org/docs/1.6.0/programming-
guide.html).

References

6. Learning Spark – O’reilly

7. https://jaceklaskowski.gitbooks.io/mastering-apache-
spark/content/spark-sparkcontext.html

8. http://blog.explainmydata.com/2014/05/spark-should-be-
better-than-mapreduce.html

9. http://horicky.blogspot.com/2013/12/spark-low-latency-
massively-parallel.html

10. http://horicky.blogspot.com/2013/12/spark-low-latency-
massively-parallel.html

Thank you!

